Knowledge

Waste heat

Source đź“ť

37: 352: 265: 22: 2305: 2316: 1733: 197:, therefore a heat engine will always produce a surplus of low-temperature heat. This is commonly referred to as waste heat or "secondary heat", or "low-grade heat". This heat is useful for the majority of heating applications, however, it is sometimes not practical to transport heat energy over long distances, unlike electricity or fuel energy. The largest proportions of total waste heat are from 578:
estimates with different growth rates of anthropogenic heat that have been actualized recently show noticeable contributions to global warming, in the following centuries. For example, a 2% p.a. growth rate of waste heat resulted in a 3 degree increase as a lower limit for the year 2300. Meanwhile, this has been confirmed by more refined model calculations.
464:
system is used, also known as a Combined Heat and Power (CHP) system. Limitations to the use of by-product heat arise primarily from the engineering cost/efficiency challenges in effectively exploiting small temperature differences to generate other forms of energy. Applications utilizing waste heat
97:
Instead of being "wasted" by release into the ambient environment, sometimes waste heat (or cold) can be used by another process (such as using hot engine coolant to heat a vehicle), or a portion of heat that would otherwise be wasted can be reused in the same process if make-up heat is added to the
569:
created by anthropogenic greenhouse gases. The heat flux is not evenly distributed, with some regions higher than others, and significantly higher in certain urban areas. For example, global forcing from waste heat in 2005 was 0.028 W/m, but was +0.39 and +0.68 W/m for the continental United States
529:
defines it as "Heat released to the atmosphere as a result of human activities, often involving combustion of fuels. Sources include industrial plants, space heating and cooling, human metabolism, and vehicle exhausts. In cities this source typically contributes 15–50 W/m to the local heat balance,
577:
from waste heat is not normally calculated in state-of-the-art global climate simulations. Equilibrium climate experiments show statistically significant continental-scale surface warming (0.4–0.9 Â°C) produced by one 2100 AHF scenario, but not by current or 2040 estimates. Simple global-scale
530:
and several hundred W/m in the center of large cities in cold climates and industrial areas." In 2020, the overall anthropogenic annual energy release was 168,000 terawatt-hours; given the 5.1Ă—10 m surface area of Earth, this amounts to a global average anthropogenic heat release rate of 0.04 W/m.
138:
effect. The biggest point sources of waste heat originate from machines (such as electrical generators or industrial processes, such as steel or glass production) and heat loss through building envelopes. The burning of transport fuels is a major contribution to waste heat.
108:, which includes technologies both for short- and long-term retention of heat or cold, can create or improve the utility of waste heat (or cold). One example is waste heat from air conditioning machinery stored in a buffer tank to aid in night time heating. Another is 788:
One such promising alternative is radiative cooling, which is a ubiquitous process of losing surface heat through thermal radiation. Instead of releasing waste heat into ambient air as conventional cooling systems, radiative cooling passively discharges it into outer
112:(STES) at a foundry in Sweden. The heat is stored in the bedrock surrounding a cluster of heat exchanger equipped boreholes, and is used for space heating in an adjacent factory as needed, even months later. An example of using STES to use natural waste heat is the 261:, which allow power stations to maintain the low side of the temperature difference essential for conversion of heat differences to other forms of energy. Discarded or "waste" heat that is lost to the environment may instead be used to advantage. 2162: 737:
Although uptake may increase autonomously in the future, relying on air conditioning to deal with the risk is a potentially maladaptive solution, and it expels waste heat into the environment - thereby enhancing the urban heat island
684: 444:
instead of water. The benefit is that this process can reject heat at lower temperatures for the production of electricity than the regular water steam cycle. An example of use of the steam
1026:
Gunawan, A; Lin, CH; Buttry, DA; Mujica, V; Taylor, RA; Prasher, RS; Phelan, PE (2013). "Liquid thermoelectrics: review of recent and limited new data of thermogalvanic cell experiments".
704: 221:
systems are a source of waste heat by releasing waste heat into the outdoor ambient air whilst cooling indoor spaces. This expelling of waste heat from air conditioning can worsen the
642: 679: 257:
is defined as the ratio between the input and output energy. It is typically only 33% when disregarding usefulness of the heat output for building heat. The images show
509:
Waste heat can be forced to heat incoming fluids and objects before being highly heated. For instance, outgoing water can give its waste heat to incoming water in a
662: 2219: 942:
Fiala D, Lomas KJ, Stohrer M (November 1999). "A computer model of human thermoregulation for a wide range of environmental conditions: the passive system".
501:
systems, as these are operated at ambient temperatures and therefore even low-grade waste heat can be used without needing a heat pump at the producer side.
581:
A 2008 scientific paper showed that if anthropogenic heat emissions continue to rise at the current rate, they will become a source of warming as strong as
2155: 378:), so the heat is qualified as waste heat and rejected to the environment. Economically most convenient is the rejection of such heat to water from a 86:) than the original energy source. Sources of waste heat include all manner of human activities, natural systems, and all organisms, for example, 1402: 640:"Deliverable 10 - Sweden - Preliminary design of a seasonal heat storage for IGEIA – Integration of geothermal energy into industrial applications 1447:. 1st ed.: "Robert Döpel und sein Modell der globalen Erwärmung. Eine frühe Warnung - und die Aktualisierung." Universitätsverlag Ilmenau 2009, 411:
There are many different approaches to transfer thermal energy to electricity, and the technologies to do so have existed for several decades.
2140: 1225: 1140: 701: 313: 120:, Canada, which, by using a cluster of boreholes in bedrock for interseasonal heat storage, obtains 97 percent of its year-round heat from 1418:, "Ăśber die geophysikalische Schranke der industriellen Energieerzeugung." Wissenschaftl. Zeitschrift der Technischen Hochschule Ilmenau, 1987: 1388: 639: 1509:
Cowern, Nick E.B.; Ahn, Chihak (November 2008). "Thermal emissions and climate change: Cooler options for future energy technology".
316:
explains a data center is like a resistor and most of the energy it consumes is transformed into heat and requires cooling systems.
47:
from a dwelling interior with coolant, and transfer it to the dwelling exterior as waste. They emit additional heat in their use of
1116: 2249: 177:
In the majority of applications, energy is required in multiple forms. These energy forms typically include some combination of
1466: 1114:
Simone Buffa; et al. (2019), "5th generation district heating and cooling systems: A review of existing cases in Europe",
312:
For example, data centers use electronic components that consume electricity for computing, storage and networking. The French
1229: 2150: 1997: 1452: 394:
or air cooler to reject the waste heat into the atmosphere. In some cases it is possible to use waste heat, for instance in
2264: 418:
device, where a change in temperature across a semiconductor material creates a voltage through a phenomenon known as the
2007: 659: 2330: 2325: 1092: 1982: 1585: 725: 234: 305:
and other electronic components, represents a significant engineering challenge. This necessitates the use of fans,
2244: 2047: 2037: 1952: 1802: 1552: 1144: 526: 359: 109: 1296: 193:
running on a source of high-temperature heat. A heat engine can never have perfect efficiency, according to the
2381: 2145: 2022: 1977: 1069:
Quoilin, Sylvain; Broek, Martijn Van Den; Declaye, SĂ©bastien; Dewallef, Pierre; Lemort, Vincent (1 June 2013).
124:
on the garage roofs. Another STES application is storing winter cold underground, for summer air conditioning.
2042: 2002: 1967: 599: 594: 113: 1253:"Time scales and ratios of climate forcing due to thermal versus carbon dioxide emissions from fossil fuels" 2340: 2335: 2130: 2067: 2057: 1361: 711:, Effstock 2009 (11th International) - Thermal Energy Storage for Efficiency and Sustainability, Stockholm. 194: 148: 802: 751: 2254: 2224: 2077: 1972: 1962: 1957: 1807: 1625: 2371: 2108: 2082: 2072: 2062: 2032: 2012: 1842: 550:, or loss of evaporative cooling) that might contribute to urban heat islands are not considered to be 91: 2125: 2052: 2017: 1992: 538:
Anthropogenic heat is a small influence on rural temperatures, and becomes more significant in dense
449: 99: 1324: 497:
must be used to reach sufficient temperatures. These are an easy and cheap way to use waste heat in
2376: 619: 582: 269: 29: 2366: 2167: 1195: 1148: 917: 474: 272:. These transform chemical energy into 36–48% electricity and the remaining 52–64% to waste heat. 201:
and vehicle engines. The largest single sources are power stations and industrial plants such as
121: 87: 1444: 1427: 1423: 94:
generates high-temperature exhaust gases, and electronic components get warm when in operation.
2361: 1877: 1319: 429:, where a temperature difference gives rise to an electric current in an electrochemical cell. 105: 75: 752:"Colored passive daytime radiative cooling coatings based on dielectric and plasmonic spheres" 1677: 1657: 1396: 858: 498: 433: 250: 71: 2279: 2027: 1872: 1777: 1481: 1370: 1356: 1311: 1264: 1170: 1035: 998: 889: 824: 763: 669:, IDEA/CDEA District Energy/CHP 2011 Conference, Toronto, pp. 1–30, retrieved 21 April 2013 8: 2239: 1827: 1747: 1692: 1590: 1577: 1545: 1530: 1011: 986: 902: 877: 836: 775: 426: 254: 1485: 1374: 1315: 1268: 1039: 1002: 893: 828: 767: 36: 2309: 2284: 2229: 2135: 1924: 1894: 1610: 1514: 1337: 1221: 1051: 967: 840: 814: 779: 724:
Kovats, Sari; Brisley, Rachel (2021). Betts, R.A.; Howard, A.B.; Pearson, K.V. (eds.).
551: 302: 230: 90:
get hot, a refrigerator warms the room air, a building gets hot during peak hours, an
2188: 2118: 2113: 2098: 1889: 1857: 1852: 1832: 1772: 1697: 1448: 1419: 1055: 959: 844: 783: 609: 543: 222: 182: 154: 135: 493:. Depending on the temperature of the waste heat and the district heating system, a 2172: 2103: 1944: 1914: 1904: 1862: 1837: 1817: 1812: 1652: 1620: 1615: 1595: 1569: 1489: 1378: 1341: 1329: 1272: 1121: 1082: 1043: 1006: 971: 951: 897: 832: 771: 614: 490: 395: 351: 345: 337: 264: 218: 40: 25: 565:
are. In 2005, anthropogenic waste heat flux globally accounted for only 1% of the
2274: 2198: 1934: 1929: 1899: 1797: 1782: 1687: 1682: 1642: 1047: 955: 708: 688: 666: 646: 574: 390:. If sufficient cooling water is not available, the plant can be equipped with a 238: 226: 166: 162: 16:
Heat that is produced by a machine that uses energy, as a byproduct of doing work
1440: 1415: 21: 2386: 2320: 2193: 1867: 1847: 1757: 1717: 1605: 1538: 1162: 1126: 1087: 604: 562: 558: 510: 441: 419: 415: 363: 202: 198: 186: 2355: 2304: 2259: 1919: 1667: 478: 466: 445: 391: 355: 258: 74:. All such processes give off some waste heat as a fundamental result of the 1443:
and his Model of Global Warming. An Early Warning – and its Update." (2013)
2203: 1909: 1787: 1767: 1712: 1070: 987:"Thermal management of thermoelectric generators for waste energy recovery" 963: 878:"Thermal management of thermoelectric generators for waste energy recovery" 803:"Passive sub-ambient cooling: radiative cooling versus evaporative cooling" 573:
Although waste heat has been shown to have influence on regional climates,
461: 333: 290: 286: 282: 237:, the latter of which sends waste heat directly to outer space through the 225:
effect. Waste heat from air conditioning can be reduced through the use of
2234: 1884: 1722: 1637: 1600: 1494: 1383: 1333: 1277: 1252: 566: 514: 470: 329: 206: 190: 48: 702:"Aquifer Thermal Energy Cold Storage System at Richard Stockton College" 127:
On a biological scale, all organisms reject waste heat as part of their
2289: 1632: 539: 525:
Anthropogenic heat is heat generated by humans and human activity. The
325: 128: 2269: 1822: 1561: 1354: 1166: 494: 306: 131:, and will die if the ambient temperature is too high to allow this. 78:. Waste heat has lower utility (or in thermodynamics lexicon a lower 440:, is a very known approach, whereby an organic substance is used as 1792: 1752: 1672: 819: 341: 1519: 301:
Although small in terms of power, the disposal of waste heat from
1762: 117: 83: 63: 1732: 1297:"Integrating anthropogenic heat flux with global climate models" 1707: 1662: 1071:"Techno-economic survey of Organic Rankine Cycle (ORC) systems" 547: 375: 374:
Low temperature heat contains very little capacity to do work (
79: 67: 1702: 1565: 437: 387: 328:. In warm conditions, this heat exceeds a level required for 189:. Often, these additional forms of energy are produced by a 158: 1357:"Impacts of anthropogenic heat on regional climate patterns" 733:
The Third UK Climate Change Risk Assessment Technical Report
473:. In some cases, cooling can also be produced by the use of 51:
to power the devices that pass heat to and from the coolant.
1068: 801:
Aili, Ablimit; Yin, Xiaobo; Yang, Ronggui (February 2022).
383: 178: 59: 44: 1560: 735:. Prepared for the Climate Change Committee, London: 38. 379: 750:
Chen, Meijie; Pang, Dan; Yan, Hongjie (November 2022).
1025: 324:
Humans, like all animals, produce heat as a result of
557:
Anthropogenic heat is a much smaller contributor to
2220:Blue Ribbon Commission on America's Nuclear Future 1161: 941: 546:. Other human-caused effects (such as changes to 455: 2353: 984: 875: 726:"Health, Communities and the Built Environment" 134:Anthropogenic waste heat can contribute to the 1355:Block, A., K. Keuler, and E. Schaller (2004). 1294: 649:, pp. 38–56 and 72–76, retrieved 21 April 2013 1546: 1226:United States Environmental Protection Agency 723: 460:Waste of the by-product heat is reduced if a 229:building design and zero-energy methods like 1467:"Long-Term Global Heating from Energy Usage" 1401:: CS1 maint: multiple names: authors list ( 1113: 481:or CCHP (combined cooling, heat and power). 406: 800: 749: 1553: 1539: 1290: 1288: 179:heating, ventilation, and air conditioning 1518: 1508: 1493: 1382: 1323: 1276: 1125: 1086: 1010: 901: 818: 1464: 1196:"What is the Surface Area of the Earth?" 1117:Renewable and Sustainable Energy Reviews 1075:Renewable and Sustainable Energy Reviews 350: 263: 35: 20: 2250:High-level radioactive waste management 1285: 533: 477:for example, in this case it is called 336:animals, and is disposed of by various 276: 142: 32:for waste heat from industrial systems. 2354: 997:(published 1 September 2021): 117291. 888:(published 1 September 2021): 117291. 863:U.S. Energy Information Administration 414:An established approach is by using a 1534: 1250: 786:– via Elsevier Science Direct. 520: 2265:Sewage regulation and administration 1012:10.1016/j.applthermaleng.2021.117291 903:10.1016/j.applthermaleng.2021.117291 847:– via Elsevier Science Direct. 837:10.1016/j.applthermaleng.2021.117909 776:10.1016/j.applthermaleng.2022.119125 719: 717: 1171:"Energy Production and Consumption" 1169:; Rosado, Pablo (27 October 2022). 1120:, vol. 104, pp. 504–522, 1095:from the original on 3 October 2016 1028:Nanoscale Microscale Thermophys Eng 918:"New Technologies' Wasted Energies" 681:Integrating Solar & Heat Pumps. 484: 244: 212: 13: 1232:from the original on 20 April 2009 859:"Annual Electric Generator Report" 570:and western Europe, respectively. 14: 2398: 1391:from the original on 6 June 2011. 714: 425:A related approach is the use of 293:are major sources of waste heat. 235:passive daytime radiative cooling 2315: 2314: 2303: 2245:Extended producer responsibility 1731: 638:Andersson, O.; Hägg, M. (2008), 542:areas. It is one contributor to 1803:Mechanical biological treatment 1502: 1458: 1433: 1409: 1348: 1244: 1214: 1188: 1155: 1133: 1107: 1062: 1019: 978: 935: 910: 700:Paksoy, H.; Stiles, L. (2009), 660:"Drake Landing Solar Community" 527:American Meteorological Society 436:, offered by companies such as 360:Ratcliffe-on-Soar Power Station 309:, etc. to dispose of the heat. 110:seasonal thermal energy storage 1426:, Bd. 19 (1973, H.2), 37-52. ( 1222:"Heat Island Effect: Glossary" 869: 851: 794: 743: 694: 672: 652: 632: 504: 456:Cogeneration and trigeneration 296: 281:Industrial processes, such as 169:produce heat as a by-product. 1: 678:Wong B., Thornton J. (2013). 625: 600:Heat recovery steam generator 595:Cost of electricity by source 319: 114:Drake Landing Solar Community 66:, or other process that uses 1362:Geophysical Research Letters 1257:Geophysical Research Letters 1048:10.1080/15567265.2013.776149 985:Fernández-Yáñez, P. (2021). 956:10.1152/jappl.1999.87.5.1957 876:Fernández-Yáñez, P. (2021). 658:Wong, Bill (June 28, 2011), 195:second law of thermodynamics 149:Second law of thermodynamics 7: 2255:History of waste management 991:Applied Thermal Engineering 882:Applied Thermal Engineering 807:Applied Thermal Engineering 756:Applied Thermal Engineering 588: 513:before heating in homes or 369: 10: 2403: 1843:fluorescent lamp recycling 1127:10.1016/j.rser.2018.12.059 1088:10.1016/j.rser.2013.01.028 489:Waste heat can be used in 172: 146: 92:internal combustion engine 70:, as a byproduct of doing 30:use a regenerative process 2298: 2212: 2181: 2091: 1943: 1740: 1729: 1576: 1141:"Glossary of Meteorology" 450:Cyclone Waste Heat Engine 407:Conversion to electricity 100:heat recovery ventilation 2225:China's waste import ban 1465:Chaisson, E. J. (2008). 1251:Zhang, Xiaochun (2015). 691:Renewable Heat Workshop. 620:Waste heat recovery unit 475:absorption refrigerators 270:coal-fired power station 122:solar thermal collectors 88:incandescent light bulbs 1586:Agricultural wastewater 1295:Flanner, M. G. (2009). 401: 2310:Environment portal 1988:Bosnia and Herzegovina 1878:water recycling shower 366: 273: 106:Thermal energy storage 76:laws of thermodynamics 62:that is produced by a 52: 33: 2382:Atmospheric radiation 1678:Municipal solid waste 1658:Industrial wastewater 645:11 April 2020 at the 585:in the 21st century. 499:cold district heating 434:organic Rankine cycle 358:evaporating water at 354: 267: 251:electrical efficiency 39: 24: 1873:water heat recycling 1778:Garden waste dumping 1495:10.1029/2008eo280001 1384:10.1029/2004GL019852 1334:10.1029/2008GL036465 1278:10.1002/2015GL063514 1151:on 26 February 2009. 554:by this definition. 534:Environmental impact 427:thermogalvanic cells 277:Industrial processes 255:thermal power plants 143:Conversion of energy 2240:Eco-industrial park 1828:appliance recycling 1748:Anaerobic digestion 1693:Post-consumer waste 1591:Biodegradable waste 1486:2008EOSTr..89..253C 1375:2004GeoRL..3112211B 1316:2009GeoRL..36.2801F 1269:2015GeoRL..42.4548Z 1040:2013NMTE...17..304G 1003:2021AppTE.19617291F 894:2021AppTE.19617291F 829:2022AppTE.20217909A 768:2022AppTE.21619125C 231:evaporative cooling 129:metabolic processes 2285:Waste minimisation 2230:Cleaner production 1895:Reusable packaging 1808:Mechanical sorting 1611:Construction waste 1304:Geophys. Res. Lett 1202:. 11 February 2017 707:2014-01-12 at the 687:2013-10-15 at the 665:2016-03-04 at the 552:anthropogenic heat 544:urban heat islands 521:Anthropogenic heat 367: 274: 53: 34: 2372:Energy conversion 2349: 2348: 2280:Waste legislation 2189:Sanitation worker 2163:London Convention 2099:Bamako Convention 1890:Resource recovery 1858:textile recycling 1853:plastic recycling 1833:battery recycling 1773:Ecological design 1698:Radioactive waste 1453:978-3-939473-50-3 1263:(11): 4548–4555. 1175:Our World in Data 865:. 1 January 2018. 610:Thermal pollution 223:urban heat island 183:mechanical energy 155:converting energy 136:urban heat island 26:Thermal oxidizers 2394: 2318: 2317: 2308: 2307: 2173:OSPAR Convention 2104:Basel Convention 1915:Waste collection 1905:Sewage treatment 1863:timber recycling 1838:bottle recycling 1818:Reclaimed lumber 1813:Photodegradation 1735: 1653:Industrial waste 1621:Electronic waste 1616:Demolition waste 1596:Biomedical waste 1570:waste management 1555: 1548: 1541: 1532: 1531: 1525: 1524: 1522: 1506: 1500: 1499: 1497: 1471: 1462: 1456: 1437: 1431: 1413: 1407: 1406: 1400: 1392: 1386: 1352: 1346: 1345: 1327: 1301: 1292: 1283: 1282: 1280: 1248: 1242: 1241: 1239: 1237: 1218: 1212: 1211: 1209: 1207: 1192: 1186: 1185: 1183: 1181: 1159: 1153: 1152: 1147:. Archived from 1137: 1131: 1130: 1129: 1111: 1105: 1104: 1102: 1100: 1090: 1066: 1060: 1059: 1023: 1017: 1016: 1014: 982: 976: 975: 944:J. Appl. Physiol 939: 933: 932: 930: 928: 914: 908: 907: 905: 873: 867: 866: 855: 849: 848: 822: 798: 792: 791: 747: 741: 740: 730: 721: 712: 698: 692: 676: 670: 656: 650: 636: 615:Urban metabolism 563:greenhouse gases 491:district heating 485:District heating 396:district heating 340:methods such as 338:thermoregulation 245:Power generation 219:air conditioning 213:Air conditioning 102:in a building). 98:system (as with 41:Air conditioning 2402: 2401: 2397: 2396: 2395: 2393: 2392: 2391: 2377:Climate forcing 2352: 2351: 2350: 2345: 2321:Category: Waste 2302: 2294: 2275:Waste hierarchy 2208: 2199:Waste collector 2177: 2168:Oslo Convention 2087: 1939: 1935:Waste-to-energy 1930:Waste treatment 1900:Right to repair 1798:Landfill mining 1783:Illegal dumping 1736: 1727: 1688:Packaging waste 1683:Open defecation 1643:Hazardous waste 1572: 1559: 1529: 1528: 1507: 1503: 1480:(28): 253–260. 1469: 1463: 1459: 1438: 1434: 1414: 1410: 1394: 1393: 1353: 1349: 1325:10.1.1.689.5935 1299: 1293: 1286: 1249: 1245: 1235: 1233: 1220: 1219: 1215: 1205: 1203: 1194: 1193: 1189: 1179: 1177: 1163:Ritchie, Hannah 1160: 1156: 1139: 1138: 1134: 1112: 1108: 1098: 1096: 1067: 1063: 1024: 1020: 983: 979: 940: 936: 926: 924: 916: 915: 911: 874: 870: 857: 856: 852: 799: 795: 748: 744: 728: 722: 715: 709:Wayback Machine 699: 695: 689:Wayback Machine 677: 673: 667:Wayback Machine 657: 653: 647:Wayback Machine 637: 633: 628: 591: 575:climate forcing 536: 523: 507: 487: 458: 409: 404: 372: 322: 299: 279: 247: 239:infrared window 227:passive cooling 215: 175: 167:electric energy 163:mechanical work 151: 145: 17: 12: 11: 5: 2400: 2390: 2389: 2384: 2379: 2374: 2369: 2367:Thermodynamics 2364: 2347: 2346: 2344: 2343: 2338: 2333: 2328: 2323: 2312: 2299: 2296: 2295: 2293: 2292: 2287: 2282: 2277: 2272: 2267: 2262: 2257: 2252: 2247: 2242: 2237: 2232: 2227: 2222: 2216: 2214: 2210: 2209: 2207: 2206: 2201: 2196: 2194:Street sweeper 2191: 2185: 2183: 2179: 2178: 2176: 2175: 2170: 2165: 2160: 2159: 2158: 2153: 2148: 2143: 2138: 2133: 2128: 2123: 2122: 2121: 2106: 2101: 2095: 2093: 2089: 2088: 2086: 2085: 2080: 2078:United Kingdom 2075: 2070: 2065: 2060: 2055: 2050: 2045: 2040: 2035: 2030: 2025: 2020: 2015: 2010: 2005: 2000: 1995: 1990: 1985: 1980: 1975: 1970: 1965: 1960: 1955: 1949: 1947: 1941: 1940: 1938: 1937: 1932: 1927: 1922: 1917: 1912: 1907: 1902: 1897: 1892: 1887: 1882: 1881: 1880: 1875: 1870: 1868:tire recycling 1865: 1860: 1855: 1850: 1848:land recycling 1845: 1840: 1835: 1830: 1820: 1815: 1810: 1805: 1800: 1795: 1790: 1785: 1780: 1775: 1770: 1765: 1760: 1758:Biodegradation 1755: 1750: 1744: 1742: 1738: 1737: 1730: 1728: 1726: 1725: 1720: 1718:Surface runoff 1715: 1710: 1705: 1700: 1695: 1690: 1685: 1680: 1675: 1670: 1665: 1660: 1655: 1650: 1645: 1640: 1635: 1630: 1629: 1628: 1618: 1613: 1608: 1606:Chemical waste 1603: 1598: 1593: 1588: 1582: 1580: 1574: 1573: 1558: 1557: 1550: 1543: 1535: 1527: 1526: 1511:Cowern Science 1501: 1457: 1432: 1408: 1369:(12): L12211. 1347: 1284: 1243: 1213: 1200:Universe Today 1187: 1154: 1132: 1106: 1061: 1018: 977: 950:(5): 1957–72. 934: 909: 868: 850: 793: 742: 713: 693: 671: 651: 630: 629: 627: 624: 623: 622: 617: 612: 607: 605:Pinch analysis 602: 597: 590: 587: 559:global warming 535: 532: 522: 519: 511:heat exchanger 506: 503: 486: 483: 457: 454: 442:working medium 420:Seebeck effect 416:thermoelectric 408: 405: 403: 400: 371: 368: 364:United Kingdom 356:Cooling towers 321: 318: 298: 295: 278: 275: 259:cooling towers 246: 243: 214: 211: 203:oil refineries 199:power stations 187:electric power 174: 171: 144: 141: 43:units extract 15: 9: 6: 4: 3: 2: 2399: 2388: 2385: 2383: 2380: 2378: 2375: 2373: 2370: 2368: 2365: 2363: 2362:Heat transfer 2360: 2359: 2357: 2342: 2341:Organizations 2339: 2337: 2334: 2332: 2329: 2327: 2324: 2322: 2313: 2311: 2306: 2301: 2300: 2297: 2291: 2288: 2286: 2283: 2281: 2278: 2276: 2273: 2271: 2268: 2266: 2263: 2261: 2260:Landfill fire 2258: 2256: 2253: 2251: 2248: 2246: 2243: 2241: 2238: 2236: 2233: 2231: 2228: 2226: 2223: 2221: 2218: 2217: 2215: 2211: 2205: 2202: 2200: 2197: 2195: 2192: 2190: 2187: 2186: 2184: 2180: 2174: 2171: 2169: 2166: 2164: 2161: 2157: 2154: 2152: 2149: 2147: 2144: 2142: 2139: 2137: 2134: 2132: 2129: 2127: 2124: 2120: 2117: 2116: 2115: 2112: 2111: 2110: 2109:EU directives 2107: 2105: 2102: 2100: 2097: 2096: 2094: 2090: 2084: 2083:United States 2081: 2079: 2076: 2074: 2071: 2069: 2066: 2064: 2061: 2059: 2056: 2054: 2051: 2049: 2046: 2044: 2041: 2039: 2036: 2034: 2031: 2029: 2026: 2024: 2021: 2019: 2016: 2014: 2011: 2009: 2006: 2004: 2001: 1999: 1996: 1994: 1991: 1989: 1986: 1984: 1981: 1979: 1976: 1974: 1971: 1969: 1966: 1964: 1961: 1959: 1956: 1954: 1951: 1950: 1948: 1946: 1942: 1936: 1933: 1931: 1928: 1926: 1923: 1921: 1920:Waste sorting 1918: 1916: 1913: 1911: 1908: 1906: 1903: 1901: 1898: 1896: 1893: 1891: 1888: 1886: 1883: 1879: 1876: 1874: 1871: 1869: 1866: 1864: 1861: 1859: 1856: 1854: 1851: 1849: 1846: 1844: 1841: 1839: 1836: 1834: 1831: 1829: 1826: 1825: 1824: 1821: 1819: 1816: 1814: 1811: 1809: 1806: 1804: 1801: 1799: 1796: 1794: 1791: 1789: 1786: 1784: 1781: 1779: 1776: 1774: 1771: 1769: 1766: 1764: 1761: 1759: 1756: 1754: 1751: 1749: 1746: 1745: 1743: 1739: 1734: 1724: 1721: 1719: 1716: 1714: 1711: 1709: 1706: 1704: 1701: 1699: 1696: 1694: 1691: 1689: 1686: 1684: 1681: 1679: 1676: 1674: 1671: 1669: 1668:Marine debris 1666: 1664: 1661: 1659: 1656: 1654: 1651: 1649: 1646: 1644: 1641: 1639: 1636: 1634: 1631: 1627: 1624: 1623: 1622: 1619: 1617: 1614: 1612: 1609: 1607: 1604: 1602: 1599: 1597: 1594: 1592: 1589: 1587: 1584: 1583: 1581: 1579: 1575: 1571: 1567: 1563: 1556: 1551: 1549: 1544: 1542: 1537: 1536: 1533: 1521: 1516: 1512: 1505: 1496: 1491: 1487: 1483: 1479: 1475: 1468: 1461: 1454: 1450: 1446: 1442: 1436: 1429: 1425: 1421: 1417: 1412: 1404: 1398: 1390: 1385: 1380: 1376: 1372: 1368: 1364: 1363: 1358: 1351: 1343: 1339: 1335: 1331: 1326: 1321: 1317: 1313: 1310:(2): L02801. 1309: 1305: 1298: 1291: 1289: 1279: 1274: 1270: 1266: 1262: 1258: 1254: 1247: 1231: 1227: 1223: 1217: 1201: 1197: 1191: 1176: 1172: 1168: 1164: 1158: 1150: 1146: 1142: 1136: 1128: 1123: 1119: 1118: 1110: 1094: 1089: 1084: 1080: 1076: 1072: 1065: 1057: 1053: 1049: 1045: 1041: 1037: 1034:(4): 304–23. 1033: 1029: 1022: 1013: 1008: 1004: 1000: 996: 992: 988: 981: 973: 969: 965: 961: 957: 953: 949: 945: 938: 923: 919: 913: 904: 899: 895: 891: 887: 883: 879: 872: 864: 860: 854: 846: 842: 838: 834: 830: 826: 821: 816: 812: 808: 804: 797: 790: 785: 781: 777: 773: 769: 765: 761: 757: 753: 746: 739: 734: 727: 720: 718: 710: 706: 703: 697: 690: 686: 683: 682: 675: 668: 664: 661: 655: 648: 644: 641: 635: 631: 621: 618: 616: 613: 611: 608: 606: 603: 601: 598: 596: 593: 592: 586: 584: 583:GHG emissions 579: 576: 571: 568: 564: 560: 555: 553: 549: 545: 541: 531: 528: 518: 516: 512: 502: 500: 496: 492: 482: 480: 479:trigeneration 476: 472: 468: 467:swimming pool 463: 453: 451: 447: 446:Rankine cycle 443: 439: 435: 430: 428: 423: 421: 417: 412: 399: 397: 393: 392:cooling tower 389: 385: 381: 377: 365: 361: 357: 353: 349: 347: 343: 339: 335: 331: 327: 317: 315: 310: 308: 304: 294: 292: 288: 284: 271: 266: 262: 260: 256: 252: 242: 240: 236: 232: 228: 224: 220: 217:Conventional 210: 208: 204: 200: 196: 192: 188: 184: 180: 170: 168: 164: 160: 157:contained in 156: 150: 140: 137: 132: 130: 125: 123: 119: 115: 111: 107: 103: 101: 95: 93: 89: 85: 81: 77: 73: 69: 65: 61: 57: 50: 46: 42: 38: 31: 27: 23: 19: 2213:Other topics 2204:Waste picker 2131:incineration 1910:Urban mining 1788:Incineration 1768:Durable good 1713:Sharps waste 1673:Mining waste 1647: 1510: 1504: 1477: 1473: 1460: 1441:Robert Döpel 1439:H. Arnold, " 1435: 1411: 1397:cite journal 1366: 1360: 1350: 1307: 1303: 1260: 1256: 1246: 1234:. Retrieved 1216: 1204:. Retrieved 1199: 1190: 1178:. Retrieved 1174: 1157: 1149:the original 1135: 1115: 1109: 1097:. Retrieved 1078: 1074: 1064: 1031: 1027: 1021: 994: 990: 980: 947: 943: 937: 925:. Retrieved 921: 912: 885: 881: 871: 862: 853: 810: 806: 796: 787: 759: 755: 745: 736: 732: 696: 680: 674: 654: 634: 580: 572: 556: 537: 524: 515:power plants 508: 488: 469:heating and 462:cogeneration 459: 431: 424: 413: 410: 373: 334:warm-blooded 323: 311: 300: 291:glass making 287:steel making 283:oil refining 280: 248: 216: 176: 152: 133: 126: 104: 96: 55: 54: 18: 2235:Downcycling 2182:Occupations 2151:waste water 2048:Switzerland 2038:South Korea 2028:New Zealand 1953:Afghanistan 1925:Waste trade 1885:Repurposing 1723:Toxic waste 1703:Scrap metal 1638:Green waste 1601:Brown waste 1578:Major types 1081:: 168–186. 567:energy flux 505:Pre-heating 471:paper mills 330:homeostasis 297:Electronics 207:steelmaking 191:heat engine 49:electricity 2356:Categories 2290:Zero waste 2092:Agreements 2023:Kazakhstan 1978:Bangladesh 1763:Composting 1648:Heat waste 1633:Food waste 1626:by country 1167:Roser, Max 820:2107.04151 813:: 117909. 762:: 119125. 626:References 326:metabolism 320:Biological 303:microchips 147:See also: 82:or higher 56:Waste heat 2270:Upcycling 2136:landfills 2126:framework 2119:Recycling 2114:batteries 2043:Sri Lanka 2003:Hong Kong 1968:Australia 1945:Countries 1823:Recycling 1741:Processes 1562:Biosolids 1520:0811.0476 1424:0043-6917 1320:CiteSeerX 1056:120138941 922:CNRS News 845:235790365 784:251420566 495:heat pump 398:systems. 307:heatsinks 153:Machines 2331:Journals 2146:vehicles 2068:Thailand 2058:Tanzania 1793:Landfill 1753:Balefill 1416:R. Döpel 1389:Archived 1230:Archived 1228:. 2009. 1206:24 March 1180:24 March 1093:Archived 964:10562642 705:Archived 685:Archived 663:Archived 643:Archived 589:See also 465:include 370:Disposal 342:sweating 209:plants. 1998:Georgia 1973:Belgium 1963:Armenia 1958:Albania 1482:Bibcode 1371:Bibcode 1342:8371380 1312:Bibcode 1265:Bibcode 1236:6 April 1036:Bibcode 999:Bibcode 972:5751821 890:Bibcode 825:Bibcode 764:Bibcode 738:effect. 448:is the 346:panting 173:Sources 118:Alberta 84:entropy 64:machine 2319:  2073:Turkey 2063:Taiwan 2033:Russia 2013:Israel 1983:Brazil 1708:Sewage 1663:Litter 1568:, and 1451:  1445:online 1428:online 1422:  1340:  1322:  1054:  970:  962:  927:6 July 843:  789:space. 782:  548:albedo 376:Exergy 80:exergy 68:energy 2387:Waste 2336:Lists 2326:Index 2053:Syria 2018:Japan 2008:India 1993:Egypt 1566:waste 1515:arXiv 1470:(PDF) 1338:S2CID 1300:(PDF) 1099:7 May 1052:S2CID 968:S2CID 841:S2CID 815:arXiv 780:S2CID 729:(PDF) 561:than 540:urban 438:Ormat 388:river 159:fuels 2156:WEEE 2141:RoHS 1449:ISBN 1420:ISSN 1403:link 1238:2009 1208:2023 1182:2023 1101:2018 960:PMID 929:2018 432:The 402:Uses 384:lake 344:and 314:CNRS 249:The 233:and 205:and 185:and 72:work 60:heat 45:heat 28:can 1490:doi 1474:Eos 1379:doi 1330:doi 1273:doi 1145:AMS 1122:doi 1083:doi 1044:doi 1007:doi 995:196 952:doi 898:doi 886:196 833:doi 811:202 772:doi 760:216 386:or 380:sea 332:in 289:or 253:of 165:or 161:to 116:in 58:is 2358:: 1564:, 1513:. 1488:. 1478:89 1476:. 1472:. 1430:). 1399:}} 1395:{{ 1387:. 1377:. 1367:31 1365:. 1359:. 1336:. 1328:. 1318:. 1308:36 1306:. 1302:. 1287:^ 1271:. 1261:42 1259:. 1255:. 1224:. 1198:. 1173:. 1165:; 1143:. 1091:. 1079:22 1077:. 1073:. 1050:. 1042:. 1032:17 1030:. 1005:. 993:. 989:. 966:. 958:. 948:87 946:. 920:. 896:. 884:. 880:. 861:. 839:. 831:. 823:. 809:. 805:. 778:. 770:. 758:. 754:. 731:. 716:^ 517:. 452:. 422:. 382:, 362:, 348:. 285:, 268:A 241:. 181:, 1554:e 1547:t 1540:v 1523:. 1517:: 1498:. 1492:: 1484:: 1455:. 1405:) 1381:: 1373:: 1344:. 1332:: 1314:: 1281:. 1275:: 1267:: 1240:. 1210:. 1184:. 1124:: 1103:. 1085:: 1058:. 1046:: 1038:: 1015:. 1009:: 1001:: 974:. 954:: 931:. 906:. 900:: 892:: 835:: 827:: 817:: 774:: 766::

Index


Thermal oxidizers
use a regenerative process

Air conditioning
heat
electricity
heat
machine
energy
work
laws of thermodynamics
exergy
entropy
incandescent light bulbs
internal combustion engine
heat recovery ventilation
Thermal energy storage
seasonal thermal energy storage
Drake Landing Solar Community
Alberta
solar thermal collectors
metabolic processes
urban heat island
Second law of thermodynamics
converting energy
fuels
mechanical work
electric energy
heating, ventilation, and air conditioning

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑