Knowledge

Two-photon excitation microscopy

Source 📝

232:. If the fluorophore absorbs two infrared photons simultaneously, it will absorb enough energy to be raised into the excited state. The fluorophore will then emit a single photon with a wavelength that depends on the type of fluorophore used (typically in the visible spectrum). Because two photons are absorbed during the excitation of the fluorophore, the probability of fluorescent emission from the fluorophores increases quadratically with the excitation intensity. Therefore, much more two-photon fluorescence is generated where the laser beam is tightly focused than where it is more diffuse. Effectively, excitation is restricted to the tiny focal volume (~1 femtoliter), resulting in a high degree of rejection of out-of-focus objects. This 147: 138: 27: 257: 389: 224:. For example, the same average laser power but without pulsing results in no detectable fluorescence compared to fluorescence generated by the pulsed laser via the two-photon effect. The longer wavelength, lower energy (typically infrared) excitation lasers of multiphoton microscopes are well-suited to use in imaging live cells as they cause less damage than the short-wavelength lasers typically used for single-photon excitation, so living tissues may be observed for longer periods with fewer toxic effects. 2658: 3110: 2759: 117: 2771: 151:
than the wide field. The 2PEF distribution is larger due to the fact that a wavelength twice as long as in the case of a wide or confocal field is responsible for the intensity distribution. These intensity distributions are also known as point spread functions. Optical conditions: the excitation wavelengths are 488 nm and 900 nm respectively for 1PEF and 2PEF; the emission wavelength is 520 nm; the
150:
Optical response from a point source. From left to right: calculated intensity distributions xy (top) and rz (bottom), with logarithmic scale, for a point source imaged by means of a wide field (a), 2PEF (b) and confocal microscopy (c). The 2PEF and confocal forms have a better signal-to-noise ratio
1304:
Kovács, Dénes Szepesi; Kontra, Bence; Chiovini, Balázs; Müller, Dalma; Tóth, Estilla Zsófia; Ábrányi-Balogh, Péter; Wittner, Lucia; Várady, György; Turczel, Gábor; Farkas, Ödön; Owen, Michael C.; Katona, Gergely; Győrffy, Balázs; Keserű, György Miklós; Mucsi, Zoltán; Rózsa, Balázs J.; Kovács, Ervin
296:
tissue has added benefits. Longer wavelengths are scattered to a lesser degree than shorter ones, which is a benefit to high-resolution imaging. In addition, these lower-energy photons are less likely to cause damage outside the focal volume. Compared to a confocal microscope, photon detection is
319:
Two-photon microscopy has been involved in numerous fields including: physiology, neurobiology, embryology and tissue engineering. Even thin, nearly transparent tissues (such as skin cells) have been visualized with clear detail due to this technique. Two-photon microscopy's high speed imaging
215:
in one quantum event. Each photon carries approximately half the energy necessary to excite the molecule. The emitted photon is at a higher energy (shorter wavelength) than either of the two exciting photons. The probability of the near-simultaneous absorption of two photons is extremely low.
336:
for two-photon fluorescence and second harmonic generation, which are otherwise thought to occur from the same transition dipole moment. Non-degenerative two-photon excitation, or using 2 photons of unequal wavelengths, was shown to increase the fluorescence of all tested small molecules and
1344:
Kovács, Dénes Szepesi; Chiovini, Balázs; Müller, Dalma; Tóth, Estilla Zsófia; Fülöp, Anna; Ábrányi-Balogh, Péter; Wittner, Lucia; Várady, György; Farkas, Ödön; Turczel, Gábor; Katona, Gergely; Győrffy, Balázs; Keserű, György Miklós; Mucsi, Zoltán; Rózsa, Balázs J.; Kovács, Ervin (Jun 2023).
300:
There are several caveats to using two-photon microscopy: The pulsed lasers needed for two-photon excitation are much more expensive than the continuous wave (CW) lasers used in confocal microscopy. The two-photon absorption spectrum of a molecule may vary significantly from its one-photon
1596:
Máthé, Domokos; Szalay, Gergely; Cseri, Levente; Kis, Zoltán; Pályi, Bernadett; Földes, Gábor; Kovács, Noémi; Fülöp, Anna; Szepesi, Áron; Hajdrik, Polett; Csomos, Attila; Zsembery, Ákos; Kádár, Kristóf; Katona, Gergely; Mucsi, Zoltán; Rózsa, Balázs József; Kovács, Ervin (Jul 2024).
301:
counterpart. Higher-order photodamage becomes a problem and bleaching scales with the square of the laser power, whereas it is linear for single-photon (confocal). For very thin objects such as isolated cells, single-photon (confocal) microscopes can produce images with higher
141:
Schematic representation of the energy levels (Jabłoński diagrams) of the fluorescence process, example of a fluorescent dye that emits light at 460 nm. One (purple, 1PEF), two (light red, 2PEF) or three (dark red, 3PEF) photons are absorbed to emit a photon of fluorescence
462:
Simultaneous absorption of three or more photons is also possible, allowing for higher-order multiphoton excitation microscopy. So-called "three-photon excitation fluorecence microscopy" (3PEF) is the most used technique after 2PEF, to which it is complementary. Localized
2230:
Sortino, Rosalba; Cunquero, Marina; Castro-Olvera, Gustavo; Gelabert, Ricard; Moreno, Miquel; Riefolo, Fabio; Matera, Carlo; Fernàndez-Castillo, Noèlia; Agnetta, Luca; Decker, Michael; Lluch, José Maria; Hernando, Jordi; Loza-Alvarez, Pablo; Gorostiza, Pau (2023-10-12).
2390:
Przhonska, Olga V.; Webster, Scott; Padilha, Lazaro A.; Hu, Honghua; Kachkovski, Alexey D.; Hagan, David J.; Van Stryland, Eric W. (2010). "Two-Photon Absorption in Near-IR Conjugated Molecules: Design Strategy and Structure–Property Relations".
101:. Using infrared light minimizes scattering in the tissue because infrared light is scattered less in typical biological tissues. Due to the multiphoton absorption, the background signal is strongly suppressed. Both effects lead to an increased 288:
normally used has a pulse width of approximately 100 femtoseconds (fs) and a repetition rate of about 80 MHz, allowing the high photon density and flux required for two-photon absorption, and is tunable across a wide range of wavelengths.
1211:
Sadegh, Sanaz; Yang, Mu-Han; Ferri, Christopher G. L.; Thunemann, Martin; Saisan, Payam A.; Wei, Zhe; Rodriguez, Erik A.; Adams, Stephen R.; Kiliç, Kivilcim; Boas, David A.; Sakadžić, Sava; Devor, Anna; Fainman, Yeshaiahu (18 September 2019).
1795:
Pittolo, Silvia; Lee, Hyojung; Lladó, Anna; Tosi, Sébastien; Bosch, Miquel; Bardia, Lídia; Gómez-Santacana, Xavier; Llebaria, Amadeu; Soriano, Eduardo; Colombelli, Julien; Poskanzer, Kira E.; Perea, Gertrudis; Gorostiza, Pau (2019-07-02).
206:
effect. Unlike confocal microscopes, multiphoton microscopes do not contain pinhole apertures that give confocal microscopes their optical sectioning quality. The optical sectioning produced by multiphoton microscopes is a result of the
1493: 81:
requires simultaneous excitation by two photons with longer wavelength than the emitted light. The laser is focused onto a specific location in the tissue and scanned across the sample to sequentially produce the image. Due to the
485:(CFP, GFP, YFP, RFP) and dyes can be excited in two-photon mode. Two-photon excitation spectra are often considerably broader, making it more difficult to excite fluorophores selectively by switching excitation wavelengths. 297:
much more effective since even scattered photons contribute to the usable signal. These benefits for imaging in scattering tissues were only recognized several years after the invention of two-photon excitation microscopy.
227:
The most commonly used fluorophores have excitation spectra in the 400–500 nm range, whereas the laser used to excite the two-photon fluorescence lies in the ~700–1100 nm (infrared) range produced by
454:. The animals are typically head-fixed due to the size of the microscope and scan devices, but also miniatured microscopes are being developed that enable imaging of neurons in the moving and freely behaving animals. 305:
due to their shorter excitation wavelengths. In scattering tissue, on the other hand, the superior optical sectioning and light detection capabilities of the two-photon microscope result in better performance.
2354:
Liu, Lingzhi; Shao, Mei; Dong, Xiaohu; Yu, Xuefeng; Liu, Zhihong; He, Zhike; Wang, Ququan (15 October 2008). "Homogeneous Immunoassay Based on Two-Photon Excitation Fluorescence Resonance Energy Transfer".
1738:
Izquierdo-Serra, Mercè; Gascón-Moya, Marta; Hirtz, Jan J.; Pittolo, Silvia; Poskanzer, Kira E.; Ferrer, Èric; Alibés, Ramon; Busqué, Félix; Yuste, Rafael; Hernando, Jordi; Gorostiza, Pau (2014-06-18).
240:
excitation microscopes, which need to employ elements such as pinholes to reject out-of-focus fluorescence. The fluorescence from the sample is then collected by a high-sensitivity detector, such as a
488:
Several green, red and NIR emitting dyes (probes and reactive labels) with extremely high 2-photon absorption cross-sections have been reported. Due to the donor-acceptor-donor type structure,
320:
capabilities may also be utilized in noninvasive optical biopsy. Two-photon microscopy has been aptly used for producing localized chemical reactions, and effect that has been used also for
373:
2PEF has also been used in visualization of difficult-to-access cell types, especially in regards to kidney cells. It has been used in better understanding fluid dynamics and filtration.
1394:
Tanaka, Koji; Toiyama, Yuji; Okugawa, Yoshinaga; Okigami, Masato; Inoue, Yasuhiro; Uchida, Keiichi; Araki, Toshimitsu; Mohri, Yasuhiko; Mizoguchi, Akira; Kusunoki, Masato (15 May 2014).
211:
of the excitation. The concept of two-photon excitation is based on the idea that two photons, of comparably lower photon energy than needed for one-photon excitation, can also excite a
86:
of two-photon excitation, mainly fluorophores in the micrometer-sized focus of the laser beam are excited, which results in the spatial resolution of the image. This contrasts with
392:
Diagram of in vivo brain function imaging. Shows the general schematic for imaging, along with neuronal and vascular images. Imaging was performed using various fluorescent dyes.
353:
in vitro. It had also been shown to reveal tumor cell arrest, tumor cell-platelet interaction, tumor cell-leukocyte interaction and metastatic colonization processes.
1269:
Paoli, John; Smedh, Maria; Ericson, Marica B. (September 2009). "Multiphoton Laser Scanning Microscopy—A Novel Diagnostic Method for Superficial Skin Cancers".
2010:
Demas, Jeffrey; Manley, Jason; Tejera, Frank; Barber, Kevin; Kim, Hyewon; Traub, Francisca Martínez; Chen, Brandon; Vaziri, Alipasha (September 2021).
2701: 895: 516:, exhibit extremely high two-photon action cross-sections of up to 10,000 GM in the near IR region, unsurpassed by any other class of organic dyes. 2157: 128:. The excitement is at 840 nm, and the red and blue colors represent other channels of multiphoton techniques which have been superimposed. 405:
are used to characterize intact neural tissues in the brain of living and even behaving animals. In particular, the method is advantageous for
2612: 2540: 622:
Keikhosravi, Adib; Bredfeldt, Jeremy S.; Sagar, Abdul Kader; Eliceiri, Kevin W. (2014). "Second-harmonic generation imaging of cancer".
417:
of photoswitchable drugs, and for the imaging of other genetically encoded sensors that report the concentration of neurotransmitters.
1307:"Effective synthesis, development and application of a highly fluorescent cyanine dye for antibody conjugation and microscopy imaging" 284:
with the use of a laser scanner. In two-photon excitation microscopy an infrared laser beam is focused through an objective lens. The
3070: 248:
in the eventual image; the focal point is scanned throughout a desired region of the sample to form all the pixels of the image.
2446: 2744: 2739: 2607: 2452: 2463: 420:
Currently, two-photon microscopy is widely used to image the live firing of neurons in model organisms including fruit flies (
2408: 760: 666: 639: 612: 585: 550: 90:, where the spatial resolution is produced by the interaction of excitation focus and the confined detection with a pinhole. 2441: 2431: 1347:"Synthesis and Application of Two-Photon Active Fluorescent Rhodol Dyes for Antibody Conjugation and In Vitro Cell Imaging" 2775: 2706: 692:
Denk, Winifried; Strickler, James H.; Webb, Watt W. (6 April 1990). "Two-Photon Laser Scanning Fluorescence Microscopy".
2507: 2642: 2622: 568:
Schmitt, Michael; Mayerhöfer, Thomas; Popp, Jürgen; Kleppe, Ingo; Weisshart, Klaus (2013). "Light-Matter Interaction".
535: 195: 20: 26: 2490: 956:
Denk W.; Delaney K. (1994). "Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy".
555: 194:
Two-photon excitation fluorescence microscopy has similarities to other confocal laser microscopy techniques such as
3144: 2809: 2533: 2012:"High-speed, cortex-wide volumetric recording of neuroactivity at cellular resolution using light beads microscopy" 1953:
Huang, Cheng; Maxey, Jessica R.; Sinha, Supriyo; Savall, Joan; Gong, Yiyang; Schnitzer, Mark J. (December 2018).
2295:
Podgorski, Kaspar; Terpetschnig, Ewald; Klochko, Oleksii P.; Obukhova, Olena M.; Haas, Kurt (14 December 2012).
2979: 2711: 1599:"Monitoring correlates of SARS-CoV-2 infection in cell culture using a two-photon-active calcium-sensitive dye" 3149: 293: 2457: 202:. These techniques use focused laser beams scanned in a raster pattern to generate images, and both have an 146: 137: 3154: 3035: 2763: 2526: 1108: 180: 2069:"A Miniature Head-Mounted Two-Photon Microscope: High-Resolution Brain Imaging in Freely Moving Animals" 2839: 2729: 325: 2696: 2297:"Ultra-Bright and -Stable Red and Near-Infrared Squaraine Fluorophores for In Vivo Two-Photon Imaging" 891: 2602: 1306: 1056:
Bewersdorf, Jörg; Pick, Rainer; Hell, Stefan W. (1 May 1998). "Multifocal multiphoton microscopy".
333: 256: 388: 2690: 2672: 2587: 1798:"Reversible silencing of endogenous receptors in intact brain tissue using 2-photon pharmacology" 540: 525: 471: 445: 422: 402: 321: 74: 3009: 2829: 2632: 2173:"Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy" 2107: 1437:"Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability" 2592: 2426: 605:
Multiphoton Microscopy and Fluorescence Lifetime Imaging: Applications in Biology and Medicine
3139: 2897: 2597: 2151: 545: 281: 208: 164: 78: 1156:"Probing the Orientational Distribution of Dyes in Membranes through Multiphoton Microscopy" 3004: 2887: 2875: 2802: 2308: 2184: 1966: 1809: 1396:"In vivo optical imaging of cancer metastasis using multiphoton microscopy: a short review" 1225: 1167: 1065: 1012: 865: 830: 789: 701: 168: 1435:
Squirrell, Jayne M.; Wokosin, David L.; White, John G.; Bavister, Barry D. (August 1999).
8: 3134: 3055: 2974: 2914: 2834: 2677: 2617: 482: 362: 237: 106: 87: 2499: 2312: 2188: 1970: 1813: 1625: 1598: 1371: 1229: 1171: 1069: 1016: 869: 834: 793: 705: 2568: 2331: 2296: 2134: 2109: 2049: 2036: 2011: 1987: 1954: 1930: 1905: 1840: 1797: 1772: 1739: 1720: 1529: 1469: 1436: 1412: 1395: 1246: 1213: 1188: 1155: 1136: 1089: 1033: 1001:"Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin" 1000: 981: 935: 725: 631: 591: 467:
of photoswitchable drugs in vivo using three-photon excitation has also been reported.
302: 277: 203: 152: 125: 2085: 2068: 1024: 504:
exhibit very high 2-photon absorption (2PA) efficiencies in comparison to other dyes,
3075: 2949: 2924: 2404: 2372: 2336: 2272: 2264: 2212: 2207: 2172: 2139: 2108:
Zong W, Obenhaus HA, Skytøen ER, Eneqvist H, de Jong NL, Vale R; et al. (2022).
2090: 2053: 2041: 1992: 1935: 1886: 1845: 1827: 1777: 1759: 1712: 1691:"Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience" 1671: 1630: 1578: 1570: 1521: 1513: 1474: 1456: 1417: 1376: 1326: 1286: 1251: 1193: 1128: 1081: 1038: 973: 969: 927: 756: 717: 662: 645: 635: 608: 581: 476: 410: 285: 229: 171:(1906–1972) in her doctoral dissertation in 1931, and first observed in 1961 in a CaF 102: 47: 1740:"Two-Photon Neuronal and Astrocytic Stimulation with Azobenzene-Based Photoswitches" 1533: 1494:"Two-photon fluorescence excitation and related techniques in biological microscopy" 1346: 1093: 729: 595: 3085: 3050: 3030: 2999: 2647: 2396: 2364: 2326: 2316: 2254: 2244: 2202: 2192: 2129: 2121: 2080: 2031: 2023: 1982: 1974: 1925: 1917: 1876: 1835: 1817: 1767: 1751: 1724: 1702: 1661: 1620: 1610: 1560: 1505: 1464: 1448: 1407: 1366: 1358: 1318: 1278: 1241: 1233: 1183: 1175: 1140: 1120: 1073: 1028: 1020: 985: 965: 939: 919: 873: 856:
Abella, I. D. (December 1962). "Optical Double-Photon Absorption in Cesium Vapor".
838: 797: 752: 748: 709: 627: 577: 573: 530: 199: 98: 83: 70: 3113: 2994: 2984: 2795: 2734: 2321: 1921: 1881: 1864: 1707: 1690: 1666: 1649: 406: 241: 2400: 1547:
Ashworth, S. L.; Sandoval, R. M.; Tanner, G. A.; Molitoris, B. A. (2007-08-02).
3090: 3080: 3040: 2989: 2907: 2860: 2844: 2627: 2481: 2177:
Proceedings of the National Academy of Sciences of the United States of America
2125: 2027: 1978: 1615: 1282: 110: 1509: 1179: 877: 842: 220:
of excitation photons is typically required, usually generated by femtosecond
3128: 3045: 3025: 2966: 2892: 2657: 2268: 2197: 1831: 1763: 1574: 1517: 1460: 1362: 802: 777: 743:
Stockert, Juan Carlos; Blazquez-Castro, Alfonso (2017). "Non-linear Optics".
489: 464: 414: 381:
2PEF was also proven to be valuable tool for monitoring correlates of viral (
350: 269: 156: 109:
due to its deeper tissue penetration, efficient light detection, and reduced
1906:"Two-Photon Excitation Microscopy for the Study of Living Cells and Tissues" 1822: 1214:"Efficient non-degenerate two-photon excitation for fluorescence microscopy" 713: 3065: 2934: 2929: 2870: 2376: 2340: 2276: 2249: 2232: 2143: 2094: 2045: 1996: 1939: 1890: 1849: 1781: 1716: 1675: 1634: 1582: 1525: 1478: 1421: 1380: 1330: 1290: 1255: 1197: 1132: 1085: 931: 649: 273: 221: 184: 105:
for this technique. Two-photon excitation can be a superior alternative to
77:, where the excitation wavelength is shorter than the emission wavelength, 66: 39: 2216: 1565: 1548: 1154:
Reeve JE, Corbett AD, Boczarow I, Wilson T, Bayley H, Anderson HL (2012).
1042: 977: 721: 3095: 2956: 2939: 2919: 2171:
Xu, C; Zipfel, W; Shear, J B; Williams, R M; Webb, W W (1 October 1996).
1237: 1077: 432: 346: 212: 43: 2233:"Three-Photon Infrared Stimulation of Endogenous Neuroreceptors in Vivo" 2944: 2561: 2549: 2458:
Two-photon Fluorescence Light Microscopy, ENCYCLOPEDIA OF LIFE SCIENCES
2259: 1322: 1124: 817:
Kaiser, W.; Garrett, C. (September 1961). "Two-Photon Excitation in CaF
382: 69:
imaging technique that is particularly well-suited to image scattering
2447:
Acquisition of Multiple Real-Time Images for Laser Scanning Microscopy
2368: 1755: 1737: 3060: 2902: 2882: 2865: 2518: 2067:
Helmchen, Fritjof; Fee, Michale; Tank, David; Denk, Winfried (2001).
1865:"Neuromodulator Dynamics In Vivo with Genetically Encoded Indicators" 923: 451: 329: 116: 31: 2294: 2229: 1492:
Diaspro, Alberto; Chirico, Giuseppe; Collini, Maddalena (May 2005).
1107:
Khadria A, Coene Y, Gawel P, Roche C, Clays K, Anderson HL (2017).
513: 436: 365:
when it comes to long-term live-cell imaging of mammalian embryos.
94: 2491:
Fundamentals and Applications in Multiphoton Excitation Microscopy
2432:
Webinar: Setting Up a Simple and Cost-Efficient 2Photon Microscope
2395:. Springer Series on Fluorescence. Vol. 8. pp. 105–147. 1452: 910:
Helmchen F.; Denk W. (2005). "Deep tissue two-photon microscopy".
477:
Dyes and fluorescent proteins for two-photon excitation microscopy
621: 361:
2PEF has shown to be advantageous over other techniques, such as
188: 121: 413:
including localized uncaging of components such as glutamate or
385:) infection in cell culture using a 2P-active Ca sensitive dye. 2637: 2436: 1546: 440: 265: 73:
of up to about one millimeter in thickness. Unlike traditional
2110:"Large-scale two-photon calcium imaging in freely moving mice" 191:
vapor that two-photon excitation of single atoms is possible.
2818: 1434: 245: 176: 35: 626:. Methods in Cell Biology. Vol. 123. pp. 531–546. 345:
2PEF was also proven to be very valuable for characterizing
120:
Two-photon fluorescence image (green) of a cross section of
1955:"Long-term optical brain imaging in live adult fruit flies" 1393: 1109:"Push–pull pyropheophorbides for nonlinear optical imaging" 998: 567: 217: 2393:
Advanced Fluorescence Reporters in Chemistry and Biology I
1303: 1153: 687: 685: 2787: 2389: 1549:"Two-photon microscopy: Visualization of kidney dynamics" 428: 2702:
Total internal reflection fluorescence microscopy (TIRF)
1343: 1210: 2009: 1904:
Benninger, Richard K.P.; Piston, David W. (June 2013).
742: 682: 1106: 1049: 376: 2170: 1952: 1491: 2740:
Photo-activated localization microscopy (PALM/STORM)
292:
The use of infrared light to excite fluorophores in
2483:
Multiple-photon excitation fluorescence microscopy.
2066: 1794: 1647: 1595: 1100: 1055: 992: 909: 2290: 2288: 2286: 1682: 1648:Grienberger, Christine; Konnerth, Arthur (2012). 1268: 1147: 955: 816: 775: 769: 691: 3126: 1387: 401:2PEF as well as the extension of this method to 244:tube. This observed light intensity becomes one 93:Two-photon excitation microscopy typically uses 1903: 1802:Proceedings of the National Academy of Sciences 1641: 2508:"Two-photon absorption (2PA) spectra database" 2383: 2283: 1262: 2803: 2643:Interference reflection microscopy (IRM/RICM) 2534: 2453:Build Your Own Video-Rate 2-photon Microscope 2353: 1688: 778:"Über Elementarakte mit zwei Quantensprüngen" 328:–based microscopy, it was shown that organic 97:(NIR) excitation light which can also excite 2156:: CS1 maint: multiple names: authors list ( 2101: 1862: 1689:Svoboda, Karel; Yasuda, Ryohei (June 2006). 903: 951: 949: 409:of a neuron or populations of neurons, for 2810: 2796: 2541: 2527: 1400:American Journal of Translational Research 1271:Seminars in Cutaneous Medicine and Surgery 659:Imaging in Cellular and Tissue Engineering 457: 30:Two-photon excitation microscopy of mouse 2330: 2320: 2258: 2248: 2206: 2196: 2133: 2084: 2035: 1986: 1929: 1880: 1839: 1821: 1771: 1706: 1665: 1624: 1614: 1564: 1468: 1411: 1370: 1245: 1187: 1032: 801: 657:Yu, Hanry; Rahim, Nur Aida Abdul (2013). 2613:Differential interference contrast (DIC) 2347: 1744:Journal of the American Chemical Society 1603:Cellular & Molecular Biology Letters 999:Masters BR.; So PTC; Gratton E. (1997). 946: 745:Fluorescence Microscopy in Life Sciences 387: 264:Two-photon microscopy was pioneered and 255: 145: 136: 115: 25: 3071:Multiple-prism grating laser oscillator 2237:Angewandte Chemie International Edition 2164: 656: 3127: 2608:Quantitative phase-contrast microscopy 2548: 2442:introduction to multiphoton microscopy 1863:Sabatini, Bernardo; Tian, Lin (2020). 855: 607:. Walter de Gruyter GmbH & Co KG. 2791: 2522: 2464:"Multiphoton Fluorescence Microscopy" 602: 551:Two-photon photoelectron spectroscopy 356: 260:A diagram of a two-photon microscope. 2770: 2735:Stimulated emission depletion (STED) 1311:Organic & Biomolecular Chemistry 624:Quantitative Imaging in Cell Biology 324:. Using two-photon fluorescence and 900: "Two-photon laser microscopy." 377:Viral infection level determination 332:-type molecules can have different 280:in 1990. They combined the idea of 13: 2500:"Two-photon action cross sections" 1113:Organic and Biomolecular Chemistry 632:10.1016/B978-0-12-420138-5.00028-8 536:Second-harmonic imaging microscopy 368: 340: 272:and James Strickler in the lab of 196:laser scanning confocal microscopy 21:second-harmonic imaging microscopy 14: 3166: 2707:Lightsheet microscopy (LSFM/SPIM) 2427:Simplifying two-photon microscopy 2420: 1910:Current Protocols in Cell Biology 556:Wide-field multiphoton microscopy 236:is the key advantage compared to 3109: 3108: 2769: 2758: 2757: 2656: 55:Two-photon excitation microscopy 2223: 2060: 2003: 1946: 1897: 1856: 1788: 1731: 1589: 1540: 1498:Quarterly Reviews of Biophysics 1485: 1428: 1337: 1297: 1204: 396: 309: 167:, a concept first described by 2980:Amplified spontaneous emission 2712:Lattice light-sheet microscopy 2623:Second harmonic imaging (SHIM) 2449:(Sanderson microscopy article) 884: 849: 810: 753:10.2174/9781681085180117010023 736: 578:10.1002/9783527643981.bphot003 481:In general, all commonly used 251: 163:Two-photon excitation employs 16:Fluorescence imaging technique 1: 2086:10.1016/S0896-6273(01)00421-4 1025:10.1016/s0006-3495(97)78886-6 676: 46:. Obtained at 780 nm using a 2322:10.1371/journal.pone.0051980 1922:10.1002/0471143030.cb0411s59 1882:10.1016/j.neuron.2020.09.036 1708:10.1016/j.neuron.2006.05.019 1667:10.1016/j.neuron.2012.02.011 1650:"Imaging calcium in neurons" 970:10.1016/0165-0270(94)90189-9 322:two-photon-based lithography 7: 3036:Chirped pulse amplification 2401:10.1007/978-3-642-04702-2_4 519: 10: 3171: 2840:List of laser applications 2817: 2470:. Florida State University 2126:10.1016/j.cell.2022.02.017 2028:10.1038/s41592-021-01239-8 1979:10.1038/s41467-018-02873-1 1616:10.1186/s11658-024-00619-0 1283:10.1016/j.sder.2009.06.007 776:Goeppert-Mayer M. (1931). 561: 512:, a new type of squaraine- 469: 326:second-harmonic generation 234:localization of excitation 132: 18: 3104: 3018: 2965: 2853: 2825: 2753: 2720: 2665: 2654: 2578: 2556: 1510:10.1017/S0033583505004129 1180:10.1016/j.bpj.2012.08.003 878:10.1103/PhysRevLett.9.453 843:10.1103/PhysRevLett.7.229 349:, in addition monitoring 334:transition dipole moments 2486:University of Wisconsin. 2437:Two-photon suitable dyes 2198:10.1073/pnas.93.20.10763 1363:10.1021/acsomega.3c01796 803:10.1002/andp.19314010303 570:Handbook of Biophotonics 19:Not to be confused with 3145:Fluorescence techniques 2673:Fluorescence microscopy 2633:Structured illumination 2588:Bright-field microscopy 1823:10.1073/pnas.1900430116 858:Physical Review Letters 823:Physical Review Letters 714:10.1126/science.2321027 603:König, Karsten (2018). 541:Three-photon microscopy 526:3D optical data storage 472:Three-photon microscopy 458:Higher-order excitation 423:Drosophila melanogaster 314: 216:Therefore, a high peak 157:oil immersion objective 75:fluorescence microscopy 2830:List of laser articles 2745:Near-field (NSOM/SNOM) 2683:Multiphoton microscopy 2250:10.1002/anie.202311181 393: 337:fluorescent proteins. 261: 160: 143: 129: 51: 2598:Dark-field microscopy 1959:Nature Communications 1916:(1): Unit 4.11.1–24. 1566:10.1038/sj.ki.5002315 546:Two-photon absorption 391: 282:two-photon absorption 259: 209:point spread function 165:two-photon absorption 149: 140: 119: 79:two-photon excitation 29: 3150:Laboratory equipment 3005:Population inversion 2666:Fluorescence methods 2357:Analytical Chemistry 2120:(7): 1240–1256.e30. 1553:Kidney International 1441:Nature Biotechnology 1238:10.1364/OE.27.028022 1078:10.1364/ol.23.000655 747:. pp. 642–686. 483:fluorescent proteins 169:Maria Goeppert Mayer 3056:Laser beam profiler 2975:Active laser medium 2915:Free-electron laser 2835:List of laser types 2697:Image deconvolution 2678:Confocal microscopy 2618:Dispersion staining 2593:Köhler illumination 2495:Nikon MicroscopyU . 2313:2012PLoSO...751980P 2189:1996PNAS...9310763X 2183:(20): 10763–10768. 1971:2018NatCo...9..872H 1814:2019PNAS..11613680P 1808:(27): 13680–13689. 1357:(25): 22836–22843. 1230:2019OExpr..2728022S 1224:(20): 28022–28035. 1172:2012BpJ...103..907R 1160:Biophysical Journal 1070:1998OptL...23..655B 1017:1997BpJ....72.2405M 1005:Biophysical Journal 870:1962PhRvL...9..453A 835:1961PhRvL...7..229K 794:1931AnP...401..273G 706:1990Sci...248...73D 363:confocal microscopy 107:confocal microscopy 88:confocal microscopy 3155:Optical microscopy 2569:Optical microscopy 2550:Optical microscopy 2243:(51): e202311181. 1323:10.1039/D3OB01471A 1125:10.1039/C6OB02319C 958:J Neurosci Methods 394: 357:Embryonic research 303:optical resolution 278:Cornell University 262: 230:Ti-sapphire lasers 204:optical sectioning 187:showed in 1962 in 175::Eu crystal using 161: 153:numerical aperture 144: 130: 126:lily of the valley 52: 3122: 3121: 3076:Optical amplifier 2925:Solid-state laser 2785: 2784: 2730:Diffraction limit 2468:Microscopy Primer 2410:978-3-642-04700-8 2369:10.1021/ac801106w 2363:(20): 7735–7741. 1756:10.1021/ja5026326 1750:(24): 8693–8701. 1317:(44): 8829–8836. 782:Annals of Physics 762:978-1-68108-518-0 668:978-1-4398-4804-3 641:978-0-12-420138-5 614:978-3-11-042998-5 587:978-3-527-64398-1 411:photopharmacology 286:Ti-sapphire laser 103:penetration depth 48:Ti-sapphire laser 42:. Blue: mucus of 3162: 3112: 3111: 3086:Optical isolator 3051:Injection seeder 3031:Beam homogenizer 3010:Ultrashort pulse 3000:Lasing threshold 2812: 2805: 2798: 2789: 2788: 2773: 2772: 2761: 2760: 2723:limit techniques 2660: 2581:contrast methods 2579:Illumination and 2543: 2536: 2529: 2520: 2519: 2515: 2503: 2478: 2476: 2475: 2415: 2414: 2387: 2381: 2380: 2351: 2345: 2344: 2334: 2324: 2292: 2281: 2280: 2262: 2252: 2227: 2221: 2220: 2210: 2200: 2168: 2162: 2161: 2155: 2147: 2137: 2105: 2099: 2098: 2088: 2064: 2058: 2057: 2039: 2022:(9): 1103–1111. 2007: 2001: 2000: 1990: 1950: 1944: 1943: 1933: 1901: 1895: 1894: 1884: 1860: 1854: 1853: 1843: 1825: 1792: 1786: 1785: 1775: 1735: 1729: 1728: 1710: 1686: 1680: 1679: 1669: 1645: 1639: 1638: 1628: 1618: 1593: 1587: 1586: 1568: 1544: 1538: 1537: 1489: 1483: 1482: 1472: 1432: 1426: 1425: 1415: 1391: 1385: 1384: 1374: 1341: 1335: 1334: 1301: 1295: 1294: 1266: 1260: 1259: 1249: 1208: 1202: 1201: 1191: 1151: 1145: 1144: 1104: 1098: 1097: 1053: 1047: 1046: 1036: 1011:(6): 2405–2412. 996: 990: 989: 953: 944: 943: 924:10.1038/nmeth818 907: 901: 899: 898: 894: 888: 882: 881: 853: 847: 846: 814: 808: 807: 805: 773: 767: 766: 740: 734: 733: 689: 672: 653: 618: 599: 531:Nonlinear optics 294:light-scattering 200:Raman microscopy 99:fluorescent dyes 3170: 3169: 3165: 3164: 3163: 3161: 3160: 3159: 3125: 3124: 3123: 3118: 3100: 3014: 2995:Laser linewidth 2985:Continuous wave 2961: 2854:Types of lasers 2849: 2821: 2816: 2786: 2781: 2749: 2722: 2721:Sub-diffraction 2716: 2661: 2652: 2580: 2574: 2552: 2547: 2506: 2498: 2473: 2471: 2462: 2423: 2418: 2411: 2388: 2384: 2352: 2348: 2293: 2284: 2228: 2224: 2169: 2165: 2149: 2148: 2106: 2102: 2065: 2061: 2008: 2004: 1951: 1947: 1902: 1898: 1861: 1857: 1793: 1789: 1736: 1732: 1687: 1683: 1646: 1642: 1594: 1590: 1545: 1541: 1490: 1486: 1433: 1429: 1392: 1388: 1342: 1338: 1302: 1298: 1267: 1263: 1209: 1205: 1152: 1148: 1105: 1101: 1054: 1050: 997: 993: 954: 947: 908: 904: 896: 890: 889: 885: 864:(11): 453–455. 854: 850: 820: 815: 811: 774: 770: 763: 741: 737: 700:(4951): 73–76. 690: 683: 679: 669: 642: 615: 588: 564: 522: 479: 474: 460: 407:calcium imaging 399: 379: 371: 369:Kidney research 359: 343: 341:Cancer research 317: 312: 254: 242:photomultiplier 181:Wolfgang Kaiser 174: 155:is 1.3 with an 135: 24: 17: 12: 11: 5: 3168: 3158: 3157: 3152: 3147: 3142: 3137: 3120: 3119: 3117: 3116: 3105: 3102: 3101: 3099: 3098: 3093: 3091:Output coupler 3088: 3083: 3081:Optical cavity 3078: 3073: 3068: 3063: 3058: 3053: 3048: 3043: 3041:Gain-switching 3038: 3033: 3028: 3022: 3020: 3016: 3015: 3013: 3012: 3007: 3002: 2997: 2992: 2990:Laser ablation 2987: 2982: 2977: 2971: 2969: 2963: 2962: 2960: 2959: 2954: 2953: 2952: 2947: 2942: 2937: 2932: 2922: 2917: 2912: 2911: 2910: 2905: 2900: 2895: 2890: 2888:Carbon dioxide 2880: 2879: 2878: 2876:Liquid-crystal 2873: 2863: 2861:Chemical laser 2857: 2855: 2851: 2850: 2848: 2847: 2845:Laser acronyms 2842: 2837: 2832: 2826: 2823: 2822: 2815: 2814: 2807: 2800: 2792: 2783: 2782: 2780: 2779: 2767: 2754: 2751: 2750: 2748: 2747: 2742: 2737: 2732: 2726: 2724: 2718: 2717: 2715: 2714: 2709: 2704: 2699: 2694: 2680: 2675: 2669: 2667: 2663: 2662: 2655: 2653: 2651: 2650: 2645: 2640: 2635: 2630: 2628:4Pi microscope 2625: 2620: 2615: 2610: 2605: 2603:Phase contrast 2600: 2595: 2590: 2584: 2582: 2576: 2575: 2573: 2572: 2565: 2557: 2554: 2553: 2546: 2545: 2538: 2531: 2523: 2517: 2516: 2504: 2496: 2487: 2479: 2460: 2455: 2450: 2444: 2439: 2434: 2429: 2422: 2421:External links 2419: 2417: 2416: 2409: 2382: 2346: 2307:(12): e51980. 2282: 2222: 2163: 2100: 2079:(6): 903–912. 2059: 2016:Nature Methods 2002: 1945: 1896: 1855: 1787: 1730: 1701:(6): 823–839. 1681: 1660:(5): 862–885. 1640: 1588: 1559:(4): 416–421. 1539: 1484: 1447:(8): 763–767. 1427: 1406:(3): 179–187. 1386: 1336: 1296: 1277:(3): 190–195. 1261: 1218:Optics Express 1203: 1166:(5): 907–917. 1146: 1119:(4): 947–956. 1099: 1064:(9): 655–657. 1058:Optics Letters 1048: 991: 945: 918:(12): 932–40. 902: 883: 848: 829:(6): 229–231. 818: 809: 768: 761: 735: 680: 678: 675: 674: 673: 667: 654: 640: 619: 613: 600: 586: 563: 560: 559: 558: 553: 548: 543: 538: 533: 528: 521: 518: 490:squaraine dyes 478: 475: 470:Main article: 459: 456: 398: 395: 378: 375: 370: 367: 358: 355: 342: 339: 316: 313: 311: 308: 253: 250: 179:excitation by 172: 134: 131: 111:photobleaching 15: 9: 6: 4: 3: 2: 3167: 3156: 3153: 3151: 3148: 3146: 3143: 3141: 3138: 3136: 3133: 3132: 3130: 3115: 3107: 3106: 3103: 3097: 3094: 3092: 3089: 3087: 3084: 3082: 3079: 3077: 3074: 3072: 3069: 3067: 3064: 3062: 3059: 3057: 3054: 3052: 3049: 3047: 3046:Gaussian beam 3044: 3042: 3039: 3037: 3034: 3032: 3029: 3027: 3026:Beam expander 3024: 3023: 3021: 3017: 3011: 3008: 3006: 3003: 3001: 2998: 2996: 2993: 2991: 2988: 2986: 2983: 2981: 2978: 2976: 2973: 2972: 2970: 2968: 2967:Laser physics 2964: 2958: 2955: 2951: 2948: 2946: 2943: 2941: 2938: 2936: 2933: 2931: 2928: 2927: 2926: 2923: 2921: 2918: 2916: 2913: 2909: 2906: 2904: 2901: 2899: 2896: 2894: 2891: 2889: 2886: 2885: 2884: 2881: 2877: 2874: 2872: 2869: 2868: 2867: 2864: 2862: 2859: 2858: 2856: 2852: 2846: 2843: 2841: 2838: 2836: 2833: 2831: 2828: 2827: 2824: 2820: 2813: 2808: 2806: 2801: 2799: 2794: 2793: 2790: 2778: 2777: 2768: 2766: 2765: 2756: 2755: 2752: 2746: 2743: 2741: 2738: 2736: 2733: 2731: 2728: 2727: 2725: 2719: 2713: 2710: 2708: 2705: 2703: 2700: 2698: 2695: 2692: 2688: 2684: 2681: 2679: 2676: 2674: 2671: 2670: 2668: 2664: 2659: 2649: 2646: 2644: 2641: 2639: 2636: 2634: 2631: 2629: 2626: 2624: 2621: 2619: 2616: 2614: 2611: 2609: 2606: 2604: 2601: 2599: 2596: 2594: 2591: 2589: 2586: 2585: 2583: 2577: 2571: 2570: 2566: 2564: 2563: 2559: 2558: 2555: 2551: 2544: 2539: 2537: 2532: 2530: 2525: 2524: 2521: 2513: 2509: 2505: 2501: 2497: 2494: 2492: 2488: 2485: 2484: 2480: 2469: 2465: 2461: 2459: 2456: 2454: 2451: 2448: 2445: 2443: 2440: 2438: 2435: 2433: 2430: 2428: 2425: 2424: 2412: 2406: 2402: 2398: 2394: 2386: 2378: 2374: 2370: 2366: 2362: 2358: 2350: 2342: 2338: 2333: 2328: 2323: 2318: 2314: 2310: 2306: 2302: 2298: 2291: 2289: 2287: 2278: 2274: 2270: 2266: 2261: 2256: 2251: 2246: 2242: 2238: 2234: 2226: 2218: 2214: 2209: 2204: 2199: 2194: 2190: 2186: 2182: 2178: 2174: 2167: 2159: 2153: 2145: 2141: 2136: 2131: 2127: 2123: 2119: 2115: 2111: 2104: 2096: 2092: 2087: 2082: 2078: 2074: 2070: 2063: 2055: 2051: 2047: 2043: 2038: 2033: 2029: 2025: 2021: 2017: 2013: 2006: 1998: 1994: 1989: 1984: 1980: 1976: 1972: 1968: 1964: 1960: 1956: 1949: 1941: 1937: 1932: 1927: 1923: 1919: 1915: 1911: 1907: 1900: 1892: 1888: 1883: 1878: 1874: 1870: 1866: 1859: 1851: 1847: 1842: 1837: 1833: 1829: 1824: 1819: 1815: 1811: 1807: 1803: 1799: 1791: 1783: 1779: 1774: 1769: 1765: 1761: 1757: 1753: 1749: 1745: 1741: 1734: 1726: 1722: 1718: 1714: 1709: 1704: 1700: 1696: 1692: 1685: 1677: 1673: 1668: 1663: 1659: 1655: 1651: 1644: 1636: 1632: 1627: 1622: 1617: 1612: 1608: 1604: 1600: 1592: 1584: 1580: 1576: 1572: 1567: 1562: 1558: 1554: 1550: 1543: 1535: 1531: 1527: 1523: 1519: 1515: 1511: 1507: 1504:(2): 97–166. 1503: 1499: 1495: 1488: 1480: 1476: 1471: 1466: 1462: 1458: 1454: 1453:10.1038/11698 1450: 1446: 1442: 1438: 1431: 1423: 1419: 1414: 1409: 1405: 1401: 1397: 1390: 1382: 1378: 1373: 1368: 1364: 1360: 1356: 1352: 1348: 1340: 1332: 1328: 1324: 1320: 1316: 1312: 1308: 1300: 1292: 1288: 1284: 1280: 1276: 1272: 1265: 1257: 1253: 1248: 1243: 1239: 1235: 1231: 1227: 1223: 1219: 1215: 1207: 1199: 1195: 1190: 1185: 1181: 1177: 1173: 1169: 1165: 1161: 1157: 1150: 1142: 1138: 1134: 1130: 1126: 1122: 1118: 1114: 1110: 1103: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1067: 1063: 1059: 1052: 1044: 1040: 1035: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 1002: 995: 987: 983: 979: 975: 971: 967: 964:(2): 151–62. 963: 959: 952: 950: 941: 937: 933: 929: 925: 921: 917: 913: 906: 893: 887: 879: 875: 871: 867: 863: 859: 852: 844: 840: 836: 832: 828: 824: 813: 804: 799: 795: 791: 788:(3): 273–95. 787: 783: 779: 772: 764: 758: 754: 750: 746: 739: 731: 727: 723: 719: 715: 711: 707: 703: 699: 695: 688: 686: 681: 670: 664: 661:. CRC Press. 660: 655: 651: 647: 643: 637: 633: 629: 625: 620: 616: 610: 606: 601: 597: 593: 589: 583: 579: 575: 571: 566: 565: 557: 554: 552: 549: 547: 544: 542: 539: 537: 534: 532: 529: 527: 524: 523: 517: 515: 511: 507: 503: 499: 495: 491: 486: 484: 473: 468: 466: 465:isomerization 455: 453: 449: 447: 442: 438: 434: 430: 426: 424: 418: 416: 415:isomerization 412: 408: 404: 390: 386: 384: 374: 366: 364: 354: 352: 351:breast cancer 348: 338: 335: 331: 327: 323: 307: 304: 298: 295: 290: 287: 283: 279: 275: 271: 270:Winfried Denk 267: 258: 249: 247: 243: 239: 238:single-photon 235: 231: 225: 223: 219: 214: 210: 205: 201: 197: 192: 190: 186: 182: 178: 170: 166: 158: 154: 148: 139: 127: 124:colored with 123: 118: 114: 112: 108: 104: 100: 96: 95:near-infrared 91: 89: 85: 84:non-linearity 80: 76: 72: 71:living tissue 68: 64: 60: 56: 49: 45: 41: 37: 33: 28: 22: 3140:Cell imaging 3066:Mode locking 3019:Laser optics 2774: 2762: 2691:Three-photon 2686: 2682: 2567: 2560: 2511: 2489: 2482: 2472:. Retrieved 2467: 2392: 2385: 2360: 2356: 2349: 2304: 2300: 2240: 2236: 2225: 2180: 2176: 2166: 2152:cite journal 2117: 2113: 2103: 2076: 2072: 2062: 2019: 2015: 2005: 1962: 1958: 1948: 1913: 1909: 1899: 1875:(1): 17–32. 1872: 1868: 1858: 1805: 1801: 1790: 1747: 1743: 1733: 1698: 1694: 1684: 1657: 1653: 1643: 1606: 1602: 1591: 1556: 1552: 1542: 1501: 1497: 1487: 1444: 1440: 1430: 1403: 1399: 1389: 1354: 1350: 1339: 1314: 1310: 1305:(Sep 2023). 1299: 1274: 1270: 1264: 1221: 1217: 1206: 1163: 1159: 1149: 1116: 1112: 1102: 1061: 1057: 1051: 1008: 1004: 994: 961: 957: 915: 911: 905: 886: 861: 857: 851: 826: 822: 812: 785: 781: 771: 744: 738: 697: 693: 658: 623: 604: 569: 509: 505: 501: 497: 493: 487: 480: 461: 446:Mus musculus 444: 421: 419: 400: 397:Neuroscience 380: 372: 360: 344: 318: 310:Applications 299: 291: 274:Watt W. Webb 263: 233: 226: 222:pulsed laser 193: 185:Isaac Abella 162: 142:(turquoise). 92: 67:fluorescence 62: 58: 54: 53: 44:goblet cells 3096:Q-switching 2957:X-ray laser 2950:Ti-sapphire 2920:Laser diode 2898:Helium–neon 2260:2445/203764 912:Nat Methods 347:skin cancer 252:Development 213:fluorophore 40:cell nuclei 3135:Microscopy 3129:Categories 2687:Two-photon 2562:Microscope 2474:2018-03-03 1965:(1): 872. 1609:(1): 105. 892:US 5034613 677:References 383:SARS-CoV-2 3061:M squared 2883:Gas laser 2866:Dye laser 2269:1433-7851 2054:237366015 1832:0027-8424 1764:0002-7863 1575:0085-2538 1518:1469-8994 1461:1546-1696 1351:ACS Omega 510:SeTau-665 506:SeTau-647 452:zebrafish 433:songbirds 330:porphyrin 38:. Green: 32:intestine 3114:Category 2908:Nitrogen 2764:Category 2377:18800850 2341:23251670 2301:PLOS ONE 2277:37823736 2144:35305313 2095:11580892 2046:34462592 1997:29491443 1940:23728746 1891:33058762 1850:31196955 1782:24857186 1717:16772166 1676:22405199 1635:39030477 1626:11264913 1583:17538570 1534:33514441 1526:16478566 1479:10429240 1422:24936213 1381:37396252 1372:10308389 1331:37917021 1291:19782943 1256:31684560 1198:23009840 1133:28054076 1094:17549598 1086:18087301 932:16299478 730:18431535 650:24974046 596:93908151 520:See also 514:rotaxane 502:Seta-660 498:Seta-700 494:Seta-670 492:such as 443:, mice ( 437:primates 266:patented 2893:Excimer 2776:Commons 2332:3522634 2309:Bibcode 2217:8855254 2185:Bibcode 2135:8970296 2037:8958902 1988:5830414 1967:Bibcode 1931:4004770 1841:6613107 1810:Bibcode 1773:4096865 1725:7278880 1470:5087329 1413:4058302 1247:6825618 1226:Bibcode 1189:3433607 1168:Bibcode 1141:3540505 1066:Bibcode 1043:9168018 1034:1184440 1013:Bibcode 986:3772937 978:7869748 940:3339971 866:Bibcode 831:Bibcode 790:Bibcode 722:2321027 702:Bibcode 694:Science 562:Sources 441:ferrets 189:caesium 133:Concept 122:rhizome 65:) is a 34:. Red: 2935:Nd:YAG 2930:Er:YAG 2871:Bubble 2819:Lasers 2638:Sarfus 2407:  2375:  2339:  2329:  2275:  2267:  2215:  2205:  2142:  2132:  2093:  2073:Neuron 2052:  2044:  2034:  1995:  1985:  1938:  1928:  1889:  1869:Neuron 1848:  1838:  1830:  1780:  1770:  1762:  1723:  1715:  1695:Neuron 1674:  1654:Neuron 1633:  1623:  1581:  1573:  1532:  1524:  1516:  1477:  1467:  1459:  1420:  1410:  1379:  1369:  1329:  1289:  1254:  1244:  1196:  1186:  1139:  1131:  1092:  1084:  1041:  1031:  984:  976:  938:  930:  897:  821::Eu". 759:  728:  720:  665:  648:  638:  611:  594:  584:  2940:Raman 2648:Raman 2208:38229 2050:S2CID 1721:S2CID 1530:S2CID 1137:S2CID 1090:S2CID 982:S2CID 936:S2CID 726:S2CID 592:S2CID 246:pixel 177:laser 36:actin 2945:Ruby 2512:KBFI 2405:ISBN 2373:PMID 2337:PMID 2273:PMID 2265:ISSN 2213:PMID 2158:link 2140:PMID 2114:Cell 2091:PMID 2042:PMID 1993:PMID 1936:PMID 1887:PMID 1846:PMID 1828:ISSN 1778:PMID 1760:ISSN 1713:PMID 1672:PMID 1631:PMID 1579:PMID 1571:ISSN 1522:PMID 1514:ISSN 1475:PMID 1457:ISSN 1418:PMID 1377:PMID 1327:PMID 1287:PMID 1252:PMID 1194:PMID 1129:PMID 1082:PMID 1039:PMID 974:PMID 928:PMID 757:ISBN 718:PMID 663:ISBN 646:PMID 636:ISBN 609:ISBN 582:ISBN 508:and 500:and 429:rats 403:3PEF 315:Main 218:flux 198:and 63:2PEF 59:TPEF 2903:Ion 2397:doi 2365:doi 2327:PMC 2317:doi 2255:hdl 2245:doi 2203:PMC 2193:doi 2130:PMC 2122:doi 2118:185 2081:doi 2032:PMC 2024:doi 1983:PMC 1975:doi 1926:PMC 1918:doi 1877:doi 1873:108 1836:PMC 1818:doi 1806:116 1768:PMC 1752:doi 1748:136 1703:doi 1662:doi 1621:PMC 1611:doi 1561:doi 1506:doi 1465:PMC 1449:doi 1408:PMC 1367:PMC 1359:doi 1319:doi 1279:doi 1242:PMC 1234:doi 1184:PMC 1176:doi 1164:103 1121:doi 1074:doi 1029:PMC 1021:doi 966:doi 920:doi 874:doi 839:doi 798:doi 749:doi 710:doi 698:248 628:doi 574:doi 276:at 268:by 61:or 3131:: 2689:, 2510:. 2466:. 2403:. 2371:. 2361:80 2359:. 2335:. 2325:. 2315:. 2303:. 2299:. 2285:^ 2271:. 2263:. 2253:. 2241:62 2239:. 2235:. 2211:. 2201:. 2191:. 2181:93 2179:. 2175:. 2154:}} 2150:{{ 2138:. 2128:. 2116:. 2112:. 2089:. 2077:31 2075:. 2071:. 2048:. 2040:. 2030:. 2020:18 2018:. 2014:. 1991:. 1981:. 1973:. 1961:. 1957:. 1934:. 1924:. 1914:59 1912:. 1908:. 1885:. 1871:. 1867:. 1844:. 1834:. 1826:. 1816:. 1804:. 1800:. 1776:. 1766:. 1758:. 1746:. 1742:. 1719:. 1711:. 1699:50 1697:. 1693:. 1670:. 1658:73 1656:. 1652:. 1629:. 1619:. 1607:29 1605:. 1601:. 1577:. 1569:. 1557:72 1555:. 1551:. 1528:. 1520:. 1512:. 1502:38 1500:. 1496:. 1473:. 1463:. 1455:. 1445:17 1443:. 1439:. 1416:. 1402:. 1398:. 1375:. 1365:. 1353:. 1349:. 1325:. 1315:21 1313:. 1309:. 1285:. 1275:28 1273:. 1250:. 1240:. 1232:. 1222:27 1220:. 1216:. 1192:. 1182:. 1174:. 1162:. 1158:. 1135:. 1127:. 1117:15 1115:. 1111:. 1088:. 1080:. 1072:. 1062:23 1060:. 1037:. 1027:. 1019:. 1009:72 1007:. 1003:. 980:. 972:. 962:54 960:. 948:^ 934:. 926:. 914:. 872:. 860:. 837:. 825:. 796:. 784:. 780:. 755:. 724:. 716:. 708:. 696:. 684:^ 644:. 634:. 590:. 580:. 572:. 496:, 450:, 439:, 435:, 431:, 427:, 183:. 113:. 2811:e 2804:t 2797:v 2693:) 2685:( 2542:e 2535:t 2528:v 2514:. 2502:. 2493:. 2477:. 2413:. 2399:: 2379:. 2367:: 2343:. 2319:: 2311:: 2305:7 2279:. 2257:: 2247:: 2219:. 2195:: 2187:: 2160:) 2146:. 2124:: 2097:. 2083:: 2056:. 2026:: 1999:. 1977:: 1969:: 1963:9 1942:. 1920:: 1893:. 1879:: 1852:. 1820:: 1812:: 1784:. 1754:: 1727:. 1705:: 1678:. 1664:: 1637:. 1613:: 1585:. 1563:: 1536:. 1508:: 1481:. 1451:: 1424:. 1404:6 1383:. 1361:: 1355:8 1333:. 1321:: 1293:. 1281:: 1258:. 1236:: 1228:: 1200:. 1178:: 1170:: 1143:. 1123:: 1096:. 1076:: 1068:: 1045:. 1023:: 1015:: 988:. 968:: 942:. 922:: 916:2 880:. 876:: 868:: 862:9 845:. 841:: 833:: 827:7 819:2 806:. 800:: 792:: 786:9 765:. 751:: 732:. 712:: 704:: 671:. 652:. 630:: 617:. 598:. 576:: 448:) 425:) 173:2 159:. 57:( 50:. 23:.

Index

second-harmonic imaging microscopy

intestine
actin
cell nuclei
goblet cells
Ti-sapphire laser
fluorescence
living tissue
fluorescence microscopy
two-photon excitation
non-linearity
confocal microscopy
near-infrared
fluorescent dyes
penetration depth
confocal microscopy
photobleaching

rhizome
lily of the valley


numerical aperture
oil immersion objective
two-photon absorption
Maria Goeppert Mayer
laser
Wolfgang Kaiser
Isaac Abella

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.