Knowledge

Upper critical solution temperature

Source đź“ť

29: 638: 659:(LCST) or lower bound to a temperature range of partial miscibility. As shown in the diagram, for polymer solutions the LCST is higher than the UCST, so that there is a temperature interval of complete miscibility, with partial miscibility at both higher and lower temperatures. 587:
mixtures have a UCST of 19 Â°C (66 Â°F), so that these two substances are miscible in all proportions above 19 Â°C (66 Â°F) but not at lower temperatures. Examples at higher temperatures are the
629:
at the UCST is in general driven by unfavorable energetics; in particular, interactions between components favor a partially demixed state.
542: 137: 684:
By adding soluble impurities the upper critical solution temperature increases and lower critical solution temperature decreases.
592:-water system at 168 Â°C (334 Â°F) (at pressures high enough for liquid water to exist at that temperature), and the 693: 656: 80: 883: 807: 678: 307: 122: 85: 169: 1003: 646: 535: 292: 579:
to a temperature range of partial miscibility, or miscibility for certain compositions only. For example,
1051: 699: 322: 117: 112: 90: 800: 317: 146: 528: 70: 756: 999:"The effect of an impurity on the critical point of a binary liquid system as a surface phenomenon" 663: 614:
In the phase diagram of the mixture components, the UCST is the shared maximum of the concave down
285: 696: â€“ Critical temperature below which components of a mixture are miscible for all compositions 387: 382: 156: 611:) below the UCST at 300 Â°C. Above this temperature there is a single solid solution phase. 268: 743: 674: 482: 302: 297: 702: â€“ Collapse of a macromolecule from an expanded coil state to a collapsed globule state 1012: 920: 564: 151: 45: 603:
A solid state example is the palladium-hydrogen system which has a solid solution phase (H
8: 492: 60: 1016: 998: 924: 455: 438: 397: 221: 1028: 979: 936: 889: 879: 813: 803: 448: 412: 231: 226: 956:"Historical Perspective of Advances in the Science and Technology of Polymer Blends" 600:
system at 798 Â°C (1,468 Â°F) (a temperature where both metals are liquid).
55: 1020: 969: 928: 848: 844: 723: 626: 402: 372: 312: 127: 873: 794: 475: 417: 367: 194: 65: 832: 509: 362: 105: 1045: 1032: 983: 940: 893: 728: 407: 216: 211: 189: 817: 584: 499: 443: 392: 377: 201: 184: 974: 955: 719: 576: 514: 460: 248: 236: 28: 932: 852: 667: 622:(or coexistence) curves. The UCST is in general dependent on pressure. 357: 337: 179: 908: 1024: 332: 263: 253: 206: 50: 960: 774: 615: 568: 487: 465: 327: 907:
Ougizawa, Toshiaki; Inoue, Takashi; Kammer, Hans W. (1985-10-01).
662:
The UCST and LCST of polymer mixtures generally depend on polymer
641:
A plot of typical polymer solution phase behavior including a UCST
652: 637: 619: 589: 831:
Sanchez, I.C.; Lacombe, Robert H.; Stone, M.T. (November 1978).
580: 504: 833:"Statistical Thermodynamics of Polymer Solutions and Blends" 597: 593: 470: 258: 132: 906: 875:
Polymers: chemistry and physics of modern materials
830: 1043: 878:. Glasgow; New York: Blackie; Chapman and Hall. 16:Critical temperature of miscibility in a mixture 607:in Pd) in equilibrium with a hydride phase (PdH 772: 792: 536: 567:above which the components of a mixture are 793:Laidler, Keith J.; Meiser, John H. (1982). 632: 909:"UCST and LCST behavior in polymer blends" 720:"IUPAC Compendium of Chemical Terminology" 543: 529: 973: 824: 788: 786: 727: 138:Nitroxide-mediated radical polymerization 768: 766: 636: 953: 773:Atkins, P.W.; de Paula, J.; Wong, Man. 1044: 783: 677:model for the UCST of polymers is the 871: 763: 996: 776:Atkins' Physical Chemistry 8e (2006) 694:Lower critical solution temperature 657:lower critical solution temperature 557:upper critical solution temperature 13: 27: 14: 1063: 954:Robeson, Lloyd (April 30, 2014). 123:Controlled radical polymerization 1004:The Journal of Chemical Physics 990: 947: 900: 865: 712: 647:Temperature-responsive polymer 575:indicates that the UCST is an 1: 706: 679:Flory–Huggins solution theory 571:in all proportions. The word 86:Flory–Huggins solution theory 7: 687: 561:upper consolute temperature 152:Condensation polymerization 118:Free-radical polymerization 113:Chain-growth polymerization 10: 1068: 801:Benjamin/Cummings Pub. Co. 799:. Menlo Park, California: 644: 147:Step-growth polymerization 997:Rice, O. K. (June 1976). 729:10.1351/goldbook.UT07280 664:degree of polymerization 633:Polymer-solvent mixtures 872:Cowie, J. M. G (1991). 700:Coil–globule transition 157:Addition polymerization 91:Coil–globule transition 751:Cite journal requires 675:statistical mechanical 655:solutions also have a 642: 269:Self-healing hydrogels 32: 640: 483:Cookware and bakeware 435:Industrial production 303:X-ray crystallography 31: 975:10.3390/polym6051251 565:critical temperature 1017:1976JChPh..64.4362R 933:10.1021/ma00152a052 925:1985MaMol..18.2089O 853:10.1021/ma60066a017 456:Protective Coatings 71:Mark–Houwink theory 1052:Critical phenomena 796:Physical chemistry 643: 33: 1011:(11): 4362–4367. 919:(10): 2089–2092. 553: 552: 466:Consumer products 1059: 1037: 1036: 1025:10.1063/1.432105 994: 988: 987: 977: 968:(5): 1251–1265. 951: 945: 944: 904: 898: 897: 869: 863: 862: 860: 859: 845:ACS Publications 828: 822: 821: 790: 781: 780: 770: 761: 760: 754: 749: 747: 739: 737: 736: 731: 716: 627:phase separation 545: 538: 531: 449:Applied coatings 286:Characterization 19: 18: 1067: 1066: 1062: 1061: 1060: 1058: 1057: 1056: 1042: 1041: 1040: 995: 991: 952: 948: 905: 901: 886: 870: 866: 857: 855: 829: 825: 810: 791: 784: 771: 764: 752: 750: 741: 740: 734: 732: 718: 717: 713: 709: 690: 649: 635: 610: 606: 549: 520: 519: 431: 423: 422: 353: 345: 344: 288: 278: 277: 195:Polyisobutylene 176:Functional type 172: 162: 161: 108: 98: 97: 41: 22:Polymer science 17: 12: 11: 5: 1065: 1055: 1054: 1039: 1038: 989: 946: 913:Macromolecules 899: 884: 864: 837:Macromolecules 823: 808: 782: 762: 753:|journal= 710: 708: 705: 704: 703: 697: 689: 686: 668:polydispersity 645:Main article: 634: 631: 608: 604: 551: 550: 548: 547: 540: 533: 525: 522: 521: 518: 517: 512: 510:Plastic bottle 507: 502: 497: 496: 495: 493:Food Container 490: 480: 479: 478: 468: 463: 458: 453: 452: 451: 446: 436: 432: 429: 428: 425: 424: 421: 420: 415: 410: 405: 400: 395: 390: 385: 380: 375: 370: 365: 360: 354: 351: 350: 347: 346: 343: 342: 341: 340: 335: 325: 320: 315: 310: 305: 300: 295: 289: 284: 283: 280: 279: 276: 275: 274: 273: 272: 271: 256: 251: 246: 242: 241: 240: 239: 234: 229: 224: 217:Vinyl polymers 214: 209: 204: 199: 198: 197: 192: 187: 177: 173: 170:Classification 168: 167: 164: 163: 160: 159: 154: 149: 143: 142: 141: 140: 135: 130: 120: 115: 109: 104: 103: 100: 99: 96: 95: 94: 93: 88: 83: 78: 73: 66:Phase behavior 63: 58: 53: 48: 42: 39: 38: 35: 34: 24: 23: 15: 9: 6: 4: 3: 2: 1064: 1053: 1050: 1049: 1047: 1034: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 1005: 1000: 993: 985: 981: 976: 971: 967: 963: 962: 957: 950: 942: 938: 934: 930: 926: 922: 918: 914: 910: 903: 895: 891: 887: 885:9780216929807 881: 877: 876: 868: 854: 850: 847:: 1145–1156. 846: 842: 838: 834: 827: 819: 815: 811: 809:9780805356823 805: 802: 798: 797: 789: 787: 778: 777: 769: 767: 758: 745: 730: 725: 721: 715: 711: 701: 698: 695: 692: 691: 685: 682: 680: 676: 671: 669: 665: 660: 658: 654: 648: 639: 630: 628: 623: 621: 617: 612: 601: 599: 595: 591: 586: 582: 578: 574: 570: 566: 562: 558: 546: 541: 539: 534: 532: 527: 526: 524: 523: 516: 513: 511: 508: 506: 503: 501: 498: 494: 491: 489: 486: 485: 484: 481: 477: 474: 473: 472: 469: 467: 464: 462: 459: 457: 454: 450: 447: 445: 442: 441: 440: 437: 434: 433: 427: 426: 419: 416: 414: 411: 409: 406: 404: 401: 399: 396: 394: 391: 389: 386: 384: 381: 379: 376: 374: 371: 369: 366: 364: 361: 359: 356: 355: 349: 348: 339: 336: 334: 331: 330: 329: 326: 324: 321: 319: 316: 314: 311: 309: 306: 304: 301: 299: 296: 294: 291: 290: 287: 282: 281: 270: 267: 266: 265: 262: 261: 260: 257: 255: 252: 250: 247: 244: 243: 238: 235: 233: 230: 228: 225: 223: 220: 219: 218: 215: 213: 212:Polycarbonate 210: 208: 205: 203: 200: 196: 193: 191: 190:Polypropylene 188: 186: 183: 182: 181: 178: 175: 174: 171: 166: 165: 158: 155: 153: 150: 148: 145: 144: 139: 136: 134: 131: 129: 126: 125: 124: 121: 119: 116: 114: 111: 110: 107: 102: 101: 92: 89: 87: 84: 82: 79: 77: 74: 72: 69: 68: 67: 64: 62: 59: 57: 54: 52: 49: 47: 44: 43: 37: 36: 30: 26: 25: 21: 20: 1008: 1002: 992: 965: 959: 949: 916: 912: 902: 874: 867: 856:. Retrieved 840: 836: 826: 795: 775: 744:cite journal 733:. Retrieved 714: 683: 673:The seminal 672: 661: 650: 624: 613: 602: 585:nitrobenzene 572: 560: 556: 554: 500:Vinyl record 444:Blow molding 430:Applications 202:Polyurethane 185:Polyethylene 75: 46:Architecture 577:upper bound 515:Plastic bag 461:3D printing 249:Homopolymer 237:Polystyrene 61:Degradation 858:2022-01-27 735:2012-10-18 707:References 559:(UCST) or 476:Whitewalls 398:Staudinger 368:MacDiarmid 352:Scientists 338:Viscometry 180:Polyolefin 56:Morphology 40:Properties 1033:0021-9606 984:2073-4360 941:0024-9297 894:756466890 439:Extrusion 418:Braconnot 408:Baekeland 388:de Gennes 373:Shirakawa 333:Rheometry 264:Hydrogels 254:Copolymer 245:Structure 207:Polyester 106:Synthesis 51:Tacticity 1046:Category 961:Polymers 688:See also 616:spinodal 569:miscible 488:Bakelite 403:Goodyear 328:Rheology 1013:Bibcode 921:Bibcode 818:8112942 653:polymer 620:binodal 590:aniline 563:is the 413:Hayward 393:Ziegler 383:Edwards 1031:  982:  939:  892:  882:  816:  806:  581:hexane 505:Kevlar 363:Heeger 843:(6). 651:Some 573:upper 471:Tires 378:Natta 358:Flory 1029:ISSN 980:ISSN 937:ISSN 890:OCLC 880:ISBN 814:OCLC 804:ISBN 757:help 666:and 625:The 618:and 598:zinc 594:lead 555:The 298:FTIR 259:Gels 232:PVAc 133:RAFT 128:ATRP 81:LCST 76:UCST 1021:doi 970:doi 929:doi 849:doi 724:doi 323:DMA 318:TGA 313:NMR 308:DSC 293:GPC 227:PVA 222:PVC 1048:: 1027:. 1019:. 1009:64 1007:. 1001:. 978:. 964:. 958:. 935:. 927:. 917:18 915:. 911:. 888:. 841:11 839:. 835:. 812:. 785:^ 765:^ 748:: 746:}} 742:{{ 722:. 681:. 670:. 1035:. 1023:: 1015:: 986:. 972:: 966:6 943:. 931:: 923:: 896:. 861:. 851:: 820:. 779:. 759:) 755:( 738:. 726:: 609:n 605:2 596:- 583:- 544:e 537:t 530:v

Index

Polyacetylene
Architecture
Tacticity
Morphology
Degradation
Phase behavior
Mark–Houwink theory
UCST
LCST
Flory–Huggins solution theory
Coil–globule transition
Synthesis
Chain-growth polymerization
Free-radical polymerization
Controlled radical polymerization
ATRP
RAFT
Nitroxide-mediated radical polymerization
Step-growth polymerization
Condensation polymerization
Addition polymerization
Classification
Polyolefin
Polyethylene
Polypropylene
Polyisobutylene
Polyurethane
Polyester
Polycarbonate
Vinyl polymers

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑