Knowledge

Tumor-associated endothelial cell

Source đź“ť

118: 17: 83:(VEGF), which is a strong vasodilator. VEGF has been indicated to stimulate sprouting and tip branching in endothelial cells, leading to defective endothelial monolayers. Research supports that compression of tumor vessels by surrounding tumor cells results in mechanical tension and changes in blood flow. It has been suggested that these flow-mediated changes cause abnormal expression of transcription factors which promotes aberrant endothelial morphology, size, and differentiation. 21: 18: 155:, or the process of forming new blood vessels, has been around since the discovery of VEGF in 1989. The branching patterning of tumor-associated endothelial cells has been implicated in the initiation of angiogenesis. Dr. Judah Folkman played an important role in studying the role of angiogenesis in promoting tumor growth. He identified tumor's response to hypoxia as a leading contributor to angiogenesis and cancer growth. 20: 1664:
Buckanovich, Ronald J.; Facciabene, Andrea; Kim, Sarah; Benencia, Fabian; Sasaroli, Dimitra; Balint, Klara; Katsaros, Dionysios; O'Brien-Jenkins, Anne; Gimotty, Phyllis A. (2008-01-01). "Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy".
90:
which help with vessel stability. Loss of pericyte growth factor (PDGFB) and its receptor on endothelial cells are molecular-level changes that can account for this abnormal loss in pericyte support. Lower quantity of pericytes surrounding the tumor-associated endothelium has been associated with
62:
without overlap, but TECs create disorganized and loosely connected monolayers, often branching and extending across the lumen to overlap with their neighbors. In addition to this, TECs are showing distinct molecular signature which clearly separates them from physiological endothelial cells. The
217:
by capturing cancer cells at their primary sites and providing for their delivery to secondary organs. These tumor-associated endothelial cells can also release factors and supply nutrients that promote the growth of the primary tumor mass and its aggressive spread. Additionally, angiogenesis is
162:
based on assumptions that the underlying processes were similar amongst different tumor types. However, there are now multiple studies that illustrate the complexity behind these previous simple conceptions of angiogenesis, indicating that the way cancer cells interact with and co-opt new blood
137:
and has been exploited for cancer nano-therapeutics. Unfortunately the effectiveness of this mechanism for drug nano-carriers remains inconsistent due to the heterogeneity of this EPR effect within and amongst different tumors. Tumor type, size, and location affect the nature of the surrounding
183:
and sutinib are additional angiogenesis inhibitors that bind and block receptors on endothelial cells that have important roles in downstream pathways contributing to angiogenesis progression. An extensive amount of other compounds targeted towards halting angiogenesis are either currently in
108:
often pool and form blood lakes. These cellular openings contribute to tumor vessel "leakiness", potentially allowing the entry and delivery of therapeutic agents to tumor sites. For many tumors, it has been discovered associated endothelial cells have significantly increased permeability.
196:
Immune therapies depend heavily on the abilities of effector lymphocytes to infiltrate tumors, and the tumor endothelium is a known crucial regulator of T-cell trafficking. The tumor-associated endothelium has been found to be able to function as an immune barrier to
19: 57:
Tumor endothelial cells (TECs) have been documented to demonstrate abnormal morphological characteristics such as ragged margins and irregular cytoplasmic projections. In normal blood vessels, it is known that endothelial cells form regular monolayers with
71:), supporting the existence of irregular gaps between endothelial cells. At a more macro level, beyond the observation of small intercellular openings between nearby TECs, larger gaps in the walls of tumor blood vessels have been described. 163:
vessel growth varies amongst cancer types and must be studied. This must be studied in order to improve clinical design strategy and select for patients with tumors that are more likely to benefit from anti-angiogenic drugs.
45:, gene expression, and functionality in ways that promote cancer progression. There has been notable interest in developing cancer therapeutics that capitalize on these abnormalities of the tumor-associated 40:
that control the passage of nutrients into surrounding tumor tissue. Across different cancer types, tumor-associated blood vessels have been discovered to differ significantly from normal blood vessels in
129:
to leave the blood system and directly enter the tumor interstitial space. There is also a retention effect that allows these macromolecules to stay at tumor sites due to the suppression of
1231:
Gerhardt, Holger; Golding, Matthew; Fruttiger, Marcus; Ruhrberg, Christiana; Lundkvist, Andrea; Abramsson, Alexandra; Jeltsch, Michael; Mitchell, Christopher; Alitalo, Kari (2003-06-23).
1131:
Prabhakar, Uma; Maeda, Hiroshi; Jain, Rakesh K.; Sevick-Muraca, Eva M.; Zamboni, William; Farokhzad, Omid C.; Barry, Simon T.; Gabizon, Alberto; Grodzinski, Piotr (2013-04-15).
525:
di Tomaso, Emmanuelle; Capen, Diane; Haskell, Amy; Hart, Janet; Logie, James J.; Jain, Rakesh K.; McDonald, Donald M.; Jones, Rosemary; Munn, Lance L. (2005-07-01).
424:
Lu, Chunhua; Bonome, Tomas; Li, Yang; Kamat, Aparna A.; Han, Liz Y.; Schmandt, Rosemarie; Coleman, Robert L.; Gershenson, David M.; Jaffe, Robert B. (2007-02-16).
468:
Hashizume, Hiroya; Baluk, Peter; Morikawa, Shunichi; McLean, John W.; Thurston, Gavin; Roberge, Sylvie; Jain, Rakesh K.; McDonald, Donald M. (2017-04-21).
1058:
Maeda, H; Wu, J; Sawa, T; Matsumura, Y; Hori, K (2000-03-01). "Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review".
1093:
Iyer, Arun K.; Khaled, Greish; Fang, Jun; Maeda, Hiroshi (2006-09-01). "Exploiting the enhanced permeability and retention effect for tumor targeting".
330:
Milosevic, Vladan; Edelmann, Reidunn J.; Fosse, Johanna Hol; Ă–stman, Arne; Akslen, Lars A. (2022), Akslen, Lars A.; Watnick, Randolph S. (eds.),
1875:
Molecular Phenotypes of Endothelial Cells in Malignant Tumors. In: Akslen, L.A., Watnick, R.S. (eds) Biomarkers of the Tumor Microenvironment
218:
intimately linked to metastasis, as delivery of nutrients and oxygen through blood vessels is required for invasive tumor growth and spread.
121:
Illustration of the Enhanced Permeation and Retention (EPR) effect of macromolecular structures as drug delivery systems in malignant tissue.
134: 1133:"Challenges and key considerations of the enhanced permeability and retention (EPR) effect for nanomedicine drug delivery in oncology" 831:
Baluk, Peter; Hashizume, Hiroya; McDonald, Donald M (2005-02-01). "Cellular abnormalities of blood vessels as targets in cancer".
201:, inhibiting the effectiveness of immune therapies. These tumor-associated endothelial cells have been found to over-express the 617:
Padera, Timothy P.; Stoll, Brian R.; Tooredman, Jessica B.; Capen, Diane; di Tomaso, Emmanuelle; Jain, Rakesh K. (2004-02-19).
351: 1564:
Shih, Ted; Lindley, Celeste (2006-11-01). "Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies".
426:"Gene Alterations Identified by Expression Profiling in Tumor-Associated Endothelial Cells from Invasive Ovarian Carcinoma" 574:
Nagy, Janice A.; Dvorak, Ann M.; Dvorak, Harold F. (2007-01-01). "VEGF-A and the induction of pathological angiogenesis".
917:"Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules" 80: 63:
tumor endothelium is often described as mosaic due to its aberrant expression of traditional endothelial cell markers (
1776:
Jahroudi, N.; Greenberger, J. S. (1995-01-01). "The role of endothelial cells in tumor invasion and metastasis".
1015:
Gerlowski, L. E.; Jain, R. K. (1986-05-01). "Microvascular permeability of normal and neoplastic tissues".
527:"Mosaic tumor vessels: cellular basis and ultrastructure of focal regions lacking endothelial cell markers" 185: 774:
Hellström, M.; Gerhardt, H.; Kalén, M.; Li, X.; Eriksson, U.; Wolburg, H.; Betsholtz, C. (2001-04-30).
202: 171:
Various angiogenesis inhibitors have been developed to interfere with different steps in the process.
1356: 184:
preclinical development, undergoing clinical trials, or in the process of getting approved by the
104:
Where these branched tumor-associated endothelial cells form small gaps in the blood vessel wall,
159: 117: 1874: 1291:
Zetter, Bruce R. (2008). "The scientific contributions of M. Judah Folkman to cancer research".
179:) is a monoclonal antibody that binds to VEGF, preventing the stimulation of the VEGF receptor. 1351: 227: 630: 587: 42: 1716:
Kandalaft, Lana E.; Facciabene, Andrea; Buckanovich, Ron J.; Coukos, George (2009-07-15).
1342:
Folkman, J. (1990-01-03). "What is the evidence that tumors are angiogenesis dependent?".
8: 776:"Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis" 634: 1809: 1750: 1717: 1698: 1641: 1608: 1541: 1508: 1481: 1448: 1324: 1265: 1232: 1213: 1165: 1132: 997: 941: 916: 892: 867: 808: 775: 708: 675: 502: 469: 401: 376: 296: 263: 1840: 1071: 485: 392: 1852: 1844: 1801: 1793: 1755: 1737: 1690: 1682: 1646: 1628: 1589: 1581: 1546: 1528: 1486: 1468: 1426: 1418: 1377: 1369: 1316: 1308: 1270: 1252: 1205: 1170: 1152: 1110: 1075: 1040: 1032: 1028: 989: 981: 946: 928: 897: 879: 848: 813: 795: 756: 748: 744: 713: 695: 656: 648: 599: 591: 556: 548: 507: 489: 447: 406: 347: 301: 283: 1827:
Folkman, Judah (2002-12-16). "Role of angiogenesis in tumor growth and metastasis".
1813: 1702: 1577: 1217: 1001: 205:, which suppresses T-cell adhesion and targeting to tumors upon activation by ET-1. 1836: 1785: 1745: 1729: 1674: 1636: 1620: 1573: 1536: 1520: 1476: 1460: 1408: 1361: 1328: 1300: 1260: 1244: 1197: 1160: 1144: 1102: 1067: 1024: 973: 936: 887: 840: 803: 787: 740: 703: 687: 638: 583: 538: 497: 481: 437: 396: 388: 339: 291: 275: 1733: 1148: 731:
Hirschi, K. K.; D'Amore, P. A. (1996-10-01). "Pericytes in the microvasculature".
543: 526: 442: 425: 1893: 1106: 691: 1609:"Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action?" 1464: 343: 279: 1413: 1396: 105: 59: 1878: 1873:
Milosevic, V., Edelmann, R.J., Fosse, J.H., Ă–stman, A., Akslen, L.A. (2022).
1624: 1201: 844: 331: 1887: 1848: 1797: 1741: 1686: 1632: 1585: 1532: 1472: 1422: 1373: 1312: 1256: 1209: 1156: 1036: 985: 964:
Jain, R. K. (1987-01-01). "Transport of molecules across tumor vasculature".
932: 883: 799: 752: 699: 652: 595: 552: 493: 470:"Openings between Defective Endothelial Cells Explain Tumor Vessel Leakiness" 377:"Openings between Defective Endothelial Cells Explain Tumor Vessel Leakiness" 287: 126: 1856: 1759: 1694: 1650: 1593: 1550: 1490: 1430: 1320: 1274: 1233:"VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia" 1174: 1114: 1079: 852: 817: 717: 660: 603: 560: 511: 451: 410: 305: 232: 152: 138:
vasculature and stroma and contribute to this heterogeneity in EPR effect.
37: 1805: 1381: 1365: 1248: 1044: 993: 950: 791: 760: 901: 237: 172: 125:
The increased permeability of tumor-associated endothelial cells permits
46: 1789: 1524: 977: 915:
Dvorak, H. F.; Nagy, J. A.; Dvorak, J. T.; Dvorak, A. M. (1988-10-01).
866:
Van den Brenk, H. A.; Crowe, M.; Kelly, H.; Stone, M. G. (1977-04-01).
214: 180: 130: 25:
A visualization of tumor-associated blood vessels in the human breast
1715: 1304: 643: 618: 1678: 112: 87: 68: 1509:"Angiogenesis inhibitors: current strategies and future prospects" 1447:
Pezzella, F; Harris, A L; Tavassoli, M; Gatter, K C (2015-12-21).
176: 1663: 1230: 1188:
Hall, A. P. (2005-03-01). "The role of angiogenesis in cancer".
1130: 375:
Hashizume, H; Baluk, P; Morikawa, S; et al. (April 2000).
332:"Molecular Phenotypes of Endothelial Cells in Malignant Tumors" 198: 1718:"Endothelin B Receptor, a New Target in Cancer Immune Therapy" 1446: 868:"The significance of free blood in liquid and solid tumours" 865: 467: 329: 1449:"Blood vessels and cancer much more than just angiogenesis" 338:, Cham: Springer International Publishing, pp. 31–52, 64: 676:"Transcriptional control of endothelial cell development" 616: 524: 773: 86:
Smaller capillaries are often surrounded by supporting
914: 830: 619:"Pathology: cancer cells compress intratumour vessels" 374: 1607:
Gotink, Kristy J.; Verheul, Henk M. W. (2010-03-01).
1395:
Hanahan, Douglas; Weinberg, Robert A. (2011-03-04).
1057: 79:
Many tumors are characterized by high expression of
1775: 1092: 133:infiltration. This observation has been termed the 36:(TECs) refers to cells lining the tumor-associated 1507:Cook, Kristina M.; Figg, William D. (2010-07-01). 730: 1885: 573: 135:enhanced permeability and retention (EPR) effect 113:Enhanced permeability and retention (EPR) effect 1394: 423: 1606: 1014: 833:Current Opinion in Genetics & Development 674:De Val, Sarah; Black, Brian L. (2009-02-01). 141: 158:Angiogenesis was originally introduced as a 1879:https://doi.org/10.1007/978-3-030-98950-7_3 1563: 673: 268:Cold Spring Harbor Perspectives in Medicine 1397:"Hallmarks of Cancer: The Next Generation" 186:United States Food and Drug Administration 166: 74: 1749: 1640: 1540: 1480: 1412: 1355: 1264: 1164: 940: 891: 872:British Journal of Experimental Pathology 807: 707: 642: 542: 501: 441: 400: 295: 99: 1506: 1344:Journal of the National Cancer Institute 336:Biomarkers of the Tumor Microenvironment 116: 91:blood vessel instability and leakiness. 1826: 1341: 1886: 1290: 588:10.1146/annurev.pathol.2.010506.134925 261: 52: 1771: 1769: 1502: 1500: 1442: 1440: 1286: 1284: 1126: 1124: 191: 1187: 963: 835:. Oncogenes and cell proliferation. 463: 461: 370: 368: 325: 323: 321: 319: 317: 315: 257: 255: 253: 94: 1513:CA: A Cancer Journal for Clinicians 13: 1867: 1766: 1497: 1437: 1281: 1121: 81:vascular endothelial growth factor 30:Tumor-associated endothelial cells 15: 14: 1905: 921:The American Journal of Pathology 474:The American Journal of Pathology 458: 365: 312: 250: 262:Dudley, Andrew C. (2012-03-01). 1820: 1709: 1657: 1600: 1578:10.1016/j.clinthera.2006.11.015 1557: 1388: 1335: 1224: 1181: 1086: 1051: 1008: 957: 908: 859: 824: 767: 724: 146: 1190:Comparative Clinical Pathology 667: 610: 567: 518: 417: 1: 1841:10.1016/S0093-7754(02)70065-1 1734:10.1158/1078-0432.CCR-08-0543 1149:10.1158/0008-5472.CAN-12-4561 1072:10.1016/S0168-3659(99)00248-5 1060:Journal of Controlled Release 966:Cancer and Metastasis Reviews 544:10.1158/0008-5472.CAN-04-4552 486:10.1016/S0002-9440(10)65006-7 443:10.1158/0008-5472.can-06-3700 393:10.1016/S0002-9440(10)65006-7 243: 208: 151:The idea of tumors promoting 1107:10.1016/j.drudis.2006.07.005 1029:10.1016/0026-2862(86)90018-x 745:10.1016/0008-6363(96)00063-6 692:10.1016/j.devcel.2009.01.014 213:The vasculature can promote 7: 1465:10.1038/cddiscovery.2015.64 1237:The Journal of Cell Biology 780:The Journal of Cell Biology 344:10.1007/978-3-030-98950-7_3 280:10.1101/cshperspect.a006536 221: 10: 1910: 1414:10.1016/j.cell.2011.02.013 576:Annual Review of Pathology 142:Roles in tumor progression 1778:Journal of Neuro-Oncology 1625:10.1007/s10456-009-9160-6 1202:10.1007/s00580-004-0533-3 845:10.1016/j.gde.2004.12.005 264:"Tumor Endothelial Cells" 1722:Clinical Cancer Research 733:Cardiovascular Research 167:Angiogenesis inhibitors 75:Causes of abnormalities 34:tumor endothelial cells 1293:Nature Reviews. Cancer 1017:Microvascular Research 228:Tumor microenvironment 122: 100:Blood vessel leakiness 26: 1566:Clinical Therapeutics 1249:10.1083/jcb.200302047 792:10.1083/jcb.153.3.543 203:endothelin B receptor 120: 24: 1829:Seminars in Oncology 1453:Cell Death Discovery 1095:Drug Discovery Today 1366:10.1093/jnci/82.1.4 635:2004Natur.427..695P 53:Abnormal morphology 49:to destroy tumors. 1877:. Springer, Cham. 1790:10.1007/bf01053415 1525:10.3322/caac.20075 1101:(17–18): 812–818. 978:10.1007/bf00047468 680:Developmental Cell 192:Immune suppression 160:Hallmark of Cancer 123: 27: 1728:(14): 4521–4528. 1572:(11): 1779–1802. 537:(13): 5740–5749. 353:978-3-030-98950-7 95:Abnormal function 22: 1901: 1861: 1860: 1824: 1818: 1817: 1773: 1764: 1763: 1753: 1713: 1707: 1706: 1661: 1655: 1654: 1644: 1604: 1598: 1597: 1561: 1555: 1554: 1544: 1504: 1495: 1494: 1484: 1444: 1435: 1434: 1416: 1392: 1386: 1385: 1359: 1339: 1333: 1332: 1288: 1279: 1278: 1268: 1243:(6): 1163–1177. 1228: 1222: 1221: 1185: 1179: 1178: 1168: 1143:(8): 2412–2417. 1128: 1119: 1118: 1090: 1084: 1083: 1066:(1–2): 271–284. 1055: 1049: 1048: 1012: 1006: 1005: 961: 955: 954: 944: 912: 906: 905: 895: 863: 857: 856: 828: 822: 821: 811: 771: 765: 764: 728: 722: 721: 711: 671: 665: 664: 646: 614: 608: 607: 571: 565: 564: 546: 522: 516: 515: 505: 480:(4): 1363–1380. 465: 456: 455: 445: 436:(4): 1757–1768. 421: 415: 414: 404: 372: 363: 362: 361: 360: 327: 310: 309: 299: 259: 23: 1909: 1908: 1904: 1903: 1902: 1900: 1899: 1898: 1884: 1883: 1870: 1868:Further reading 1865: 1864: 1825: 1821: 1774: 1767: 1714: 1710: 1667:Nature Medicine 1662: 1658: 1605: 1601: 1562: 1558: 1505: 1498: 1445: 1438: 1393: 1389: 1357:10.1.1.599.5748 1340: 1336: 1305:10.1038/nrc2458 1289: 1282: 1229: 1225: 1186: 1182: 1137:Cancer Research 1129: 1122: 1091: 1087: 1056: 1052: 1013: 1009: 962: 958: 913: 909: 864: 860: 829: 825: 772: 768: 729: 725: 672: 668: 644:10.1038/427695a 615: 611: 572: 568: 531:Cancer Research 523: 519: 466: 459: 430:Cancer Research 422: 418: 373: 366: 358: 356: 354: 328: 313: 260: 251: 246: 224: 211: 194: 169: 149: 144: 115: 102: 97: 77: 60:tight junctions 55: 16: 12: 11: 5: 1907: 1897: 1896: 1882: 1881: 1869: 1866: 1863: 1862: 1819: 1765: 1708: 1679:10.1038/nm1699 1656: 1599: 1556: 1519:(4): 222–243. 1496: 1436: 1407:(5): 646–674. 1387: 1334: 1299:(8): 647–654. 1280: 1223: 1180: 1120: 1085: 1050: 1023:(3): 288–305. 1007: 972:(4): 559–593. 956: 907: 878:(2): 147–159. 858: 839:(1): 102–111. 823: 786:(3): 543–553. 766: 739:(4): 687–698. 723: 686:(2): 180–195. 666: 609: 566: 517: 457: 416: 387:(4): 1363–80. 364: 352: 311: 274:(3): a006536. 248: 247: 245: 242: 241: 240: 235: 230: 223: 220: 210: 207: 193: 190: 168: 165: 148: 145: 143: 140: 127:macromolecules 114: 111: 101: 98: 96: 93: 76: 73: 54: 51: 9: 6: 4: 3: 2: 1906: 1895: 1892: 1891: 1889: 1880: 1876: 1872: 1871: 1858: 1854: 1850: 1846: 1842: 1838: 1834: 1830: 1823: 1815: 1811: 1807: 1803: 1799: 1795: 1791: 1787: 1784:(2): 99–108. 1783: 1779: 1772: 1770: 1761: 1757: 1752: 1747: 1743: 1739: 1735: 1731: 1727: 1723: 1719: 1712: 1704: 1700: 1696: 1692: 1688: 1684: 1680: 1676: 1672: 1668: 1660: 1652: 1648: 1643: 1638: 1634: 1630: 1626: 1622: 1618: 1614: 1610: 1603: 1595: 1591: 1587: 1583: 1579: 1575: 1571: 1567: 1560: 1552: 1548: 1543: 1538: 1534: 1530: 1526: 1522: 1518: 1514: 1510: 1503: 1501: 1492: 1488: 1483: 1478: 1474: 1470: 1466: 1462: 1458: 1454: 1450: 1443: 1441: 1432: 1428: 1424: 1420: 1415: 1410: 1406: 1402: 1398: 1391: 1383: 1379: 1375: 1371: 1367: 1363: 1358: 1353: 1349: 1345: 1338: 1330: 1326: 1322: 1318: 1314: 1310: 1306: 1302: 1298: 1294: 1287: 1285: 1276: 1272: 1267: 1262: 1258: 1254: 1250: 1246: 1242: 1238: 1234: 1227: 1219: 1215: 1211: 1207: 1203: 1199: 1195: 1191: 1184: 1176: 1172: 1167: 1162: 1158: 1154: 1150: 1146: 1142: 1138: 1134: 1127: 1125: 1116: 1112: 1108: 1104: 1100: 1096: 1089: 1081: 1077: 1073: 1069: 1065: 1061: 1054: 1046: 1042: 1038: 1034: 1030: 1026: 1022: 1018: 1011: 1003: 999: 995: 991: 987: 983: 979: 975: 971: 967: 960: 952: 948: 943: 938: 934: 930: 927:(1): 95–109. 926: 922: 918: 911: 903: 899: 894: 889: 885: 881: 877: 873: 869: 862: 854: 850: 846: 842: 838: 834: 827: 819: 815: 810: 805: 801: 797: 793: 789: 785: 781: 777: 770: 762: 758: 754: 750: 746: 742: 738: 734: 727: 719: 715: 710: 705: 701: 697: 693: 689: 685: 681: 677: 670: 662: 658: 654: 650: 645: 640: 636: 632: 629:(6976): 695. 628: 624: 620: 613: 605: 601: 597: 593: 589: 585: 581: 577: 570: 562: 558: 554: 550: 545: 540: 536: 532: 528: 521: 513: 509: 504: 499: 495: 491: 487: 483: 479: 475: 471: 464: 462: 453: 449: 444: 439: 435: 431: 427: 420: 412: 408: 403: 398: 394: 390: 386: 382: 381:Am. J. Pathol 378: 371: 369: 355: 349: 345: 341: 337: 333: 326: 324: 322: 320: 318: 316: 307: 303: 298: 293: 289: 285: 281: 277: 273: 269: 265: 258: 256: 254: 249: 239: 236: 234: 231: 229: 226: 225: 219: 216: 206: 204: 200: 189: 187: 182: 178: 174: 164: 161: 156: 154: 139: 136: 132: 128: 119: 110: 107: 92: 89: 84: 82: 72: 70: 66: 61: 50: 48: 44: 39: 38:blood vessels 35: 31: 1835:(6): 15–18. 1832: 1828: 1822: 1781: 1777: 1725: 1721: 1711: 1673:(1): 28–36. 1670: 1666: 1659: 1616: 1613:Angiogenesis 1612: 1602: 1569: 1565: 1559: 1516: 1512: 1456: 1452: 1404: 1400: 1390: 1347: 1343: 1337: 1296: 1292: 1240: 1236: 1226: 1196:(3): 95–99. 1193: 1189: 1183: 1140: 1136: 1098: 1094: 1088: 1063: 1059: 1053: 1020: 1016: 1010: 969: 965: 959: 924: 920: 910: 875: 871: 861: 836: 832: 826: 783: 779: 769: 736: 732: 726: 683: 679: 669: 626: 622: 612: 579: 575: 569: 534: 530: 520: 477: 473: 433: 429: 419: 384: 380: 357:, retrieved 335: 271: 267: 233:Angiogenesis 212: 195: 170: 157: 153:angiogenesis 150: 147:Angiogenesis 124: 106:erythrocytes 103: 85: 78: 56: 33: 29: 28: 1619:(1): 1–14. 582:: 251–275. 238:Endothelium 173:Bevacizumab 47:endothelium 1350:(1): 4–6. 359:2022-07-13 244:References 215:metastasis 209:Metastasis 43:morphology 1849:0093-7754 1798:0167-594X 1742:1078-0432 1687:1078-8956 1633:1573-7209 1586:0149-2918 1533:1542-4863 1473:2058-7716 1459:: 15064. 1423:0092-8674 1374:0027-8874 1352:CiteSeerX 1313:1474-1768 1257:0021-9525 1210:1618-5641 1157:0008-5472 1037:0026-2862 986:0167-7659 933:0002-9440 884:0007-1021 800:0021-9525 753:0008-6363 700:1878-1551 653:1476-4687 596:1553-4006 553:0008-5472 494:0002-9440 288:2157-1422 181:Sorafenib 131:lymphatic 88:pericytes 1888:Category 1857:12516034 1814:24723243 1760:19567593 1703:14822376 1695:18157142 1651:20012482 1594:17212999 1551:20554717 1491:27551488 1431:21376230 1321:18633354 1275:12810700 1218:31476527 1175:23423979 1115:16935749 1080:10699287 1002:20519826 853:15661540 818:11331305 718:19217421 661:14973470 604:18039100 561:15994949 512:10751361 452:17308118 411:10751361 306:22393533 222:See also 1806:7543941 1751:2896814 1642:2845892 1542:2919227 1482:4979496 1382:1688381 1329:8649851 1266:2172999 1166:3916009 1045:2423854 994:3327633 951:2459969 942:1880651 893:2041288 809:2190573 761:8915187 709:2728550 631:Bibcode 503:1876882 402:1876882 297:3282494 199:T-cells 177:Avastin 1894:Cancer 1855:  1847:  1812:  1804:  1796:  1758:  1748:  1740:  1701:  1693:  1685:  1649:  1639:  1631:  1592:  1584:  1549:  1539:  1531:  1489:  1479:  1471:  1429:  1421:  1380:  1372:  1354:  1327:  1319:  1311:  1273:  1263:  1255:  1216:  1208:  1173:  1163:  1155:  1113:  1078:  1043:  1035:  1000:  992:  984:  949:  939:  931:  902:861165 900:  890:  882:  851:  816:  806:  798:  759:  751:  716:  706:  698:  659:  651:  623:Nature 602:  594:  559:  551:  510:  500:  492:  450:  409:  399:  350:  304:  294:  286:  1810:S2CID 1699:S2CID 1325:S2CID 1214:S2CID 998:S2CID 69:CD105 1853:PMID 1845:ISSN 1802:PMID 1794:ISSN 1756:PMID 1738:ISSN 1691:PMID 1683:ISSN 1647:PMID 1629:ISSN 1590:PMID 1582:ISSN 1547:PMID 1529:ISSN 1487:PMID 1469:ISSN 1427:PMID 1419:ISSN 1401:Cell 1378:PMID 1370:ISSN 1317:PMID 1309:ISSN 1271:PMID 1253:ISSN 1206:ISSN 1171:PMID 1153:ISSN 1111:PMID 1076:PMID 1041:PMID 1033:ISSN 990:PMID 982:ISSN 947:PMID 929:ISSN 898:PMID 880:ISSN 849:PMID 814:PMID 796:ISSN 757:PMID 749:ISSN 714:PMID 696:ISSN 657:PMID 649:ISSN 600:PMID 592:ISSN 557:PMID 549:ISSN 508:PMID 490:ISSN 448:PMID 407:PMID 348:ISBN 302:PMID 284:ISSN 67:and 65:CD31 1837:doi 1786:doi 1746:PMC 1730:doi 1675:doi 1637:PMC 1621:doi 1574:doi 1537:PMC 1521:doi 1477:PMC 1461:doi 1409:doi 1405:144 1362:doi 1301:doi 1261:PMC 1245:doi 1241:161 1198:doi 1161:PMC 1145:doi 1103:doi 1068:doi 1025:doi 974:doi 937:PMC 925:133 888:PMC 841:doi 804:PMC 788:doi 784:153 741:doi 704:PMC 688:doi 639:doi 627:427 584:doi 539:doi 498:PMC 482:doi 478:156 438:doi 397:PMC 389:doi 385:156 340:doi 292:PMC 276:doi 32:or 1890:: 1851:. 1843:. 1833:29 1831:. 1808:. 1800:. 1792:. 1782:23 1780:. 1768:^ 1754:. 1744:. 1736:. 1726:15 1724:. 1720:. 1697:. 1689:. 1681:. 1671:14 1669:. 1645:. 1635:. 1627:. 1617:13 1615:. 1611:. 1588:. 1580:. 1570:28 1568:. 1545:. 1535:. 1527:. 1517:60 1515:. 1511:. 1499:^ 1485:. 1475:. 1467:. 1455:. 1451:. 1439:^ 1425:. 1417:. 1403:. 1399:. 1376:. 1368:. 1360:. 1348:82 1346:. 1323:. 1315:. 1307:. 1295:. 1283:^ 1269:. 1259:. 1251:. 1239:. 1235:. 1212:. 1204:. 1194:13 1192:. 1169:. 1159:. 1151:. 1141:73 1139:. 1135:. 1123:^ 1109:. 1099:11 1097:. 1074:. 1064:65 1062:. 1039:. 1031:. 1021:31 1019:. 996:. 988:. 980:. 968:. 945:. 935:. 923:. 919:. 896:. 886:. 876:58 874:. 870:. 847:. 837:15 812:. 802:. 794:. 782:. 778:. 755:. 747:. 737:32 735:. 712:. 702:. 694:. 684:16 682:. 678:. 655:. 647:. 637:. 625:. 621:. 598:. 590:. 578:. 555:. 547:. 535:65 533:. 529:. 506:. 496:. 488:. 476:. 472:. 460:^ 446:. 434:67 432:. 428:. 405:. 395:. 383:. 379:. 367:^ 346:, 334:, 314:^ 300:. 290:. 282:. 270:. 266:. 252:^ 188:. 1859:. 1839:: 1816:. 1788:: 1762:. 1732:: 1705:. 1677:: 1653:. 1623:: 1596:. 1576:: 1553:. 1523:: 1493:. 1463:: 1457:1 1433:. 1411:: 1384:. 1364:: 1331:. 1303:: 1297:8 1277:. 1247:: 1220:. 1200:: 1177:. 1147:: 1117:. 1105:: 1082:. 1070:: 1047:. 1027:: 1004:. 976:: 970:6 953:. 904:. 855:. 843:: 820:. 790:: 763:. 743:: 720:. 690:: 663:. 641:: 633:: 606:. 586:: 580:2 563:. 541:: 514:. 484:: 454:. 440:: 413:. 391:: 342:: 308:. 278:: 272:2 175:(

Index

blood vessels
morphology
endothelium
tight junctions
CD31
CD105
vascular endothelial growth factor
pericytes
erythrocytes

macromolecules
lymphatic
enhanced permeability and retention (EPR) effect
angiogenesis
Hallmark of Cancer
Bevacizumab
Avastin
Sorafenib
United States Food and Drug Administration
T-cells
endothelin B receptor
metastasis
Tumor microenvironment
Angiogenesis
Endothelium



"Tumor Endothelial Cells"
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑