Knowledge

Type III secretion system

Source 📝

867:. As mentioned, the T3SS is closely related to the bacterial flagellum. There are three competing hypotheses: first, that the flagellum evolved first and the T3SS is derived from that structure, second, that the T3SS evolved first and the flagellum is derived from it, and third, that the two structures are derived from a common ancestor. There was some controversy about the different scenarios, since they all explain protein homology between the two structures, as well as their functional diversity. Yet, recent phylogenomic evidence favours the hypothesis that the T3SS derived from the flagellum by a process involving initial gene loss and then gene acquisition. A key step of the latter process was the recruitment of secretins to the T3SS, an event that occurred at least three times from other membrane-associated systems. 837:. The bacterium must know when the time is right to secrete effectors. Unnecessary secretion, when no host cell is in vicinity, is wasteful for the bacterium in terms of energy and resources. The bacterium is somehow able to recognize contact of the needle with the host cell. How this is done is still being researched, and the method may well be dependent on the pathogen. Some theories postulate a delicate conformational change in the structure of the needle upon contact with the host cell; this change perhaps serves as a signal for the base to commence secretion. One method of recognition has been discovered in 469: 786: 877: 315: 777:. When injected into plants, these proteins can enter the nucleus of the plant cell, bind plant promoter sequences, and activate transcription of plant genes that aid in bacterial infection. TAL effector-DNA recognition has recently been demonstrated to comprise a simple code and this has greatly improved the understanding of how these proteins can alter the transcription of genes in the host plant cells. 831:. As mentioned above, the existence of a secretion signal in effector proteins is known. The signal allows the system to distinguish T3SS-transported proteins from any other protein. Its nature, requirements and the mechanism of recognition are poorly understood, but methods for predicting which bacterial proteins can be transported by the Type III secretion system have recently been developed. 31: 815:. It is not known how the bacterium "knows" when a new needle has reached its proper length. Several theories exist, among them the existence of a "ruler protein" that somehow connects the tip and the base of the needle. Addition of new monomers to the tip of the needle should stretch the ruler protein and thereby signal the needle length to the base. 284:, for instance). Technically speaking, type III secretion is used both for secreting infection-related proteins and flagellar components. However, the term "type III secretion" is used mainly in relation to the infection apparatus. The bacterial flagellum shares a common ancestor with the type III secretion system. 885:
Since the beginning of the 1990s new T3SS proteins are being found in different bacterial species at a steady rate. Abbreviations have been given independently for each series of proteins in each organism, and the names usually do not reveal much about the protein's function. Some proteins discovered
716:
T3SS effectors manipulate host cells in several ways. The most striking effect is the promoting of uptake of the bacterium by the host cell. Many bacteria possessing T3SSs must enter host cells in order to replicate and propagate infection. The effectors they inject into the host cell induce the host
728:
and it also participates in motility and in changes in cell shape. Through its T3SS effectors the bacterium is able to utilize the host cell's own machinery for its own benefit. Once the bacterium has entered the cell it is able to secrete other effectors more easily and it can penetrate neighboring
407:
separate the two cytoplasms: the double membranes (inner and outer membranes) of the Gram-negative bacterium and the eukaryotic membrane. The needle provides a smooth passage through those highly selective and almost impermeable membranes. A single bacterium can have several hundred needle complexes
1637:. The structural components of the NC can be separated from each other (the needle part from the base part, for instance), and by analyzing those fractions the proteins participating in each one can be deduced. Alternatively, isolated NCs can be directly analyzed by mass spectrometry, without prior 695:
T3SS effectors enter the needle complex at the base and make their way inside the needle towards the host cell. The exact way in which effectors enter the host is mostly unknown. It has been previously suggested that the needle itself is capable of puncturing a hole in the host cell membrane; this
682:
of T3SS genes are known. Some of the chaperones that bind T3SS effectors also act as transcription factors. A feedback mechanism has been suggested: when the bacterium does not secrete, its effector proteins are bound to chaperones and float in the cytoplasm. When secretion starts, the chaperones
427:
The base is composed of several circular rings and is the first structure that is built in a new needle complex. Once the base is completed, it serves as a secretion machine for the outer proteins (the needle). Once the whole complex is completed the system switches to secreting proteins that are
287:
T3SSs are essential for the pathogenicity (the ability to infect) of many pathogenic bacteria. Defects in the T3SS may render a bacterium non-pathogenic. It has been suggested that some non-invasive strains of gram-negative bacteria have lost the T3SS because the energetically costly system is no
1713:
The ability of a T3SS to secrete a specific protein or to secrete at all. In order to assay this, secretion is induced in bacteria growing in liquid medium. The bacteria and medium are then separated by centrifugation, and the medium fraction (the supernatant) is then assayed for the presence of
423:
connects the needle to the base. The needle itself, although the biggest and most prominent part of the T3SS, is made out of many units of a single protein. The majority of the different T3SS proteins are therefore those that build the base and those that are secreted into the host. As mentioned
424:
above, the needle complex shares similarities with bacterial flagella. More specifically, the base of the needle complex is structurally very similar to the flagellar base; the needle itself is analogous to the flagellar hook, a structure connecting the base to the flagellar filament.
1589:
Numerous T3SS proteins have been crystallized over the years. These include structural proteins of the NC, effectors and chaperones. The first structure of a needle-complex monomer was NMR structure of BsaL from "Burkholderia pseudomallei" and later the crystal structure of MixH from
708:
bacteria that lack translocators are able to secrete proteins but are not able to deliver them into host cells. In general each T3SS includes three translocators. Some translocators serve a double role; after they participate in pore formation they enter the cell and act as
1714:
secreted proteins. In order to prevent a normally secreted protein from being secreted, a large molecule can be artificially attached to it. If the then non-secreted protein stays "stuck" at the bottom of the needle complex, the secretion is effectively blocked.
537:, on the other hand, has a large virulence plasmid on which all T3SS genes reside. It is important to note that many pathogenicity islands and plasmids contain elements that allow for frequent horizontal gene transfer of the island/plasmid to a new species. 683:
detach from the effectors and the latter are secreted and leave the cell. The lone chaperones then act as transcription factors, binding to the genes encoding their effectors and inducing their transcription and thereby the production of more effectors.
808:
methods. The rest, being perhaps rare, have proven difficult to detect and they remain theoretical (although genetic rather than biochemical studies have been performed on many T3SS genes/proteins). The localization of each protein is also not entirely
686:
Structures similar to Type3SS injectisomes have been proposed to rivet gram negative bacterial outer and inner membranes to help release outer membrane vesicles targeted to deliver bacterial secretions to eukaryotic host or other target cells in vivo.
1182:
Several key elements appear in all T3SSs: the needle monomer, the inner rod of the needle, the ring proteins, the two translocators, the needle-tip protein, the ruler protein (which is thought to determine the needle's length; see above) and the
1522:). The tagged protein is retained in the column, and with it the entire needle complex. High degrees of purity can be achieved using such methods. This purity is essential for many delicate assays that have been used for NC characterization. 451:
layer, for instance) do not interfere with secretion. The hole of the needle has a 3 nm diameter. Most folded effector proteins are too large to pass through the needle opening, so most secreted proteins must pass through the needle
1533:
characterize the three-dimensional structure of the NC in detail, and through this to draw conclusions regarding the mechanism of secretion (for example, that the narrow width of the needle requires unfolding of effectors prior to
754:. It serves a double role, both as a translocator, creating a pore in the host cell membrane, and as an effector, exerting multiple detrimental effects on the host cell. It had been demonstrated that IpaB induces apoptosis in 880:
Flagellum of Gram-negative bacteria. The rings of the base are very similar to needle-complex rings, although the existence of a C-ring in the needle complex has not been proven. The flagellar hook is homologous to the T3SS
110:. Many animal and plant associated bacteria possess similar T3SSs. These T3SSs are similar as a result of convergent evolution and phylogenetic analysis supports a model in which gram-negative bacteria can transfer the T3SS 1653:
The T3SS in many bacteria has been manipulated by researchers. Observing the influence of individual manipulations can be used to draw insights into the role of each component of the system. Examples of manipulations are:
1423:
membrane structures from cells has constituted a challenge for many years. By the end of the 1990s, however, several approaches have been developed for the isolation of T3SS NCs. In 1998 the first NCs were isolated from
87:, many argue that the injectisome is only part of the type III secretion system, which also include structures like the flagellar export apparatus. The T3SS is a needle-like protein complex found in several species of 549:) of the protein (usually within the first 20 amino acids), that the needle complex is able to recognize. Unlike other secretion systems, the secretion signal of T3SS proteins is never cleaved off the protein. 1717:
The ability of the bacteria to assemble an intact needle complex. NCs can be isolated from manipulated bacteria and examined microscopically. Minor changes, however cannot always be detected by microscopy.
540:
Effector proteins that are to be secreted through the needle need to be recognized by the system, since they float in the cytoplasm together with thousands of other proteins. Recognition is done through a
296:
strains constantly emerge. Understanding the way the T3SS works and developing drugs targeting it specifically have become an important goal of many research groups around the world since the late 1990s.
1515:) into the researched bacteria. After initial NC isolation, as described above, the lysate is passed through a column coated with particles with high affinity to the tag (in the case of histidine tags: 1529:
and T3SS proteins led researchers to suspects the existence of an outer T3SS structure similar to flagella. The identification and subsequent isolation of the needle structure enabled researchers to:
557:
Contact of the needle with a host cell triggers the T3SS to start secreting; not much is known about this trigger mechanism (see below). Secretion can also be induced by lowering the concentration of
1680:
The introduction of a gene or a protein from one species of bacteria into another (cross-complementation assay). This is done in order to check for differences and similarities between two T3SSs.
1171:
Following those abbreviations is a letter or a number. Letters usually denote a "serial number", either the chronological order of discovery or the physical order of appearance of the gene in an
3125:
Kubori T, Matsushima Y, Nakamura D, Uralil J, Lara-Tejero M, Sukhan A, et al. (April 1998). "Supramolecular structure of the Salmonella typhimurium type III protein secretion system".
905:
Below is a summary of the most common protein-series names in several T3SS-containing species. Note that these names include proteins that form the T3SS machinery as well as the secreted
861:. Although much was revealed since the beginning of the 21st century about the ways in which T3SS effectors manipulate the host, the majority of effects and pathways remains unknown. 651:, while the cecum does not. The bacteria sense these molecules, determine that they are at the ileum and activate their secretion machinery. Molecules present in the cecum, such as 1617:. The model also revealed an extended amino-terminal domain that is positioned on the surface of the needle, while the highly conserved carboxy terminus points towards the lumen. 3367:
Zhang L, Wang Y, Picking WL, Picking WD, De Guzman RN (June 2006). "Solution structure of monomeric BsaL, the type III secretion needle protein of Burkholderia pseudomallei".
432:
protein pile upon each other, so that the unit at the tip of the needle is the last one added. The needle subunit is one of the smallest T3SS proteins, measuring at around 9 k
1557:. The first images of NCs (1998) showed needle structures protruding from the cell wall of live bacteria and flat, two-dimensional isolated NCs. In 2001 images of NCs from 1525:
Type III effectors were known since the beginning of the 1990s, but the way in which they are delivered into host cells was a complete mystery. The homology between many
264:
The T3SS is composed of approximately 30 different proteins, making it one of the most complex secretion systems. Its structure shows many similarities with bacterial
1481:. This treatment enriches large macromolecular structures and discards smaller cell components. Optionally, the final lysate is subjected to further purification by 2656:
Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, et al. (December 2009). "Breaking the code of DNA binding specificity of TAL-type III effectors".
1607:
T3SS needle. It was shown that the 80-residue PrgI subunits form a right-handed helical assembly with roughly 11 subunits per two turns, similar to that of the
825:
is associated with the base of the T3SS and participates in directing proteins into the needle; but whether it supplies the energy for transport is not clear.
2465:"Eucaryotic cell intoxication by gram-negative pathogens: A novel bacterial outermembrane-bound nanovesicular exocytosis model for Type III secretion system" 411:
The needle complex starts at the cytoplasm of the bacterium, crosses the two membranes and protrudes from the cell. The part anchored in the membrane is the
2486:
Zychlinsky A, Kenny B, Ménard R, Prévost MC, Holland IB, Sansonetti PJ (February 1994). "IpaB mediates macrophage apoptosis induced by Shigella flexneri".
2208:"Evolutionary links between FliH/YscL-like proteins from bacterial type III secretion systems and second-stalk components of the FoF1 and vacuolar ATPases" 890:; the historical names, however, have mostly been kept, a fact that might cause confusion. For example, the proteins SicA, IpgC and SycD are homologs from 1783:, an antibiotic capable of inhibiting the translation of T3SS proteins has been shown to able to prevent T3SS effectors in vitro and in animal models 1625:
Several methods have been employed in order to identify the array of proteins that comprise the T3SS. Isolated needle complexes can be separated with
2033:
Nguyen L, Paulsen IT, Tchieu J, Hueck CJ, Saier MH (April 2000). "Phylogenetic analyses of the constituents of Type III protein secretion systems".
1586:
was published. Recent advances and approaches have allowed high-resolution 3D images of the NC, further clarifying the complex structure of the NC.
3753: 1677:
Point or regional changes in T3SS genes or proteins. This is done in order to define the function of specific amino acids or regions in a protein.
1684:
Manipulation of T3SS components can have influence on several aspects of bacterial function and pathogenicity. Examples of possible influences:
362: 350: 1998:
Gophna U, Ron EZ, Graur D (July 2003). "Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events".
797:
Hundreds of articles on T3SS have been published since the mid-nineties. However, numerous issues regarding the system remain unresolved:
2062:"Differential expression of Salmonella type III secretion system factors InvJ, PrgJ, SipC, SipD, SopA and SopB in cultures and in mice" 1601:, electron microscopy and Rosetta modeling revealed the supramolecular interfaces and ultimately the complete atomic structure of the 3703:"A small-molecule inhibitor of the bacterial type III secretion system protects against in vivo infection with Citrobacter rodentium" 408:
spread across its membrane. It has been proposed that the needle complex is a universal feature of all T3SSs of pathogenic bacteria.
3320:"Three-dimensional reconstruction of the Shigella T3SS transmembrane regions reveals 12-fold symmetry and novel features throughout" 3014:"The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems" 17: 1466: 443:
in length and 8 nm in external width. It needs to have a minimal length so that other extracellular bacterial structures (
1187:, which supplies energy for secretion. The following table shows some of these key proteins in four T3SS-containing bacteria: 3463:"The structure of the Salmonella typhimurium type III secretion system needle shows divergence from the flagellar system" 1862:"Characterization of the Mode of Action of Aurodox, a Type III Secretion System Inhibitor from Streptomyces goldiniensis" 643:. The bacteria are able to know where they are thanks to the different ions present in these regions; the ileum contains 1688:
The ability of the bacteria to invade host cells, in the case of intracellular pathogens. This can be measured using an
717:
to engulf the bacterium and to practically "eat" it. In order for this to happen the bacterial effectors manipulate the
3744: 102:
The term Type III secretion system was coined in 1993. This secretion system is distinguished from at least five other
1726:
to be able to infect host cells, their ability to sustain an infection in a live organism cannot be taken for granted.
1563:
were digitally analyzed and averaged to obtain a first semi-3D structure of the NC. The helical structure of NCs from
276:
sequence homology to flagellar proteins. Some of the bacteria possessing a T3SS have flagella as well and are motile (
35: 3662:"Development and validation of a high-content screening assay for inhibitors of enteropathogenic E. coli adhesion" 2707:
Schraidt O, Lefebre MD, Brunner MJ, Schmied WH, Schmidt A, Radics J, et al. (April 2010). Stebbins CE (ed.).
1960:
Salmond GP, Reeves PJ (January 1993). "Membrane traffic wardens and protein secretion in gram-negative bacteria".
428:
intended to be delivered into host cells. The needle is presumed to be built from bottom to top; units of needle
2155:
Galán JE, Wolf-Watz H (November 2006). "Protein delivery into eukaryotic cells by type III secretion machines".
1537:
analyze the protein components of the NC, this by subjecting isolated needles to proteomic analysis (see below),
2876:"Protein homology network families reveal step-wise diversification of Type III and Type IV secretion systems" 1702:
The ability of the bacteria to kill host cells. This can be measured by several methods, for instance by the
602:), for instance. These methods and other are used in laboratories to artificially induce type III secretion. 207: 674:
The external cues listed above either regulate secretion directly or through a genetic mechanism. Several
2353:
Akeda Y, Galán JE (October 2005). "Chaperone release and unfolding of substrates in type III secretion".
1693: 3268:"Structural organization of the needle complex of the type III secretion apparatus of Shigella flexneri" 1544:
T3SS genes, isolating NCs from the mutated bacteria and examining the changes that the mutations caused.
804:. Of the approximately 30 T3SS proteins less than 10 in each organism have been directly detected using 3748: 906: 490: 72: 60: 3295: 2709:"Topology and organization of the Salmonella typhimurium type III secretion needle complex components" 2116:"Structure and composition of the Shigella flexneri "needle complex", a part of its type III secreton" 3570:
Holmes TC, May AE, Zaleta-Rivera K, Ruby JG, Skewes-Cox P, Fischbach MA, et al. (October 2012).
2605:
Moscou MJ, Bogdanove AJ (December 2009). "A simple cipher governs DNA recognition by TAL effectors".
1450: 1629:. The bands that appear after staining can be individually excised from the gel and analyzed using 1512: 114: 2406:"Contribution of Salmonella typhimurium type III secretion components to needle complex formation" 1720:
The ability of bacteria to infect live animals or plants. Even if manipulated bacteria are shown
1492: 679: 3701:
Kimura K, Iwatsuki M, Nagai T, Matsumoto A, Takahashi Y, Shiomi K, et al. (February 2011).
3572:"Molecular insights into the biosynthesis of guadinomine: a type III secretion system inhibitor" 2570:
Boch J, Bonas U (2010). "Xanthomonas AvrBs3 family-type III effectors: discovery and function".
3318:
Hodgkinson JL, Horsley A, Stabat D, Simon M, Johnson S, da Fonseca PC, et al. (May 2009).
2649: 1762: 1613: 1603: 1426: 769:
Another well characterized class of T3SS effectors are Transcription Activator-like effectors (
107: 91: 40: 1477:. After several rounds of lysis and washing, the opened bacteria are subjected to a series of 821:. The force that drives the passage of proteins inside the needle is not completely known. An 762:—after being engulfed by them. It was later shown that IpaB achieves this by interacting with 520:, for instance, has a chromosomal region in which most T3SS genes are gathered, the so-called 1776: 1746: 1703: 852: 845:
through the pathogenicity island 2-encoded T3SS in order to switch on secretion of effectors.
399:
is excluded; see below). Bacterial proteins that need to be secreted pass from the bacterial
202: 3402:
Deane JE, Roversi P, Cordes FS, Johnson S, Kenjale R, Daniell S, et al. (August 2006).
2973:"Evolution of the type III secretion system and its effectors in plant-microbe interactions" 902:, respectively, but the last letter (the "serial number") in their name does not show that. 605:
Induction of secretion by external cues other than contact with host cells also takes place
3526: 3415: 3404:"Molecular model of a type III secretion system needle: Implications for host-cell sensing" 3222: 3134: 3076: 2887: 2822: 2665: 2614: 2417: 2362: 2309: 2164: 675: 512:. These operons are located on the bacterial chromosome in some species and on a dedicated 293: 3267: 2114:
Blocker A, Jouihri N, Larquet E, Gounon P, Ebel F, Parsot C, et al. (February 2001).
8: 3777: 3513:
Loquet A, Sgourakis NG, Gupta R, Giller K, Riedel D, Goosmann C, et al. (May 2012).
1554: 1478: 127: 88: 3530: 3419: 3226: 3138: 3080: 2891: 2826: 2669: 2618: 2583: 2421: 2366: 2313: 2168: 30: 3782: 3596: 3571: 3547: 3514: 3487: 3462: 3438: 3403: 3344: 3319: 3243: 3210: 3170:"Helical structure of the needle of the type III secretion system of Shigella flexneri" 3040: 3013: 2910: 2875: 2851: 2810: 2786: 2759: 2735: 2708: 2689: 2638: 2529:
Hilbi H, Moss JE, Hersh D, Chen Y, Arondel J, Banerjee S, et al. (December 1998).
2511: 2499: 2386: 2335: 2273: 2256: 2232: 2207: 2188: 2088: 2061: 1937: 1910: 1886: 1861: 1837: 1812: 1630: 448: 355: 2011: 494:: get secreted into the host cell and promote infection / suppress host cell defences. 3724: 3683: 3642: 3601: 3552: 3492: 3443: 3384: 3349: 3300: 3248: 3191: 3150: 3104: 3099: 3064: 3045: 2994: 2989: 2972: 2953: 2915: 2856: 2791: 2740: 2693: 2681: 2630: 2587: 2552: 2503: 2464: 2445: 2440: 2405: 2378: 2327: 2278: 2237: 2180: 2137: 2132: 2115: 2093: 2042: 2015: 1977: 1973: 1942: 1891: 1842: 1828: 1634: 1575: 1559: 1508: 750: 444: 3168:
Cordes FS, Komoriya K, Larquet E, Yang S, Egelman EH, Blocker A, Lea SM (May 2003).
2936:
Saier MH (March 2004). "Evolution of bacterial type III protein secretion systems".
2515: 2339: 1710:
LDH, which leaks from dead cells, is identified by measuring its enzymatic activity.
468: 83:. While the type III secretion system has been widely regarded as equivalent to the 3714: 3673: 3632: 3591: 3583: 3542: 3534: 3482: 3474: 3433: 3423: 3376: 3339: 3331: 3290: 3282: 3238: 3230: 3181: 3142: 3094: 3084: 3035: 3025: 2984: 2945: 2905: 2895: 2846: 2838: 2830: 2781: 2771: 2730: 2720: 2673: 2642: 2622: 2579: 2542: 2495: 2435: 2425: 2390: 2370: 2317: 2268: 2227: 2219: 2192: 2172: 2127: 2083: 2073: 2007: 1969: 1932: 1922: 1881: 1873: 1832: 1824: 1813:"The Injectisome, a Complex Nanomachine for Protein Injection into Mammalian Cells" 1729:
The expression levels of other genes. This can be assayed in several ways, notably
1485: 1438: 887: 730: 433: 195: 146: 785: 367: 343: 3286: 3209:
Marlovits TC, Kubori T, Sukhan A, Thomas DR, Galán JE, Unger VM (November 2004).
3146: 3030: 2900: 2776: 2725: 1665: 1638: 1598: 1553:
As with almost all proteins, the visualization of T3SS NCs is only possible with
1496: 696:
theory has been refuted. It is now clear that some effectors, collectively named
585: 453: 233: 167: 3678: 3661: 3211:"Structural insights into the assembly of the type III secretion needle complex" 851:. It is not known when chaperones bind their effectors (whether during or after 3637: 3620: 3408:
Proceedings of the National Academy of Sciences of the United States of America
3069:
Proceedings of the National Academy of Sciences of the United States of America
2410:
Proceedings of the National Academy of Sciences of the United States of America
1689: 721: 627:
levels, and use them to "decide" whether to activate their T3SS. For instance,
500:: bind effectors in the bacterial cytoplasm, protect them from aggregation and 155: 3478: 3380: 2949: 2322: 2297: 3771: 3266:
Sani M, Allaoui A, Fusetti F, Oostergetel GT, Keegstra W, Boekema EJ (2007).
2547: 2530: 1911:"Protein Export via the Type III Secretion System of the Bacterial Flagellum" 1730: 1659: 1541: 1504: 1434: 759: 565: 404: 139: 111: 3428: 3234: 2834: 2677: 2626: 876: 3728: 3687: 3646: 3605: 3556: 3496: 3447: 3388: 3353: 3304: 3252: 3195: 3186: 3169: 3108: 3089: 3049: 2998: 2957: 2919: 2860: 2842: 2795: 2744: 2685: 2634: 2591: 2449: 2430: 2382: 2331: 2282: 2241: 2184: 2141: 2097: 2078: 2046: 2019: 1946: 1895: 1846: 1771: 1470: 1454: 805: 770: 725: 178: 80: 3461:
Galkin VE, Schmied WH, Schraidt O, Marlovits TC, Egelman EH (March 2010).
3154: 2556: 2531:"Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB" 2507: 1981: 117:
to other species. Some of the most researched T3SSs are from species of:
2223: 1927: 1877: 1860:
McHugh RE, O'Boyle N, Connolly JP, Hoskisson PA, Roe AJ (February 2019).
1766: 1500: 1446: 1420: 1175:. Numbers, the rarer case, denote the molecular weight of the protein in 774: 660: 612: 501: 289: 250: 214: 3719: 3702: 3538: 2374: 2176: 667:
found in most eukaryotic cell membranes, is able to induce secretion in
2811:"pH sensing by intracellular Salmonella induces effector translocation" 1742: 1442: 755: 737: 652: 620: 546: 273: 134: 3587: 3335: 704:) in the host cell membrane, through which other effectors may enter. 314: 1608: 1526: 1474: 1462: 763: 741: 640: 595: 440: 400: 256: 244: 151: 103: 76: 68: 2298:"Evolution: reducible complexity -- the case for bacterial flagella" 1699:
The ability of intracellular bacteria to migrate between host cells.
1722: 1642: 1626: 1597:
In 2012, a combination of recombinant wild-type needle production,
1579: 1568: 1458: 705: 656: 589: 577: 269: 265: 190: 183: 171: 122: 64: 3621:"Non-traditional Antibacterial Therapeutic Options and Challenges" 1859: 1548: 1433:
For the isolation, bacteria are grown in a large volume of liquid
1780: 1670: 648: 644: 607: 558: 513: 429: 419:) of the T3SS. The extracellular part is the needle. A so-called 238: 886:
independently in different bacteria have later been shown to be
855:) and how they dissociate from their effectors before secretion. 659:, provide a negative cue to the bacteria and inhibit secretion. 1738: 1734: 1707: 1516: 1184: 1172: 822: 624: 545:—a short sequence of amino acids located at the beginning (the 509: 472:
Diagram of individual substructures of the needle complex from
457: 396: 223: 162: 3460: 3124: 1761:
A few compounds have been discovered that inhibit the T3SS in
736:
T3SS effectors have also been shown to tamper with the host's
3265: 2809:
Yu XJ, McGourty K, Liu M, Unsworth KE, Holden DW (May 2010).
2706: 1572: 1179:. Examples: IpaA, IpaB, IpaC; MxiH, MxiG, MxiM; Spa9, Spa47. 718: 664: 636: 632: 227: 219: 3700: 3317: 2655: 2598: 2485: 1792: 1749:
and regulatory networks were discovered using these methods.
3208: 2113: 1786: 1482: 581: 403:
through the needle directly into the host cytoplasm. Three
338: 3569: 3512: 2060:
Gong H, Vu GP, Bai Y, Yang E, Liu F, Lu S (January 2010).
3401: 3167: 1519: 1176: 611:, in infected organisms. The bacteria sense such cues as 592: 561: 2032: 724:
machinery of the host cell. Actin is a component of the
700:, are secreted first and produce a pore or a channel (a 479:
The T3SS proteins can be grouped into three categories:
375:
The hallmark of T3SS is the needle (more generally, the
3366: 842: 616: 3515:"Atomic model of the type III secretion system needle" 2758:
Grynberg M, Godzik A (April 2009). Stebbins CE (ed.).
1668:
of one or more T3SS genes (in other words: production
1125:: Hypersensitive response conserved (or Hrp conserved) 3618: 2808: 2563: 1491:
An additional approach for further purification uses
1414: 3764:
and tomato plant leading to bacterial speck disease.
3747:
outlining the chemistry of the injectisome from the
2295: 1409: 272:). Some of the proteins participating in T3SS share 2873: 2257:"Bacterial flagella and type III secretion systems" 2205: 2035:
Journal of Molecular Microbiology and Biotechnology
1674:
of a T3SS protein in quantities larger than usual).
292:were effective against these bacteria in the past, 3659: 2528: 1641:, in order to obtain a complete picture of the NC 766:, a major regulatory protein in eukaryotic cells. 1648: 3769: 1810: 871: 268:(long, rigid, extracellular structures used for 2874:Medini D, Covacci A, Donati C (December 2006). 2604: 2403: 2206:Pallen MJ, Bailey CM, Beatson SA (April 2006). 1779:have been developed that inhibit the T3SS too. 1549:Microscopy, crystallography and solid-state NMR 1540:assign roles to various NC components, this by 486:: build the base, the inner rod and the needle. 3120: 3118: 2757: 2154: 2109: 2107: 1997: 841:, which relies on sensing host cell cytosolic 744:. One of the most researched T3SS effector is 2970: 2059: 1959: 38:image of isolated T3SS needle complexes from 3612: 2964: 2867: 2751: 2346: 1993: 1991: 1908: 3115: 2700: 2104: 2053: 1119:: Hypersensitive response and pathogenicity 504:and direct them towards the needle complex. 3619:Theuretzbacher U, Piddock LJ (July 2019). 3563: 3296:11370/9ee8c380-a931-4313-89cf-d9faa49cdf3b 2404:Kimbrough TG, Miller SI (September 2000). 2352: 1804: 690: 3718: 3677: 3660:Pylkkö T, Ilina P, Tammela P (May 2021). 3636: 3595: 3546: 3508: 3506: 3486: 3437: 3427: 3343: 3324:Nature Structural & Molecular Biology 3294: 3242: 3185: 3098: 3088: 3039: 3029: 3011: 2988: 2909: 2899: 2850: 2785: 2775: 2734: 2724: 2569: 2546: 2439: 2429: 2321: 2296:Doolittle WF, Zhaxybayeva O (July 2007). 2272: 2231: 2131: 2087: 2077: 1988: 1936: 1926: 1885: 1836: 1756: 552: 436:. 100−150 subunits comprise each needle. 3576:Journal of the American Chemical Society 2931: 2929: 1787:Type III signal peptide prediction tools 875: 784: 467: 29: 2462: 631:can replicate and invade better in the 14: 3770: 3503: 2254: 1811:Lara-Tejero M, Galán JE (March 2019). 1737:. The expression levels of the entire 439:The T3SS needle measures around 60−80 3065:"Bacterial menageries inside insects" 3062: 2935: 2926: 789:The topology and organization of the 3012:Abby SS, Rocha EP (September 2012). 1658:Deletion of one or more T3SS genes ( 1594:, which were both resolved in 2006. 780: 740:and some of them are able to induce 288:longer of use. Although traditional 3174:The Journal of Biological Chemistry 2584:10.1146/annurev-phyto-080508-081936 2535:The Journal of Biological Chemistry 1909:Halte M, Erhardt M (January 2021). 1752:The growth and fitness of bacteria. 1567:was resolved at a resolution of 16 1453:(the bacteria) is resuspended in a 1314:Chaperone for the two translocators 729:cells and quickly infect the whole 24: 3738: 3666:Journal of Microbiological Methods 2500:10.1111/j.1365-2958.1994.tb00341.x 2274:10.1111/j.1574-6968.2001.tb10797.x 1853: 1449:(the medium) is discarded and the 1415:Isolation of T3SS needle complexes 280:, for instance), and some do not ( 25: 3794: 2760:"The signal for signaling, found" 1419:The isolation of large, fragile, 1410:Methods employed in T3SS research 1043:: Surface presentation of antigen 958:: Surface presentation of antigen 75:into the host's cells to promote 2990:10.1111/j.1469-8137.2007.02293.x 2133:10.1046/j.1365-2958.2001.02200.x 1829:10.1128/ecosalplus.ESP-0039-2018 1769:which are naturally produced by 1507:, for instance) are produced by 1473:. This buffer disintegrates the 508:Most T3SS genes are laid out in 463: 313: 36:transmission electron microscope 3694: 3653: 3454: 3395: 3360: 3311: 3259: 3202: 3161: 3056: 3005: 2802: 2572:Annual Review of Phytopathology 2522: 2479: 2456: 2397: 2289: 2248: 2199: 1578:in 2003, and a year later a 17- 1066:: Translocated intimin receptor 2971:McCann HC, Guttman DS (2008). 2148: 2026: 1962:Trends in Biochemical Sciences 1953: 1902: 1649:Genetic and functional studies 460:at the base of the structure. 13: 1: 2012:10.1016/S0378-1119(03)00612-7 1798: 1706:-release assay, in which the 1620: 872:Nomenclature of T3SS proteins 3467:Journal of Molecular Biology 3369:Journal of Molecular Biology 3287:10.1016/j.micron.2006.04.007 3147:10.1126/science.280.5363.602 3031:10.1371/journal.pgen.1002983 2901:10.1371/journal.pcbi.0020173 2777:10.1371/journal.ppat.1000398 2726:10.1371/journal.ppat.1000824 1974:10.1016/0968-0004(93)90080-7 1164:"Protochlamydia amoebophila" 1037:: Membrane expression of Ipa 456:, a task carried out by the 300: 208:sexually transmitted disease 7: 3679:10.1016/j.mimet.2021.106201 1694:gentamicin protection assay 1499:T3SS proteins that carry a 1189: 97: 61:bacterial secretion systems 10: 3799: 3749:Royal Society of Chemistry 3707:The Journal of Antibiotics 3638:10.1016/j.chom.2019.06.004 3063:Moran NA (February 2001). 2880:PLOS Computational Biology 1031:: Invasion plasmid antigen 1012:: Invasion-associated gene 598:to the growth medium (for 27:Bacterial virulence factor 3754:Host-Pathogen Interaction 3479:10.1016/j.jmb.2010.01.001 3381:10.1016/j.jmb.2006.03.028 2950:10.1016/j.tim.2004.01.003 2323:10.1016/j.cub.2007.05.003 2261:FEMS Microbiology Letters 2255:Aizawa SI (August 2001). 1582:3D structure of NCs from 361: 349: 337: 329: 324: 312: 308:Type III secretion system 307: 254:, and the plant symbiont 49:type III secretion system 2548:10.1074/jbc.273.49.32895 2469:Toxicology International 813:The length of the needle 3625:Cell Host & Microbe 3429:10.1073/pnas.0602689103 3235:10.1126/science.1102610 2835:10.1126/science.1189000 2678:10.1126/science.1178811 2627:10.1126/science.1178817 1493:affinity chromatography 1025:: Invasion plasmid gene 996:: Oxygen-regulated gene 835:Activation of secretion 691:T3SS-mediated infection 319:The T3SS needle complex 18:Type 3 secretion system 3187:10.1074/jbc.M300091200 3090:10.1073/pnas.98.4.1338 2938:Trends in Microbiology 2488:Molecular Microbiology 2431:10.1073/pnas.200209497 2120:Molecular Microbiology 2079:10.1099/mic.0.032318-0 1866:Infection and Immunity 1763:gram-negative bacteria 1757:Inhibitors of the T3SS 1614:Salmonella typhimurium 1604:Salmonella typhimurium 1584:Salmonella typhimurium 1427:Salmonella typhimurium 1167:"Sodalis glossinidius" 882: 794: 553:Induction of secretion 476: 474:Salmonella typhimurium 108:gram-negative bacteria 92:gram-negative bacteria 44: 41:Salmonella typhimurium 1777:Monoclonal antibodies 1747:transcription factors 1511:and then introduced ( 1457:typically containing 1193:↓ Function / Genus → 1086:secretion (component) 984:: PhoP-repressed gene 935:secretion (component) 879: 849:Binding of chaperones 788: 758:—cells of the animal 676:transcription factors 471: 154:, some strains cause 33: 3758:Pseudomonas syringae 2224:10.1110/ps.051958806 1928:10.3390/biom11020186 1878:10.1128/IAI.00595-18 1479:ultracentrifugations 1153:In several species: 1138:: Nodulation protein 588:) and by adding the 527:pathogenicity island 294:antibiotic-resistant 3720:10.1038/ja.2010.155 3582:(42): 17797–17806. 3539:10.1038/nature11079 3531:2012Natur.486..276L 3420:2006PNAS..10312529D 3414:(33): 12529–12533. 3227:2004Sci...306.1040M 3221:(5698): 1040–1042. 3180:(19): 17103–17107. 3139:1998Sci...280..602K 3081:2001PNAS...98.1338M 2977:The New Phytologist 2892:2006PLSCB...2..173M 2827:2010Sci...328.1040Y 2821:(5981): 1040–1043. 2670:2009Sci...326.1509B 2664:(5959): 1509–1512. 2619:2009Sci...326.1501M 2541:(49): 32895–32900. 2463:YashRoy RC (2003). 2422:2000PNAS...9711008K 2416:(20): 11008–11013. 2375:10.1038/nature03992 2367:2005Natur.437..911A 2314:2007CBio...17.R510D 2177:10.1038/nature05272 2169:2006Natur.444..567G 1555:electron microscopy 859:Effector mechanisms 635:rather than in the 576:; done by adding a 484:Structural proteins 128:bacillary dysentery 1741:can be assayed by 1631:protein sequencing 1257:Needle-tip protein 968:invasion chaperone 883: 795: 678:that regulate the 516:in other species. 477: 449:lipopolysaccharide 45: 3588:10.1021/ja308622d 3525:(7402): 276–279. 3336:10.1038/nsmb.1599 3133:(5363): 602–605. 2361:(7060): 911–915. 2308:(13): R510–R512. 2163:(7119): 567–573. 2072:(Pt 1): 116–127. 1635:mass spectrometry 1592:Shigella flexneri 1576:fiber diffraction 1565:Shigella flexneri 1560:Shigella flexneri 1509:molecular cloning 1437:until they reach 1407: 1406: 1096:secretion protein 1006:-secreted protein 907:effector proteins 781:Unresolved issues 751:Shigella flexneri 491:Effector proteins 373: 372: 104:secretion systems 73:effector proteins 16:(Redirected from 3790: 3733: 3732: 3722: 3698: 3692: 3691: 3681: 3657: 3651: 3650: 3640: 3616: 3610: 3609: 3599: 3567: 3561: 3560: 3550: 3510: 3501: 3500: 3490: 3473:(5): 1392–1397. 3458: 3452: 3451: 3441: 3431: 3399: 3393: 3392: 3364: 3358: 3357: 3347: 3315: 3309: 3308: 3298: 3272: 3263: 3257: 3256: 3246: 3206: 3200: 3199: 3189: 3165: 3159: 3158: 3122: 3113: 3112: 3102: 3092: 3075:(4): 1338–1340. 3060: 3054: 3053: 3043: 3033: 3009: 3003: 3002: 2992: 2968: 2962: 2961: 2933: 2924: 2923: 2913: 2903: 2871: 2865: 2864: 2854: 2806: 2800: 2799: 2789: 2779: 2755: 2749: 2748: 2738: 2728: 2704: 2698: 2697: 2653: 2647: 2646: 2602: 2596: 2595: 2567: 2561: 2560: 2550: 2526: 2520: 2519: 2483: 2477: 2476: 2460: 2454: 2453: 2443: 2433: 2401: 2395: 2394: 2350: 2344: 2343: 2325: 2293: 2287: 2286: 2276: 2252: 2246: 2245: 2235: 2203: 2197: 2196: 2152: 2146: 2145: 2135: 2111: 2102: 2101: 2091: 2081: 2057: 2051: 2050: 2030: 2024: 2023: 1995: 1986: 1985: 1957: 1951: 1950: 1940: 1930: 1906: 1900: 1899: 1889: 1872:(2): e00595–18. 1857: 1851: 1850: 1840: 1808: 1765:, including the 1745:. Many type III 1486:density gradient 1461:and sometimes a 1441:. They are then 1190: 978:invasion protein 829:Secretion signal 543:secretion signal 317: 305: 304: 147:Escherichia coli 59:) is one of the 21: 3798: 3797: 3793: 3792: 3791: 3789: 3788: 3787: 3768: 3767: 3745:Instant insight 3741: 3739:Further reading 3736: 3699: 3695: 3658: 3654: 3617: 3613: 3568: 3564: 3511: 3504: 3459: 3455: 3400: 3396: 3365: 3361: 3316: 3312: 3270: 3264: 3260: 3207: 3203: 3166: 3162: 3123: 3116: 3061: 3057: 3024:(9): e1002983. 3010: 3006: 2969: 2965: 2934: 2927: 2872: 2868: 2807: 2803: 2770:(4): e1000398. 2756: 2752: 2719:(4): e1000824. 2705: 2701: 2654: 2650: 2603: 2599: 2568: 2564: 2527: 2523: 2484: 2480: 2461: 2457: 2402: 2398: 2351: 2347: 2302:Current Biology 2294: 2290: 2253: 2249: 2212:Protein Science 2204: 2200: 2153: 2149: 2112: 2105: 2058: 2054: 2031: 2027: 1996: 1989: 1958: 1954: 1907: 1903: 1858: 1854: 1809: 1805: 1801: 1789: 1759: 1651: 1639:electrophoresis 1623: 1599:solid-state NMR 1551: 1417: 1412: 1102:: Chaperone of 1072:: Secretion of 874: 793:needle complex. 783: 693: 555: 466: 391:); also called 351:OPM superfamily 320: 303: 234:Plant pathogens 168:gastroenteritis 100: 28: 23: 22: 15: 12: 11: 5: 3796: 3786: 3785: 3780: 3766: 3765: 3751: 3740: 3737: 3735: 3734: 3713:(2): 197–203. 3693: 3652: 3611: 3562: 3502: 3453: 3394: 3375:(2): 322–330. 3359: 3330:(5): 477–485. 3310: 3281:(3): 291–301. 3258: 3201: 3160: 3114: 3055: 3004: 2963: 2944:(3): 113–115. 2925: 2866: 2801: 2764:PLOS Pathogens 2750: 2713:PLOS Pathogens 2699: 2648: 2613:(5959): 1501. 2597: 2562: 2521: 2494:(4): 619–627. 2478: 2455: 2396: 2345: 2288: 2267:(2): 157–164. 2247: 2218:(4): 935–941. 2198: 2147: 2126:(3): 652–663. 2103: 2052: 2041:(2): 125–144. 2025: 1987: 1952: 1901: 1852: 1802: 1800: 1797: 1796: 1795: 1788: 1785: 1758: 1755: 1754: 1753: 1750: 1727: 1718: 1715: 1711: 1700: 1697: 1690:invasion assay 1682: 1681: 1678: 1675: 1666:Overexpression 1663: 1650: 1647: 1622: 1619: 1550: 1547: 1546: 1545: 1538: 1535: 1416: 1413: 1411: 1408: 1405: 1404: 1401: 1398: 1395: 1392: 1386: 1385: 1382: 1379: 1376: 1373: 1367: 1366: 1363: 1360: 1357: 1354: 1348: 1347: 1344: 1341: 1338: 1335: 1329: 1328: 1325: 1322: 1319: 1316: 1310: 1309: 1306: 1303: 1300: 1297: 1291: 1290: 1287: 1284: 1281: 1278: 1272: 1271: 1268: 1265: 1262: 1259: 1253: 1252: 1249: 1246: 1243: 1240: 1234: 1233: 1230: 1227: 1224: 1221: 1219:Needle monomer 1215: 1214: 1209: 1204: 1199: 1194: 1169: 1168: 1165: 1162: 1161: 1160: 1151: 1150: 1149: 1139: 1128: 1127: 1126: 1120: 1109: 1108: 1107: 1097: 1087: 1077: 1067: 1056: 1055: 1054: 1044: 1038: 1032: 1026: 1015: 1014: 1013: 1007: 997: 991: 985: 979: 969: 959: 948: 947: 946: 945:protein kinase 936: 926: 873: 870: 869: 868: 862: 856: 846: 832: 826: 816: 810: 782: 779: 722:polymerization 692: 689: 554: 551: 506: 505: 495: 487: 465: 462: 385:T3SS apparatus 377:needle complex 371: 370: 365: 359: 358: 353: 347: 346: 341: 335: 334: 331: 327: 326: 322: 321: 318: 310: 309: 302: 299: 262: 261: 231: 211: 199: 187: 175: 159: 156:food poisoning 143: 131: 99: 96: 26: 9: 6: 4: 3: 2: 3795: 3784: 3781: 3779: 3776: 3775: 3773: 3763: 3759: 3755: 3752: 3750: 3746: 3743: 3742: 3730: 3726: 3721: 3716: 3712: 3708: 3704: 3697: 3689: 3685: 3680: 3675: 3671: 3667: 3663: 3656: 3648: 3644: 3639: 3634: 3630: 3626: 3622: 3615: 3607: 3603: 3598: 3593: 3589: 3585: 3581: 3577: 3573: 3566: 3558: 3554: 3549: 3544: 3540: 3536: 3532: 3528: 3524: 3520: 3516: 3509: 3507: 3498: 3494: 3489: 3484: 3480: 3476: 3472: 3468: 3464: 3457: 3449: 3445: 3440: 3435: 3430: 3425: 3421: 3417: 3413: 3409: 3405: 3398: 3390: 3386: 3382: 3378: 3374: 3370: 3363: 3355: 3351: 3346: 3341: 3337: 3333: 3329: 3325: 3321: 3314: 3306: 3302: 3297: 3292: 3288: 3284: 3280: 3276: 3269: 3262: 3254: 3250: 3245: 3240: 3236: 3232: 3228: 3224: 3220: 3216: 3212: 3205: 3197: 3193: 3188: 3183: 3179: 3175: 3171: 3164: 3156: 3152: 3148: 3144: 3140: 3136: 3132: 3128: 3121: 3119: 3110: 3106: 3101: 3096: 3091: 3086: 3082: 3078: 3074: 3070: 3066: 3059: 3051: 3047: 3042: 3037: 3032: 3027: 3023: 3019: 3018:PLOS Genetics 3015: 3008: 3000: 2996: 2991: 2986: 2982: 2978: 2974: 2967: 2959: 2955: 2951: 2947: 2943: 2939: 2932: 2930: 2921: 2917: 2912: 2907: 2902: 2897: 2893: 2889: 2885: 2881: 2877: 2870: 2862: 2858: 2853: 2848: 2844: 2843:10044/1/19679 2840: 2836: 2832: 2828: 2824: 2820: 2816: 2812: 2805: 2797: 2793: 2788: 2783: 2778: 2773: 2769: 2765: 2761: 2754: 2746: 2742: 2737: 2732: 2727: 2722: 2718: 2714: 2710: 2703: 2695: 2691: 2687: 2683: 2679: 2675: 2671: 2667: 2663: 2659: 2652: 2644: 2640: 2636: 2632: 2628: 2624: 2620: 2616: 2612: 2608: 2601: 2593: 2589: 2585: 2581: 2577: 2573: 2566: 2558: 2554: 2549: 2544: 2540: 2536: 2532: 2525: 2517: 2513: 2509: 2505: 2501: 2497: 2493: 2489: 2482: 2474: 2470: 2466: 2459: 2451: 2447: 2442: 2437: 2432: 2427: 2423: 2419: 2415: 2411: 2407: 2400: 2392: 2388: 2384: 2380: 2376: 2372: 2368: 2364: 2360: 2356: 2349: 2341: 2337: 2333: 2329: 2324: 2319: 2315: 2311: 2307: 2303: 2299: 2292: 2284: 2280: 2275: 2270: 2266: 2262: 2258: 2251: 2243: 2239: 2234: 2229: 2225: 2221: 2217: 2213: 2209: 2202: 2194: 2190: 2186: 2182: 2178: 2174: 2170: 2166: 2162: 2158: 2151: 2143: 2139: 2134: 2129: 2125: 2121: 2117: 2110: 2108: 2099: 2095: 2090: 2085: 2080: 2075: 2071: 2067: 2063: 2056: 2048: 2044: 2040: 2036: 2029: 2021: 2017: 2013: 2009: 2005: 2001: 1994: 1992: 1983: 1979: 1975: 1971: 1967: 1963: 1956: 1948: 1944: 1939: 1934: 1929: 1924: 1920: 1916: 1912: 1905: 1897: 1893: 1888: 1883: 1879: 1875: 1871: 1867: 1863: 1856: 1848: 1844: 1839: 1834: 1830: 1826: 1822: 1818: 1814: 1807: 1803: 1794: 1791: 1790: 1784: 1782: 1778: 1774: 1773: 1768: 1764: 1751: 1748: 1744: 1740: 1736: 1732: 1731:northern blot 1728: 1725: 1724: 1719: 1716: 1712: 1709: 1705: 1701: 1698: 1695: 1691: 1687: 1686: 1685: 1679: 1676: 1673: 1672: 1667: 1664: 1661: 1660:gene knockout 1657: 1656: 1655: 1646: 1644: 1640: 1636: 1632: 1628: 1618: 1616: 1615: 1610: 1606: 1605: 1600: 1595: 1593: 1587: 1585: 1581: 1577: 1574: 1570: 1566: 1562: 1561: 1556: 1543: 1539: 1536: 1532: 1531: 1530: 1528: 1523: 1521: 1518: 1514: 1510: 1506: 1505:histidine tag 1502: 1498: 1494: 1489: 1487: 1484: 1480: 1476: 1472: 1468: 1464: 1460: 1456: 1452: 1448: 1444: 1440: 1436: 1435:growth medium 1431: 1429: 1428: 1422: 1402: 1399: 1396: 1393: 1391: 1388: 1387: 1383: 1380: 1377: 1374: 1372: 1369: 1368: 1364: 1361: 1358: 1355: 1353: 1352:Ruler protein 1350: 1349: 1345: 1342: 1339: 1336: 1334: 1331: 1330: 1326: 1323: 1320: 1317: 1315: 1312: 1311: 1307: 1304: 1301: 1298: 1296: 1293: 1292: 1288: 1285: 1282: 1279: 1277: 1274: 1273: 1269: 1266: 1263: 1260: 1258: 1255: 1254: 1250: 1247: 1244: 1241: 1239: 1236: 1235: 1231: 1228: 1225: 1222: 1220: 1217: 1216: 1213: 1210: 1208: 1205: 1203: 1200: 1198: 1195: 1192: 1191: 1188: 1186: 1180: 1178: 1174: 1166: 1163: 1158: 1155: 1154: 1152: 1147: 1143: 1140: 1137: 1134: 1133: 1132: 1129: 1124: 1121: 1118: 1115: 1114: 1113: 1110: 1105: 1101: 1098: 1095: 1091: 1088: 1085: 1081: 1078: 1075: 1071: 1068: 1065: 1062: 1061: 1060: 1057: 1052: 1048: 1045: 1042: 1039: 1036: 1033: 1030: 1027: 1024: 1021: 1020: 1019: 1016: 1011: 1008: 1005: 1001: 998: 995: 992: 989: 986: 983: 980: 977: 973: 970: 967: 963: 960: 957: 954: 953: 952: 949: 944: 940: 937: 934: 930: 927: 925:outer protein 924: 920: 917: 916: 915: 912: 911: 910: 908: 903: 901: 897: 893: 889: 878: 866: 863: 860: 857: 854: 850: 847: 844: 840: 836: 833: 830: 827: 824: 820: 817: 814: 811: 807: 803: 802:T3SS proteins 800: 799: 798: 792: 787: 778: 776: 772: 771:TAL effectors 767: 765: 761: 760:immune system 757: 753: 752: 747: 743: 739: 734: 732: 727: 723: 720: 714: 712: 707: 703: 699: 698:translocators 688: 684: 681: 677: 672: 670: 666: 662: 658: 654: 650: 646: 642: 638: 634: 630: 626: 622: 618: 614: 610: 609: 603: 601: 597: 594: 591: 587: 583: 579: 575: 571: 567: 566:growth medium 563: 560: 550: 548: 544: 538: 536: 532: 528: 525: 524: 519: 515: 511: 503: 499: 496: 493: 492: 488: 485: 482: 481: 480: 475: 470: 464:T3SS proteins 461: 459: 455: 450: 446: 442: 437: 435: 431: 425: 422: 418: 414: 409: 406: 402: 398: 394: 390: 386: 382: 378: 369: 366: 364: 360: 357: 354: 352: 348: 345: 342: 340: 336: 332: 328: 323: 316: 311: 306: 298: 295: 291: 285: 283: 279: 275: 271: 267: 259: 258: 253: 252: 247: 246: 241: 240: 235: 232: 229: 225: 221: 217: 216: 212: 209: 205: 204: 200: 197: 193: 192: 188: 185: 181: 180: 176: 173: 169: 165: 164: 160: 157: 153: 149: 148: 144: 141: 140:typhoid fever 137: 136: 132: 129: 125: 124: 120: 119: 118: 116: 113: 112:gene cassette 109: 105: 95: 93: 90: 86: 82: 78: 74: 70: 66: 62: 58: 54: 50: 43: 42: 37: 32: 19: 3761: 3757: 3710: 3706: 3696: 3669: 3665: 3655: 3631:(1): 61–72. 3628: 3624: 3614: 3579: 3575: 3565: 3522: 3518: 3470: 3466: 3456: 3411: 3407: 3397: 3372: 3368: 3362: 3327: 3323: 3313: 3278: 3274: 3261: 3218: 3214: 3204: 3177: 3173: 3163: 3130: 3126: 3072: 3068: 3058: 3021: 3017: 3007: 2983:(1): 33–47. 2980: 2976: 2966: 2941: 2937: 2886:(12): e173. 2883: 2879: 2869: 2818: 2814: 2804: 2767: 2763: 2753: 2716: 2712: 2702: 2661: 2657: 2651: 2610: 2606: 2600: 2575: 2571: 2565: 2538: 2534: 2524: 2491: 2487: 2481: 2472: 2468: 2458: 2413: 2409: 2399: 2358: 2354: 2348: 2305: 2301: 2291: 2264: 2260: 2250: 2215: 2211: 2201: 2160: 2156: 2150: 2123: 2119: 2069: 2066:Microbiology 2065: 2055: 2038: 2034: 2028: 2003: 1999: 1965: 1961: 1955: 1918: 1915:Biomolecules 1914: 1904: 1869: 1865: 1855: 1820: 1816: 1806: 1772:Streptomyces 1770: 1767:guadinomines 1760: 1721: 1683: 1669: 1652: 1624: 1612: 1602: 1596: 1591: 1588: 1583: 1564: 1558: 1552: 1542:knocking out 1524: 1490: 1471:Triton X-100 1455:lysis buffer 1432: 1425: 1418: 1400:YopN (TyeA) 1389: 1370: 1351: 1346:SepB (EscN) 1332: 1313: 1295:Translocator 1294: 1276:Translocator 1275: 1256: 1237: 1218: 1211: 1206: 1201: 1196: 1181: 1170: 1156: 1145: 1141: 1135: 1130: 1122: 1116: 1111: 1103: 1099: 1093: 1089: 1083: 1079: 1073: 1069: 1063: 1058: 1050: 1046: 1040: 1034: 1028: 1022: 1017: 1009: 1003: 999: 993: 987: 981: 975: 971: 965: 961: 955: 950: 942: 938: 932: 928: 922: 918: 913: 904: 899: 895: 891: 884: 864: 858: 848: 838: 834: 828: 818: 812: 801: 796: 790: 768: 749: 745: 735: 726:cytoskeleton 715: 710: 701: 697: 694: 685: 673: 668: 628: 606: 604: 599: 573: 569: 556: 542: 539: 534: 530: 526: 522: 521: 517: 507: 497: 489: 483: 478: 473: 438: 426: 420: 416: 412: 410: 392: 388: 384: 380: 376: 374: 286: 281: 277: 263: 255: 249: 243: 237: 213: 201: 189: 179:Burkholderia 177: 161: 145: 133: 121: 115:horizontally 101: 84: 81:colonisation 56: 52: 48: 46: 39: 2578:: 419–436. 2006:: 151–163. 1968:(1): 7–12. 1817:EcoSal Plus 1793:EffectiveT3 1534:secretion), 1513:transformed 1501:protein tag 1497:Recombinant 1447:supernatant 1443:centrifuged 1421:hydrophobic 1212:Escherichia 1159:: Virulence 1112:Pseudomonas 1094:Escherichia 1084:Escherichia 1059:Escherichia 853:translation 806:biochemical 775:Xanthomonas 756:macrophages 713:effectors. 661:Cholesterol 613:temperature 574:Pseudomonas 502:degradation 393:injectisome 363:OPM protein 325:Identifiers 290:antibiotics 251:Xanthomonas 215:Pseudomonas 85:injectisome 3778:Organelles 3772:Categories 3672:: 106201. 1921:(2): 186. 1799:References 1775:species. 1743:microarray 1621:Proteomics 1390:Gatekeeper 1202:Salmonella 1004:Salmonella 990:: Invasion 976:Salmonella 966:Salmonella 951:Salmonella 892:Salmonella 888:homologous 839:Salmonella 819:Energetics 791:Salmonella 738:cell cycle 702:translocon 680:expression 653:propionate 639:of animal 629:Salmonella 621:osmolarity 547:N-terminus 523:Salmonella 518:Salmonella 498:Chaperones 417:basal body 278:Salmonella 274:amino-acid 135:Salmonella 89:pathogenic 3783:Secretion 2694:206522347 2475:(1): 1–9. 1609:flagellum 1527:flagellar 1475:cell wall 1463:detergent 1439:log phase 1238:Inner rod 1148:conserved 1146:Rhizobium 1131:Rhizobium 1106:secretion 865:Evolution 764:caspase 1 742:apoptosis 711:bona fide 641:intestine 596:Congo red 421:inner rod 405:membranes 401:cytoplasm 395:when the 383:) or the 301:Structure 257:Rhizobium 245:Ralstonia 230:) and the 218:(infects 203:Chlamydia 152:Gut flora 106:found in 77:virulence 3729:21139624 3688:33713725 3647:31295426 3606:23030602 3557:22699623 3497:20060835 3448:16888041 3389:16631790 3354:19396171 3305:16920362 3253:15528446 3196:12571230 3109:11171951 3050:23028376 2999:18078471 2958:15001186 2920:17140285 2861:20395475 2796:19390616 2745:20368966 2686:19933107 2635:19933106 2592:19400638 2516:40167923 2450:10984518 2383:16208377 2340:17452659 2332:17610831 2283:11520608 2242:16522800 2185:17136086 2142:11169106 2098:19762438 2047:10939240 2020:12909351 1947:33572887 1896:30455200 1847:30942149 1723:in vitro 1643:proteome 1627:SDS-PAGE 1465:such as 1459:lysozyme 1207:Yersinia 1197:Shigella 1076:proteins 1051:Shigella 1049:: Outer 1018:Shigella 943:Yersinia 933:Yersinia 923:Yersinia 914:Yersinia 900:Yersinia 896:Shigella 669:Shigella 657:butyrate 600:Shigella 590:aromatic 580:such as 578:chelator 570:Yersinia 535:Shigella 454:unfolded 447:and the 445:adhesins 282:Shigella 270:motility 266:flagella 236:such as 191:Yersinia 184:glanders 172:diarrhea 126:(causes 123:Shigella 98:Overview 65:bacteria 63:used by 3597:3483642 3548:3598588 3527:Bibcode 3488:2823972 3439:1567912 3416:Bibcode 3345:2681179 3244:1459965 3223:Bibcode 3215:Science 3155:9554854 3135:Bibcode 3127:Science 3077:Bibcode 3041:3459982 2911:1676029 2888:Bibcode 2852:6485629 2823:Bibcode 2815:Science 2787:2668190 2736:2848554 2666:Bibcode 2658:Science 2643:6648530 2615:Bibcode 2607:Science 2557:9830039 2508:8196540 2418:Bibcode 2391:4355750 2363:Bibcode 2310:Bibcode 2233:2242474 2193:4411244 2165:Bibcode 2089:2889428 1982:8438237 1938:7911332 1887:6346137 1838:6450406 1781:Aurodox 1671:in vivo 1104:E. coli 1074:E. coli 1053:protein 773:) from 706:Mutated 649:acetate 645:formate 608:in vivo 564:in the 559:calcium 514:plasmid 510:operons 430:monomer 239:Erwinia 224:animals 69:secrete 3762:tomato 3727:  3686:  3645:  3604:  3594:  3555:  3545:  3519:Nature 3495:  3485:  3446:  3436:  3387:  3352:  3342:  3303:  3275:Micron 3251:  3241:  3194:  3153:  3107:  3097:  3048:  3038:  2997:  2956:  2918:  2908:  2859:  2849:  2794:  2784:  2743:  2733:  2692:  2684:  2641:  2633:  2590:  2555:  2514:  2506:  2448:  2438:  2389:  2381:  2355:Nature 2338:  2330:  2281:  2240:  2230:  2191:  2183:  2157:Nature 2140:  2096:  2086:  2045:  2018:  1980:  1945:  1935:  1894:  1884:  1845:  1835:  1739:genome 1735:RT-PCR 1708:enzyme 1571:using 1517:nickel 1451:pellet 1445:; the 1375:Spa40 1371:Switch 1365:Orf16 1356:Spa32 1337:Spa47 1333:ATPase 1185:ATPase 1173:operon 881:needle 823:ATPase 809:known. 731:tissue 625:oxygen 458:ATPase 397:ATPase 344:1.B.22 330:Symbol 228:plants 220:humans 196:plague 163:Vibrio 71:their 3271:(PDF) 3100:33380 2690:S2CID 2639:S2CID 2512:S2CID 2441:27139 2387:S2CID 2336:S2CID 2189:S2CID 1823:(2). 1573:X-ray 1403:SepL 1397:InvE 1394:MxiC 1384:EscU 1381:YscU 1378:SpaS 1362:YscP 1359:InvJ 1343:YscN 1340:InvC 1327:CesD 1324:SycD 1321:SicA 1318:IpgC 1308:EspB 1305:YopD 1302:SipC 1299:IpaC 1289:EspD 1286:YopB 1283:SipB 1280:IpaB 1270:EspA 1267:LcrV 1264:SipD 1261:IpaD 1251:EscI 1248:YscI 1245:PrgJ 1242:MxiI 1232:EscF 1229:YscF 1226:PrgI 1223:MxiH 748:from 719:actin 665:lipid 637:cecum 633:ileum 568:(for 3760:pv. 3725:PMID 3684:PMID 3643:PMID 3602:PMID 3553:PMID 3493:PMID 3444:PMID 3385:PMID 3350:PMID 3301:PMID 3249:PMID 3192:PMID 3151:PMID 3105:PMID 3046:PMID 2995:PMID 2954:PMID 2916:PMID 2857:PMID 2792:PMID 2741:PMID 2682:PMID 2631:PMID 2588:PMID 2553:PMID 2504:PMID 2446:PMID 2379:PMID 2328:PMID 2279:PMID 2238:PMID 2181:PMID 2138:PMID 2094:PMID 2043:PMID 2016:PMID 2000:Gene 1978:PMID 1943:PMID 1892:PMID 1843:PMID 1733:and 1633:and 1520:ions 1483:CsCl 1467:LDAO 898:and 746:IpaB 663:, a 655:and 647:and 623:and 586:EGTA 582:EDTA 572:and 562:ions 415:(or 413:base 389:T3SA 368:5tcq 339:TCDB 333:T3SS 248:and 226:and 170:and 79:and 57:TTSS 53:T3SS 47:The 3756:in 3715:doi 3674:doi 3670:184 3633:doi 3592:PMC 3584:doi 3580:134 3543:PMC 3535:doi 3523:486 3483:PMC 3475:doi 3471:396 3434:PMC 3424:doi 3412:103 3377:doi 3373:359 3340:PMC 3332:doi 3291:hdl 3283:doi 3239:PMC 3231:doi 3219:306 3182:doi 3178:278 3143:doi 3131:280 3095:PMC 3085:doi 3036:PMC 3026:doi 2985:doi 2981:177 2946:doi 2906:PMC 2896:doi 2847:PMC 2839:hdl 2831:doi 2819:328 2782:PMC 2772:doi 2731:PMC 2721:doi 2674:doi 2662:326 2623:doi 2611:326 2580:doi 2543:doi 2539:273 2496:doi 2436:PMC 2426:doi 2371:doi 2359:437 2318:doi 2269:doi 2265:202 2228:PMC 2220:doi 2173:doi 2161:444 2128:doi 2084:PMC 2074:doi 2070:156 2008:doi 2004:312 1970:doi 1933:PMC 1923:doi 1882:PMC 1874:doi 1833:PMC 1825:doi 1704:LDH 1611:of 1503:(a 1469:or 1177:kDa 1157:Vir 1142:Rhc 1136:Nop 1123:Hrc 1117:Hrp 1100:Ces 1090:Esp 1080:Esc 1070:Sep 1064:Tir 1047:Osp 1041:Spa 1035:Mxi 1029:Ipa 1023:Ipg 1010:Iag 1000:Ssp 994:Org 988:Inv 982:Prg 972:Sip 962:Sic 956:Spa 939:Ypk 929:Ysc 919:Yop 593:dye 584:or 533:). 531:SPI 356:348 67:to 55:or 3774:: 3723:. 3711:64 3709:. 3705:. 3682:. 3668:. 3664:. 3641:. 3629:26 3627:. 3623:. 3600:. 3590:. 3578:. 3574:. 3551:. 3541:. 3533:. 3521:. 3517:. 3505:^ 3491:. 3481:. 3469:. 3465:. 3442:. 3432:. 3422:. 3410:. 3406:. 3383:. 3371:. 3348:. 3338:. 3328:16 3326:. 3322:. 3299:. 3289:. 3279:38 3277:. 3273:. 3247:. 3237:. 3229:. 3217:. 3213:. 3190:. 3176:. 3172:. 3149:. 3141:. 3129:. 3117:^ 3103:. 3093:. 3083:. 3073:98 3071:. 3067:. 3044:. 3034:. 3020:. 3016:. 2993:. 2979:. 2975:. 2952:. 2942:12 2940:. 2928:^ 2914:. 2904:. 2894:. 2882:. 2878:. 2855:. 2845:. 2837:. 2829:. 2817:. 2813:. 2790:. 2780:. 2766:. 2762:. 2739:. 2729:. 2715:. 2711:. 2688:. 2680:. 2672:. 2660:. 2637:. 2629:. 2621:. 2609:. 2586:. 2576:48 2574:. 2551:. 2537:. 2533:. 2510:. 2502:. 2492:11 2490:. 2473:10 2471:. 2467:. 2444:. 2434:. 2424:. 2414:97 2412:. 2408:. 2385:. 2377:. 2369:. 2357:. 2334:. 2326:. 2316:. 2306:17 2304:. 2300:. 2277:. 2263:. 2259:. 2236:. 2226:. 2216:15 2214:. 2210:. 2187:. 2179:. 2171:. 2159:. 2136:. 2124:39 2122:. 2118:. 2106:^ 2092:. 2082:. 2068:. 2064:. 2037:. 2014:. 2002:. 1990:^ 1976:. 1966:18 1964:. 1941:. 1931:. 1919:11 1917:. 1913:. 1890:. 1880:. 1870:87 1868:. 1864:. 1841:. 1831:. 1819:. 1815:. 1696:). 1662:). 1645:. 1495:. 1488:. 1430:. 1144:: 1092:: 1082:: 1002:: 974:: 964:: 941:: 931:: 921:: 909:: 894:, 843:pH 733:. 671:. 619:, 617:pH 615:, 441:nm 434:Da 381:NC 242:, 222:, 210:), 198:), 186:), 174:), 158:), 142:), 130:), 94:. 34:A 3731:. 3717:: 3690:. 3676:: 3649:. 3635:: 3608:. 3586:: 3559:. 3537:: 3529:: 3499:. 3477:: 3450:. 3426:: 3418:: 3391:. 3379:: 3356:. 3334:: 3307:. 3293:: 3285:: 3255:. 3233:: 3225:: 3198:. 3184:: 3157:. 3145:: 3137:: 3111:. 3087:: 3079:: 3052:. 3028:: 3022:8 3001:. 2987:: 2960:. 2948:: 2922:. 2898:: 2890:: 2884:2 2863:. 2841:: 2833:: 2825:: 2798:. 2774:: 2768:5 2747:. 2723:: 2717:6 2696:. 2676:: 2668:: 2645:. 2625:: 2617:: 2594:. 2582:: 2559:. 2545:: 2518:. 2498:: 2452:. 2428:: 2420:: 2393:. 2373:: 2365:: 2342:. 2320:: 2312:: 2285:. 2271:: 2244:. 2222:: 2195:. 2175:: 2167:: 2144:. 2130:: 2100:. 2076:: 2049:. 2039:2 2022:. 2010:: 1984:. 1972:: 1949:. 1925:: 1898:. 1876:: 1849:. 1827:: 1821:8 1692:( 1580:Å 1569:Å 529:( 387:( 379:( 260:. 206:( 194:( 182:( 166:( 150:( 138:( 51:( 20:)

Index

Type 3 secretion system

transmission electron microscope
Salmonella typhimurium
bacterial secretion systems
bacteria
secrete
effector proteins
virulence
colonisation
pathogenic
gram-negative bacteria
secretion systems
gram-negative bacteria
gene cassette
horizontally
Shigella
bacillary dysentery
Salmonella
typhoid fever
Escherichia coli
Gut flora
food poisoning
Vibrio
gastroenteritis
diarrhea
Burkholderia
glanders
Yersinia
plague

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.