Knowledge

Vacancy defect

Source đź“ť

1012: 1405: 20: 1417: 309:
between an atom inside the crystal and its nearest neighbor atoms. Once that atom is removed from the lattice site, it is put back on the surface of the crystal and some energy is retrieved because new bonds are established with other atoms on the surface. However, there is a net input of energy
318:
In most applications vacancy defects are irrelevant to the intended purpose of a material, as they are either too few or spaced throughout a multi-dimensional space in such a way that force or charge can move around the vacancy. In the case of more constrained structures like
165: 34:. Right circle points to a divacancy, i.e., sulfur atoms are missing both above and below the Mo layer. Other circles are single vacancies, i.e., sulfur atoms are missing only above or below the Mo layer. Scale bar: 1 nm. 261: 1021: 77:(ratio of vacant lattice sites to those containing atoms). At the melting point of some metals the ratio can be approximately 1:1000. This temperature dependence can be modelled by 362:
Hong, J.; Hu, Z.; Probert, M.; Li, K.; Lv, D.; Yang, X.; Gu, L.; Mao, N.; Feng, Q.; Xie, L.; Zhang, J.; Wu, D.; Zhang, Z.; Jin, C.; Ji, W.; Zhang, X.; Yuan, J.; Zhang, Z. (2015).
1282: 1277: 817: 1333: 561: 83: 1151: 1338: 1063: 1229: 521: 1328: 1320: 294:
It is the simplest point defect. In this system, an atom is missing from its regular atomic site. Vacancies are formed during
1381: 1359: 1374: 1224: 890: 755: 604: 1364: 1262: 958: 611: 1443: 1386: 1244: 1214: 1143: 219: 1421: 1096: 1369: 1292: 1166: 765: 1204: 1126: 1219: 1209: 514: 421:
Ehrhart, P. (1991) "Properties and interactions of atomic defects in metals and alloys", chapter 2, p. 88 in
1343: 991: 616: 594: 895: 649: 544: 1252: 549: 310:
because there are fewer bonds between surface atoms than between atoms in the interior of the crystal.
1267: 1196: 654: 644: 1409: 1133: 1029: 902: 865: 780: 659: 639: 507: 1257: 1101: 1046: 795: 760: 332: 63: 1011: 953: 770: 1310: 1106: 1068: 875: 827: 466: 69:
Vacancies occur naturally in all crystalline materials. At any given temperature, up to the
1034: 907: 743: 634: 440: 375: 206: 31: 8: 1051: 1039: 914: 880: 860: 299: 23: 444: 379: 323:
however, vacancies and other crystalline defects can significantly weaken the material.
1300: 1111: 1056: 599: 396: 363: 198: 1234: 1073: 1001: 981: 701: 571: 452: 401: 280: 1272: 1078: 996: 986: 785: 718: 689: 682: 494: 448: 391: 383: 160:{\displaystyle N_{\rm {v}}=N\exp \left({\frac {-Q_{\rm {v}}}{k_{\rm {B}}T}}\right)} 1161: 1156: 1121: 941: 840: 775: 738: 733: 584: 530: 337: 320: 59: 39: 971: 924: 919: 885: 855: 845: 804: 748: 672: 626: 342: 295: 1437: 1116: 929: 728: 74: 70: 822: 812: 706: 589: 405: 62:
sites. Crystals inherently possess imperfections, sometimes referred to as
47: 1305: 976: 850: 677: 306: 870: 556: 387: 288: 579: 27: 1176: 946: 694: 305:
The creation of a vacancy can be simply modeled by considering the
499: 1186: 51: 19: 364:"Exploring atomic defects in molybdenum disulphide monolayers" 1181: 16:
Crystallographic defect; an atom missing from a lattice site
55: 435:
Siegel, R. W. (1978). "Vacancy concentrations in metals".
1283:
Zeitschrift für Kristallographie – New Crystal Structures
298:
due to vibration of atoms, local rearrangement of atoms,
1278:
Zeitschrift für Kristallographie – Crystalline Materials
1171: 222: 86: 255: 159: 1435: 361: 256:{\displaystyle N={\frac {\rho N_{\rm {A}}}{M}}} 188:is the energy required for vacancy formation, 515: 1352: 522: 508: 467:"Defects And Disorder In Carbon Nanotubes" 213:is the concentration of atomic sites i.e. 395: 73:of the material, there is an equilibrium 18: 417: 415: 1436: 625: 434: 503: 1416: 756:Phase transformation crystallography 412: 1263:Journal of Chemical Crystallography 529: 313: 13: 307:energy required to break the bonds 241: 141: 127: 93: 14: 1455: 488: 423:Landolt-Börnstein, New Series III 1415: 1404: 1403: 1010: 1205:Bilbao Crystallographic Server 495:Crystalline Defects in Silicon 459: 428: 355: 179:is the vacancy concentration, 1: 348: 453:10.1016/0022-3115(78)90240-4 437:Journal of Nuclear Materials 7: 1253:Crystal Growth & Design 545:Timeline of crystallography 425:, Vol. 25, Springer, Berlin 326: 58:is missing from one of the 10: 1460: 1064:Nuclear magnetic resonance 1399: 1319: 1291: 1268:Journal of Crystal Growth 1243: 1195: 1142: 1089: 1020: 1008: 803: 794: 717: 570: 537: 26:of sulfur vacancies in a 1444:Crystallographic defects 1134:Single particle analysis 992:Hermann–Mauguin notation 302:and ionic bombardments. 64:crystallographic defects 1258:Crystallography Reviews 1102:Isomorphous replacement 896:Lomer–Cottrell junction 333:Crystallographic defect 771:Spinodal decomposition 257: 161: 35: 1311:Gregori Aminoff Prize 1107:Molecular replacement 368:Nature Communications 258: 162: 22: 617:Structure prediction 220: 207:absolute temperature 84: 32:molybdenum disulfide 881:Cottrell atmosphere 861:Partial dislocation 605:Restriction theorem 472:. Philip G. Collins 445:1978JNuM...69..117S 380:2015NatCo...6.6293H 300:plastic deformation 24:Electron microscopy 1301:Carl Hermann Medal 1112:Molecular dynamics 959:Defects in diamond 954:Stone–Wales defect 600:Reciprocal lattice 562:Biocrystallography 439:. 69–70: 117–146. 388:10.1038/ncomms7293 253: 199:Boltzmann constant 157: 36: 1431: 1430: 1395: 1394: 1002:Thermal ellipsoid 967: 966: 876:Frank–Read source 836: 835: 702:Aperiodic crystal 668: 667: 550:Crystallographers 281:Avogadro constant 251: 151: 1451: 1419: 1418: 1407: 1406: 1350: 1349: 1273:Kristallografija 1127:Gerchberg–Saxton 1022:Characterisation 1014: 997:Structure factor 801: 800: 786:Ostwald ripening 623: 622: 568: 567: 524: 517: 510: 501: 500: 482: 481: 479: 477: 471: 463: 457: 456: 432: 426: 419: 410: 409: 399: 359: 321:carbon nanotubes 314:Material physics 286: 278: 269: 262: 260: 259: 254: 252: 247: 246: 245: 244: 230: 212: 204: 196: 187: 178: 166: 164: 163: 158: 156: 152: 150: 146: 145: 144: 133: 132: 131: 130: 116: 98: 97: 96: 1459: 1458: 1454: 1453: 1452: 1450: 1449: 1448: 1434: 1433: 1432: 1427: 1391: 1348: 1315: 1287: 1239: 1191: 1162:CrystalExplorer 1138: 1122:Phase retrieval 1085: 1016: 1015: 1006: 963: 942:Schottky defect 841:Perfect crystal 832: 828:Abnormal growth 790: 776:Supersaturation 739:Miscibility gap 720: 713: 664: 621: 585:Bravais lattice 566: 533: 531:Crystallography 528: 491: 486: 485: 475: 473: 469: 465: 464: 460: 433: 429: 420: 413: 360: 356: 351: 338:Schottky defect 329: 316: 284: 277: 271: 267: 240: 239: 235: 231: 229: 221: 218: 217: 210: 202: 195: 189: 186: 180: 177: 171: 140: 139: 135: 134: 126: 125: 121: 117: 115: 111: 92: 91: 87: 85: 82: 81: 40:crystallography 17: 12: 11: 5: 1457: 1447: 1446: 1429: 1428: 1426: 1425: 1413: 1400: 1397: 1396: 1393: 1392: 1390: 1389: 1384: 1379: 1378: 1377: 1372: 1367: 1356: 1354: 1347: 1346: 1341: 1336: 1331: 1325: 1323: 1317: 1316: 1314: 1313: 1308: 1303: 1297: 1295: 1289: 1288: 1286: 1285: 1280: 1275: 1270: 1265: 1260: 1255: 1249: 1247: 1241: 1240: 1238: 1237: 1232: 1227: 1222: 1217: 1212: 1207: 1201: 1199: 1193: 1192: 1190: 1189: 1184: 1179: 1174: 1169: 1164: 1159: 1154: 1148: 1146: 1140: 1139: 1137: 1136: 1131: 1130: 1129: 1119: 1114: 1109: 1104: 1099: 1097:Direct methods 1093: 1091: 1087: 1086: 1084: 1083: 1082: 1081: 1076: 1066: 1061: 1060: 1059: 1054: 1044: 1043: 1042: 1037: 1026: 1024: 1018: 1017: 1009: 1007: 1005: 1004: 999: 994: 989: 984: 982:Ewald's sphere 979: 974: 968: 965: 964: 962: 961: 956: 951: 950: 949: 944: 934: 933: 932: 927: 925:Frenkel defect 922: 920:Bjerrum defect 912: 911: 910: 900: 899: 898: 893: 888: 886:Peierls stress 883: 878: 873: 868: 863: 858: 856:Burgers vector 848: 846:Stacking fault 843: 837: 834: 833: 831: 830: 825: 820: 815: 809: 807: 805:Grain boundary 798: 792: 791: 789: 788: 783: 778: 773: 768: 763: 758: 753: 752: 751: 749:Liquid crystal 746: 741: 736: 725: 723: 715: 714: 712: 711: 710: 709: 699: 698: 697: 687: 686: 685: 680: 669: 666: 665: 663: 662: 657: 652: 647: 642: 637: 631: 629: 620: 619: 614: 612:Periodic table 609: 608: 607: 602: 597: 592: 587: 576: 574: 565: 564: 559: 554: 553: 552: 541: 539: 535: 534: 527: 526: 519: 512: 504: 498: 497: 490: 489:External links 487: 484: 483: 458: 427: 411: 353: 352: 350: 347: 346: 345: 343:Frenkel defect 340: 335: 328: 325: 315: 312: 296:solidification 275: 264: 263: 250: 243: 238: 234: 228: 225: 193: 184: 175: 168: 167: 155: 149: 143: 138: 129: 124: 120: 114: 110: 107: 104: 101: 95: 90: 15: 9: 6: 4: 3: 2: 1456: 1445: 1442: 1441: 1439: 1424: 1423: 1414: 1412: 1411: 1402: 1401: 1398: 1388: 1385: 1383: 1380: 1376: 1373: 1371: 1368: 1366: 1363: 1362: 1361: 1358: 1357: 1355: 1351: 1345: 1342: 1340: 1337: 1335: 1332: 1330: 1327: 1326: 1324: 1322: 1318: 1312: 1309: 1307: 1304: 1302: 1299: 1298: 1296: 1294: 1290: 1284: 1281: 1279: 1276: 1274: 1271: 1269: 1266: 1264: 1261: 1259: 1256: 1254: 1251: 1250: 1248: 1246: 1242: 1236: 1233: 1231: 1228: 1226: 1223: 1221: 1218: 1216: 1213: 1211: 1208: 1206: 1203: 1202: 1200: 1198: 1194: 1188: 1185: 1183: 1180: 1178: 1175: 1173: 1170: 1168: 1165: 1163: 1160: 1158: 1155: 1153: 1150: 1149: 1147: 1145: 1141: 1135: 1132: 1128: 1125: 1124: 1123: 1120: 1118: 1117:Patterson map 1115: 1113: 1110: 1108: 1105: 1103: 1100: 1098: 1095: 1094: 1092: 1088: 1080: 1077: 1075: 1072: 1071: 1070: 1067: 1065: 1062: 1058: 1055: 1053: 1050: 1049: 1048: 1045: 1041: 1038: 1036: 1033: 1032: 1031: 1028: 1027: 1025: 1023: 1019: 1013: 1003: 1000: 998: 995: 993: 990: 988: 987:Friedel's law 985: 983: 980: 978: 975: 973: 970: 969: 960: 957: 955: 952: 948: 945: 943: 940: 939: 938: 935: 931: 930:Wigner effect 928: 926: 923: 921: 918: 917: 916: 915:Interstitials 913: 909: 906: 905: 904: 901: 897: 894: 892: 889: 887: 884: 882: 879: 877: 874: 872: 869: 867: 864: 862: 859: 857: 854: 853: 852: 849: 847: 844: 842: 839: 838: 829: 826: 824: 821: 819: 816: 814: 811: 810: 808: 806: 802: 799: 797: 793: 787: 784: 782: 779: 777: 774: 772: 769: 767: 764: 762: 761:Precipitation 759: 757: 754: 750: 747: 745: 742: 740: 737: 735: 732: 731: 730: 729:Phase diagram 727: 726: 724: 722: 716: 708: 705: 704: 703: 700: 696: 693: 692: 691: 688: 684: 681: 679: 676: 675: 674: 671: 670: 661: 658: 656: 653: 651: 648: 646: 643: 641: 638: 636: 633: 632: 630: 628: 624: 618: 615: 613: 610: 606: 603: 601: 598: 596: 593: 591: 588: 586: 583: 582: 581: 578: 577: 575: 573: 569: 563: 560: 558: 555: 551: 548: 547: 546: 543: 542: 540: 536: 532: 525: 520: 518: 513: 511: 506: 505: 502: 496: 493: 492: 468: 462: 454: 450: 446: 442: 438: 431: 424: 418: 416: 407: 403: 398: 393: 389: 385: 381: 377: 373: 369: 365: 358: 354: 344: 341: 339: 336: 334: 331: 330: 324: 322: 311: 308: 303: 301: 297: 292: 290: 282: 274: 248: 236: 232: 226: 223: 216: 215: 214: 208: 200: 192: 183: 174: 153: 147: 136: 122: 118: 112: 108: 105: 102: 99: 88: 80: 79: 78: 76: 75:concentration 72: 71:melting point 67: 65: 61: 57: 53: 49: 46:is a type of 45: 41: 33: 29: 25: 21: 1420: 1408: 1353:Associations 1321:Organisation 936: 813:Disclination 744:Polymorphism 707:Quasicrystal 650:Orthorhombic 590:Miller index 538:Key concepts 474:. Retrieved 461: 436: 430: 422: 371: 367: 357: 317: 304: 293: 272: 270:is density, 265: 190: 181: 172: 169: 68: 48:point defect 43: 37: 1306:Ewald Prize 1074:Diffraction 1052:Diffraction 1035:Diffraction 977:Bragg plane 972:Bragg's law 851:Dislocation 766:Segregation 678:Crystallite 595:Point group 1090:Algorithms 1079:Scattering 1057:Scattering 1040:Scattering 908:Slip bands 871:Cross slip 721:transition 655:Tetragonal 645:Monoclinic 557:Metallurgy 349:References 289:molar mass 1197:Databases 660:Triclinic 640:Hexagonal 580:Unit cell 572:Structure 233:ρ 119:− 109:⁡ 54:where an 28:monolayer 1438:Category 1410:Category 1245:Journals 1177:OctaDist 1172:JANA2020 1144:Software 1030:Electron 947:F-center 734:Eutectic 695:Fiveling 690:Twinning 683:Equiaxed 406:25695374 374:: 6293. 327:See also 1422:Commons 1370:Germany 1047:Neutron 937:Vacancy 796:Defects 781:GP-zone 627:Systems 476:8 April 441:Bibcode 397:4346634 376:Bibcode 205:is the 197:is the 60:lattice 52:crystal 44:vacancy 1365:France 1360:Europe 1293:Awards 823:Growth 673:Growth 404:  394:  283:, and 268:ρ 266:where 209:, and 170:where 1387:Japan 1334:IOBCr 1187:SHELX 1182:Olex2 1069:X-ray 719:Phase 635:Cubic 470:(PDF) 50:in a 1329:IUCr 1230:ICDD 1225:ICSD 1210:CCDC 1157:Coot 1152:CCP4 903:Slip 866:Kink 478:2020 402:PMID 287:the 279:the 56:atom 42:, a 1344:DMG 1339:RAS 1235:PDB 1220:COD 1215:CIF 1167:DSR 891:GND 818:CSL 449:doi 392:PMC 384:doi 106:exp 66:. 38:In 30:of 1440:: 1382:US 1375:UK 447:. 414:^ 400:. 390:. 382:. 370:. 366:. 291:. 201:, 523:e 516:t 509:v 480:. 455:. 451:: 443:: 408:. 386:: 378:: 372:6 285:M 276:A 273:N 249:M 242:A 237:N 227:= 224:N 211:N 203:T 194:B 191:k 185:v 182:Q 176:v 173:N 154:) 148:T 142:B 137:k 128:v 123:Q 113:( 103:N 100:= 94:v 89:N

Index


Electron microscopy
monolayer
molybdenum disulfide
crystallography
point defect
crystal
atom
lattice
crystallographic defects
melting point
concentration
Boltzmann constant
absolute temperature
Avogadro constant
molar mass
solidification
plastic deformation
energy required to break the bonds
carbon nanotubes
Crystallographic defect
Schottky defect
Frenkel defect
"Exploring atomic defects in molybdenum disulphide monolayers"
Bibcode
2015NatCo...6.6293H
doi
10.1038/ncomms7293
PMC
4346634

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑