Knowledge

Weyl group

Source đź“ť

693: 1613: 35: 3313:, etc.). For each of these ways of defining Weyl groups, it is a (usually nontrivial) theorem that it is a Weyl group in the sense of the definition at the top of this article, namely the Weyl group of some root system associated with the object. A concrete realization of such a Weyl group usually depends on a choice – e.g. of 1949:
The figure illustrates the case of the A2 root system. The "hyperplanes" (in this case, one dimensional) orthogonal to the roots are indicated by dashed lines. The six 60-degree sectors are the Weyl chambers and the shaded region is the fundamental Weyl chamber associated to the indicated base.
5054: 934: 3562: 3734: 3033:
The preceding claim is not hard to verify, if we simply remember what the Dynkin diagram tells us about the angle between each pair of roots. If, for example, there is no bond between the two vertices, then
3301:
Above, the Weyl group was defined as a subgroup of the isometry group of a root system. There are also various definitions of Weyl groups specific to various group-theoretic and geometric contexts (
1185:
root system, for example, the hyperplanes perpendicular to the roots are just lines, and the Weyl group is the symmetry group of an equilateral triangle, as indicated in the figure. As a group,
5665: 2259: 3228:
they are unconnected, connected by a simple edge, connected by a double edge, or connected by a triple edge. We have already noted these relations in the bullet points above, but to say that
2299: 1924: 3027: 2923: 2819: 2715: 1660: 2457: 4770: 1401: 5112: 4805:. Thus algebraic properties of the Weyl group correspond to general topological properties of manifolds. For instance, Poincaré duality gives a pairing between cells in dimension 4457: 1881: 1483: 1348: 3165:
Weyl groups are examples of finite reflection groups, as they are generated by reflections; the abstract groups (not considered as subgroups of a linear group) are accordingly
4064: 1855: 795: 970: 4821:
is the dimension of a manifold): the bottom (0) dimensional cell corresponds to the identity element of the Weyl group, and the dual top-dimensional cell corresponds to the
4540: 1689: 4970: 4091: 3938: 2632: 2578: 2172: 1783: 1736: 1113: 1086: 822: 5242: 2659: 2605: 2064: 4269: 4186: 3844: 3115: 3135: 3092: 3052: 2971: 2867: 2763: 2551: 2502: 2411: 2367: 2327: 2212: 2192: 2125: 1709: 842: 4223: 3883: 3155: 3072: 2347: 2015: 1817: 4893: 4289: 3994: 3962: 2391: 2145: 1944: 1570: 1428: 1293: 1243: 1183: 1133: 1030: 745: 721: 4120: 3639: 3464: 1059: 1596: 4140: 4038: 4018: 3798: 3778: 3758: 3610: 3590: 3435: 3415: 3391: 3367: 3347: 3270: 3246: 2946: 2842: 2738: 2526: 2477: 2084: 2035: 1989: 1756: 1543: 1523: 1503: 1448: 1313: 1263: 1223: 1203: 1153: 1010: 990: 769: 4978: 5171:
is connected and either compact, or an affine algebraic group. The definition is simpler for a semisimple (or more generally reductive) Lie group over an
850: 4801:
of the group is related geometrically to the cohomology of the manifold (rather, of the real and complex forms of the group), which is constrained by
452: 3074:
are orthogonal, from which it follows easily that the corresponding reflections commute. More generally, the number of bonds determines the angle
3289:
of a Weyl group element is the length of the shortest word representing that element in terms of these standard generators. There is a unique
1960:: The Weyl group acts freely and transitively on the Weyl chambers. Thus, the order of the Weyl group is equal to the number of Weyl chambers. 500: 3472: 3647: 1205:
is isomorphic to the permutation group on three elements, which we may think of as the vertices of the triangle. Note that in this case,
505: 495: 490: 4303:
as the reflection group generated by reflections in the roots – the specific realization of the root system depending on a choice of
5138: 5128: 4304: 681: 310: 1946:, they also preserve the set of hyperplanes perpendicular to the roots. Thus, each Weyl group element permutes the Weyl chambers. 4895:; thus the symmetric group behaves as though it were a linear group over "the field with one element". This is formalized by the 574: 457: 5114:); for simple Lie groups it has order 1, 2, or 4. The 0th and 2nd group cohomology are also closely related to the normalizer. 5858: 5832: 5749: 5729: 5701: 5522: 5487: 5429: 5382: 605: 5586: 4822: 3290: 2221: 5882:
Yokonuma, Takeo (1965), "On the second cohomology groups (Schur-multipliers) of infinite discrete reflection groups",
5973: 5795: 2264: 1889: 4616: 2976: 2872: 2768: 2664: 1619: 467: 2416: 3997: 3285: 5928: 5514: 5460: 462: 442: 4727: 1353: 407: 315: 5074: 4389: 5923: 5455: 4142:
has the form of reflection. With a bit more effort, one can show that these reflections generate all of
1860: 1453: 1318: 5172: 3170: 1785:'s. The complement of the set of hyperplanes is disconnected, and each connected component is called a 1738:
denotes the reflection about the hyperplane and that the Weyl group is the group of transformations of
447: 5870:(1984), "Absence of crystallographic groups of reflections in Lobachevski spaces of large dimension", 4043: 1822: 774: 943: 4496: 1668: 646:
of that root system. Specifically, it is the subgroup which is generated by reflections through the
5918: 5556: 4924: 1607: 598: 82: 5957:
Jenn software for visualizing the Cayley graphs of finite Coxeter groups on up to four generators
4930: 4069: 3891: 3174: 2610: 2556: 2150: 1761: 1714: 1091: 1064: 800: 654: 5450: 5205: 4853:!, and the number of elements of the general linear group over a finite field is related to the 2637: 2583: 2040: 5551: 4896: 4840: 4228: 4145: 677: 402: 365: 333: 320: 4651:. In general this is not always the case – the quotient does not always split, the normalizer 3806: 3097: 5978: 5822: 4899:, which considers Weyl groups to be simple algebraic groups over the field with one element. 3120: 3077: 3037: 2396: 2352: 2312: 2197: 2177: 2110: 1694: 827: 434: 102: 4191: 3853: 3140: 3057: 2332: 1994: 1796: 177: 167: 157: 147: 4862: 4719: 4679: 4620: 4274: 3967: 3947: 3166: 2376: 2130: 1929: 1548: 1406: 1271: 1228: 1161: 1118: 1015: 730: 699: 669: 662: 62: 52: 5903: 5842: 5814: 5787: 5759: 5711: 5532: 5497: 5439: 5411: 4096: 3615: 3440: 2504:
are the corresponding vertices in the Dynkin diagram. Then we have the following results:
1035: 8: 5983: 5392: 4471: 1575: 591: 579: 420: 250: 4802: 4562: 2951: 2847: 2743: 2531: 2482: 5569: 5424:, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, 5049:{\displaystyle \operatorname {Out} (N)\cong H^{1}(W;T)\rtimes \operatorname {Out} (G).} 4656: 4644: 4125: 4023: 4003: 3783: 3763: 3743: 3595: 3575: 3420: 3400: 3376: 3352: 3332: 3255: 3231: 2931: 2827: 2723: 2511: 2462: 2069: 2020: 1974: 1741: 1528: 1508: 1488: 1433: 1298: 1248: 1208: 1188: 1138: 995: 975: 754: 351: 341: 4647:
of the torus and the Weyl group, and the Weyl group can be expressed as a subgroup of
5937: 5854: 5828: 5745: 5725: 5697: 5518: 5483: 5446: 5425: 5378: 5123: 3314: 415: 378: 5504: 3296: 530: 268: 5899: 5891: 5838: 5810: 5783: 5775: 5755: 5707: 5676: 5580: 5561: 5539: 5528: 5493: 5435: 5407: 4912: 4623:, but with any non-zero numbers in place of the '1's), and whose Weyl group is the 550: 230: 222: 214: 206: 198: 131: 112: 72: 5940: 5393:"Automorphisms of Normalizers of Maximal Tori and First Cohomology of Weyl Groups" 3094:
between the roots. The product of the two reflections is then a rotation by angle
1225:
is not the full symmetry group of the root system; a 60-degree rotation preserves
5796:"On the second cohomology groups (Schur-multipliers) of finite reflection groups" 5739: 5719: 5508: 5477: 5419: 5372: 5180: 4849:
and Weyl groups – for instance, the number of elements of the symmetric group is
4846: 4697: 4624: 3310: 3280: 929:{\displaystyle s_{\alpha }(v)=v-2{\frac {(v,\alpha )}{(\alpha ,\alpha )}}\alpha } 535: 288: 273: 44: 5688: 5779: 5680: 5064: 4700: 4689: 3225: 2370: 643: 555: 373: 278: 540: 5967: 5867: 5143: 5133: 4798: 4490: 3370: 3318: 263: 92: 1691:
is a root system, we may consider the hyperplane perpendicular to each root
4791: 4776: 4581:, but the resulting groups are all isomorphic (by an inner automorphism of 3276: 631: 560: 545: 346: 328: 258: 692: 5766:
Howlett, Robert B. (1988), "On the Schur Multipliers of Coxeter Groups",
5377:, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, 5374:
Lie Groups, Lie Algebras, and Representations: An Elementary Introduction
4854: 4357: 3885:, at which point one has an alternative description of the Weyl group as 3302: 1789:. If we have fixed a particular set Δ of simple roots, we may define the 748: 673: 635: 623: 619: 386: 302: 26: 4604:
is isomorphic to the Weyl group of its Lie algebra, as discussed above.
1350:
whose entries sum to zero. The roots consist of the vectors of the form
5573: 4330: 3557:{\displaystyle N(T)=\{x\in K|xtx^{-1}\in T,\,{\text{for all }}t\in T\}} 3157:, as the reader may verify, from which the above claim follows easily. 1612: 650: 647: 525: 283: 5853:, Progress in Mathematics, vol. 140 (2nd ed.), Birkhaeuser, 4577:). Note that the specific quotient set depends on a choice of maximal 3173:. Being a Coxeter group means that a Weyl group has a special kind of 661:
finite reflection groups are Weyl groups. Abstractly, Weyl groups are
5945: 5895: 4311: 3306: 22: 5565: 3224:
make an angle of 90, 120, 135, or 150 degrees, i.e., whether in the
3209:)=1. The generators are the reflections given by simple roots, and 1485:. The reflection associated to such a root is the transformation of 5955: 4834: 3729:{\displaystyle Z(T)=\{x\in K|xtx^{-1}=t\,{\text{for all }}t\in T\}} 639: 3324: 3297:
Weyl groups in algebraic, group-theoretic, and geometric settings
482: 5583:(1935), "The complete enumeration of finite groups of the form 4299:
For a complex semisimple Lie algebra, the Weyl group is simply
1616:
The shaded region is the fundamental Weyl chamber for the base
4667:
and the Weyl group cannot always be realized as a subgroup of
4578: 824:
denote the reflection about the hyperplane perpendicular to
723:
root system is the symmetry group of an equilateral triangle
34: 5129:
Semisimple Lie algebra#Cartan subalgebras and root systems
5724:, Graduate texts in mathematics, vol. 99, Springer, 4639:
splits (via the permutation matrices), so the normalizer
4615:
of invertible diagonal matrices, whose normalizer is the
3293:, which is opposite to the identity in the Bruhat order. 5744:, Research Notes in Mathematics, vol. 54, Pitman, 2661:
each have order two, this is equivalent to saying that
2218:
That is to say, the group generated by the reflections
5935: 2261:
is the same as the group generated by the reflections
2147:, then the Weyl group is generated by the reflections 5589: 5257: 5208: 5167:
Different conditions are sufficient – most simply if
5077: 4981: 4933: 4865: 4730: 4499: 4392: 4277: 4231: 4194: 4148: 4128: 4099: 4072: 4046: 4026: 4006: 3970: 3950: 3894: 3856: 3809: 3786: 3766: 3746: 3650: 3618: 3598: 3578: 3475: 3443: 3423: 3403: 3379: 3355: 3335: 3258: 3248:
is a Coxeter group, we are saying that those are the
3234: 3143: 3123: 3100: 3080: 3060: 3040: 2979: 2954: 2934: 2875: 2850: 2830: 2771: 2746: 2726: 2667: 2640: 2613: 2586: 2559: 2534: 2514: 2485: 2465: 2419: 2399: 2379: 2355: 2335: 2315: 2267: 2224: 2200: 2180: 2153: 2133: 2113: 2072: 2043: 2023: 1997: 1977: 1953:
A basic general theorem about Weyl chambers is this:
1932: 1892: 1863: 1825: 1799: 1764: 1744: 1717: 1697: 1671: 1622: 1578: 1551: 1531: 1511: 1491: 1456: 1436: 1409: 1356: 1321: 1301: 1274: 1251: 1231: 1211: 1191: 1164: 1141: 1121: 1094: 1067: 1038: 1018: 998: 978: 946: 853: 830: 803: 777: 757: 733: 702: 5542:(1934), "Discrete groups generated by reflections", 5390: 5355: 5068: 5063:) are essentially the diagram automorphisms of the 4271:is isomorphic to the Weyl group of the root system 5659: 5236: 5106: 5048: 4964: 4887: 4764: 4534: 4451: 4283: 4263: 4217: 4180: 4134: 4114: 4085: 4058: 4032: 4012: 3988: 3956: 3932: 3877: 3838: 3792: 3772: 3752: 3728: 3633: 3604: 3584: 3556: 3458: 3429: 3409: 3385: 3361: 3341: 3264: 3240: 3149: 3129: 3109: 3086: 3066: 3046: 3021: 2965: 2940: 2917: 2861: 2836: 2813: 2757: 2732: 2709: 2653: 2626: 2599: 2572: 2545: 2520: 2496: 2471: 2451: 2405: 2385: 2361: 2341: 2321: 2293: 2253: 2206: 2186: 2166: 2139: 2119: 2078: 2058: 2029: 2009: 1983: 1938: 1918: 1875: 1849: 1811: 1777: 1750: 1730: 1703: 1683: 1654: 1590: 1564: 1537: 1517: 1497: 1477: 1442: 1422: 1395: 1342: 1307: 1287: 1257: 1237: 1217: 1197: 1177: 1147: 1127: 1107: 1080: 1053: 1024: 1004: 984: 964: 928: 836: 816: 789: 763: 739: 715: 5660:{\displaystyle r_{i}^{2}=(r_{i}r_{j})^{k_{ij}}=1} 4188:. Thus, in the end, the Weyl group as defined as 2254:{\displaystyle s_{\alpha },\,\alpha \in \Delta ,} 5965: 5391:Hämmerli, J.-F.; Matthey, M.; Suter, U. (2004), 4828: 453:Representation theory of semisimple Lie algebras 3325:The Weyl group of a connected compact Lie group 4907:For a non-abelian connected compact Lie group 3184:is of order two, and the relations other than 3169:, which allows them to be classified by their 2294:{\displaystyle s_{\alpha },\,\alpha \in \Phi } 1919:{\displaystyle s_{\alpha },\,\alpha \in \Phi } 1545:th entries of each vector. The Weyl group for 5793: 5503: 4775:which gives rise to the decomposition of the 4329:that torus is defined as the quotient of the 4317:satisfying certain conditions, given a torus 3022:{\displaystyle (s_{\alpha }s_{\beta })^{6}=1} 2918:{\displaystyle (s_{\alpha }s_{\beta })^{4}=1} 2814:{\displaystyle (s_{\alpha }s_{\beta })^{3}=1} 2710:{\displaystyle (s_{\alpha }s_{\beta })^{2}=1} 1088:'s. By the definition of a root system, each 599: 5445: 5314: 5202:– that is how it is defined – and the group 5071:and is a finite elementary abelian 2-group ( 5067:, while the group cohomology is computed in 4325:(which need not be maximal), the Weyl group 3723: 3666: 3551: 3491: 3216:is 2, 3, 4, or 6 depending on whether roots 2446: 2420: 1649: 1623: 5717: 5690:The Geometry and Topology of Coxeter Groups 5324: 5322: 2100:A key result about the Weyl group is this: 1655:{\displaystyle \{\alpha _{1},\alpha _{2}\}} 5718:Grove, Larry C.; Benson, Clark T. (1985), 5310: 5308: 4607:For example, for the general linear group 2452:{\displaystyle \{s_{\alpha },s_{\beta }\}} 2090: 2037:contains exactly one point in the closure 1608:Coxeter group § Affine Coxeter groups 687: 606: 592: 491:Particle physics and representation theory 33: 16:Subgroup of a root system's isometry group 5555: 5479:Lie Groups and Lie Algebras: Chapters 4-6 5417: 5263: 5059:The outer automorphisms of the group Out( 3708: 3536: 3349:be a connected compact Lie group and let 2281: 2238: 1906: 1459: 1383: 1324: 5881: 5475: 5319: 5139:Root system of a semi-simple Lie algebra 4845:There are a number of analogies between 1611: 1032:is the subgroup of the orthogonal group 691: 5866: 5765: 5579: 5538: 5305: 4919:with coefficients in the maximal torus 4673: 665:, and are important examples of these. 458:Representations of classical Lie groups 5966: 5827:, CMS Books in Mathematics, Springer, 5824:Reflection Groups and Invariant Theory 5737: 5351: 5349: 4765:{\displaystyle G=\bigcup _{w\in W}BwB} 2413:tells us something about how the pair 5936: 5848: 5686: 5482:, Elements of Mathematics, Springer, 4923:used to define it, is related to the 4585:), since maximal tori are conjugate. 3780:(relative to the given maximal torus 3160: 1793:associated to Δ as the set of points 1396:{\displaystyle e_{i}-e_{j},\,i\neq j} 5820: 5421:Reflection Groups and Coxeter Groups 5370: 5340: 5328: 5299: 5287: 5275: 5244:means "with respect to this action". 5107:{\displaystyle (\mathbf {Z} /2)^{k}} 4452:{\displaystyle W(T,G):=N(T)/Z(T).\ } 4294: 682:root system of that group or algebra 311:Lie group–Lie algebra correspondence 5794:Ihara, S.; Yokonuma, Takeo (1965), 5346: 4493:(so it equals its own centralizer: 3283:in terms of this presentation: the 13: 5851:Lie Groups: Beyond an Introduction 5468: 5356:Hämmerli, Matthey & Suter 2004 5069:Hämmerli, Matthey & Suter 2004 4823:longest element of a Coxeter group 4278: 4053: 3951: 3944:Now, one can define a root system 3291:longest element of a Coxeter group 2400: 2380: 2356: 2288: 2245: 2201: 2134: 2114: 1933: 1913: 1876:{\displaystyle \alpha \in \Delta } 1870: 1672: 1478:{\displaystyle \mathbb {R} ^{n+1}} 1343:{\displaystyle \mathbb {R} ^{n+1}} 1232: 1122: 1019: 784: 734: 14: 5995: 5911: 5884:J. Fac. Sci. Univ. Tokyo, Sect. 1 5803:J. Fac. Sci. Univ. Tokyo, Sect. 1 2928:If there are three bonds between 2095: 1572:is then the permutation group on 5179:Weyl group can be defined for a 5082: 4627:. In this case the quotient map 4617:generalized permutation matrices 4611:a maximal torus is the subgroup 4059:{\displaystyle \alpha \in \Phi } 1850:{\displaystyle (\alpha ,v)>0} 1601: 790:{\displaystyle \alpha \in \Phi } 680:, etc. is the Weyl group of the 5510:Combinatorics of Coxeter Groups 4066:, one can construct an element 3800:) is then defined initially as 2824:If there are two bonds between 2459:behaves. Specifically, suppose 1315:is the space of all vectors in 965:{\displaystyle (\cdot ,\cdot )} 844:, which is given explicitly as 653:to the roots, and as such is a 5696:, Princeton University Press, 5632: 5608: 5406:, Heldermann Verlag: 583–617, 5334: 5293: 5281: 5269: 5231: 5219: 5189: 5161: 5095: 5078: 5040: 5034: 5022: 5010: 4994: 4988: 4956: 4950: 4873: 4866: 4600:torus, then the Weyl group of 4592:is compact and connected, and 4542:) then the resulting quotient 4535:{\displaystyle Z(T_{0})=T_{0}} 4516: 4503: 4440: 4434: 4423: 4417: 4408: 4396: 4258: 4252: 4241: 4235: 4204: 4198: 4175: 4169: 4158: 4152: 4109: 4103: 3983: 3971: 3927: 3921: 3910: 3904: 3866: 3860: 3825: 3819: 3679: 3660: 3654: 3628: 3622: 3504: 3485: 3479: 3453: 3447: 3004: 2980: 2900: 2876: 2796: 2772: 2692: 2668: 2050: 1964:A related result is this one: 1838: 1826: 1684:{\displaystyle \Phi \subset V} 1505:obtained by interchanging the 1450:th standard basis element for 1048: 1042: 959: 947: 917: 905: 900: 888: 870: 864: 622:, in particular the theory of 506:Galilean group representations 501:PoincarĂ© group representations 1: 5515:Graduate Texts in Mathematics 5418:Humphreys, James E. (1992) , 5363: 4902: 4829:Analogy with algebraic groups 4703:subgroup and a maximal torus 2720:If there is one bond between 1135:, from which it follows that 496:Lorentz group representations 463:Theorem of the highest weight 5507:; Brenti, Francesco (2005), 5251: 5149: 3996:; the roots are the nonzero 3850:Eventually, one proves that 2508:If there is no bond between 2304: 657:. In fact it turns out that 7: 5924:Encyclopedia of Mathematics 5517:, vol. 231, Springer, 5456:Encyclopedia of Mathematics 5117: 4965:{\displaystyle N=N_{G}(T),} 4086:{\displaystyle x_{\alpha }} 3933:{\displaystyle W=N(T)/Z(T)} 2627:{\displaystyle s_{\alpha }} 2573:{\displaystyle s_{\alpha }} 2167:{\displaystyle s_{\alpha }} 1778:{\displaystyle s_{\alpha }} 1731:{\displaystyle s_{\alpha }} 1295:root system. In this case, 1108:{\displaystyle s_{\alpha }} 1081:{\displaystyle s_{\alpha }} 817:{\displaystyle s_{\alpha }} 10: 6000: 5872:Trudy Moskov. Mat. Obshch. 5849:Knapp, Anthony W. (2002), 5741:Geometry of Coxeter groups 5687:Davis, Michael W. (2007), 5476:Bourbaki, Nicolas (2002), 5278:Propositions 8.23 and 8.27 5237:{\displaystyle H^{1}(W;T)} 5173:algebraically closed field 4838: 4832: 4677: 2654:{\displaystyle s_{\beta }} 2600:{\displaystyle s_{\beta }} 2059:{\displaystyle {\bar {C}}} 1605: 448:Lie algebra representation 5449:; Fedenko, A.S. (2001) , 4619:(matrices in the form of 4264:{\displaystyle N(T)/Z(T)} 4181:{\displaystyle N(T)/Z(T)} 4000:of the adjoint action of 1268:We may consider also the 1245:but is not an element of 5974:Finite reflection groups 5780:10.1112/jlms/s2-38.2.263 5721:Finite Reflection Groups 5681:10.1112/jlms/s1-10.37.21 5315:Popov & Fedenko 2001 5154: 4925:outer automorphism group 3839:{\displaystyle W=N(T)/T} 3393:. We then introduce the 3177:in which each generator 3117:in the plane spanned by 3110:{\displaystyle 2\theta } 1791:fundamental Weyl chamber 972:is the inner product on 443:Lie group representation 5738:Hiller, Howard (1982), 5371:Hall, Brian C. (2015), 3964:associated to the pair 3130:{\displaystyle \alpha } 3087:{\displaystyle \theta } 3047:{\displaystyle \alpha } 2406:{\displaystyle \Delta } 2362:{\displaystyle \Delta } 2322:{\displaystyle \alpha } 2207:{\displaystyle \Delta } 2187:{\displaystyle \alpha } 2120:{\displaystyle \Delta } 2091:Coxeter group structure 1704:{\displaystyle \alpha } 837:{\displaystyle \alpha } 688:Definition and examples 655:finite reflection group 468:Borel–Weil–Bott theorem 5821:Kane, Richard (2001), 5661: 5238: 5108: 5050: 4966: 4897:field with one element 4889: 4841:Field with one element 4766: 4536: 4453: 4285: 4265: 4219: 4218:{\displaystyle N(T)/T} 4182: 4136: 4116: 4087: 4060: 4034: 4020:on the Lie algebra of 4014: 3990: 3958: 3934: 3879: 3878:{\displaystyle Z(T)=T} 3840: 3794: 3774: 3754: 3730: 3635: 3606: 3586: 3558: 3460: 3431: 3411: 3387: 3363: 3343: 3317:for a Lie algebra, of 3266: 3242: 3171:Coxeter–Dynkin diagram 3151: 3150:{\displaystyle \beta } 3131: 3111: 3088: 3068: 3067:{\displaystyle \beta } 3048: 3023: 2967: 2942: 2919: 2863: 2838: 2815: 2759: 2734: 2711: 2655: 2628: 2601: 2574: 2547: 2522: 2498: 2473: 2453: 2407: 2387: 2363: 2343: 2342:{\displaystyle \beta } 2323: 2295: 2255: 2208: 2188: 2168: 2141: 2121: 2080: 2060: 2031: 2011: 2010:{\displaystyle v\in V} 1985: 1940: 1920: 1886:Since the reflections 1877: 1851: 1813: 1812:{\displaystyle v\in V} 1779: 1752: 1732: 1705: 1685: 1662: 1656: 1592: 1566: 1539: 1519: 1499: 1479: 1444: 1424: 1397: 1344: 1309: 1289: 1259: 1239: 1219: 1199: 1179: 1149: 1129: 1109: 1082: 1055: 1026: 1006: 986: 966: 930: 838: 818: 791: 765: 741: 724: 717: 696:The Weyl group of the 678:linear algebraic group 366:Semisimple Lie algebra 321:Adjoint representation 5662: 5400:Journal of Lie Theory 5239: 5109: 5051: 4967: 4890: 4888:{\displaystyle _{q}!} 4797:The structure of the 4767: 4718:, then we obtain the 4678:Further information: 4537: 4454: 4286: 4284:{\displaystyle \Phi } 4266: 4220: 4183: 4137: 4117: 4088: 4061: 4035: 4015: 3991: 3989:{\displaystyle (K,T)} 3959: 3957:{\displaystyle \Phi } 3935: 3880: 3841: 3795: 3775: 3755: 3731: 3636: 3607: 3587: 3559: 3461: 3432: 3412: 3388: 3364: 3344: 3267: 3243: 3167:finite Coxeter groups 3152: 3132: 3112: 3089: 3069: 3049: 3024: 2968: 2943: 2920: 2864: 2839: 2816: 2760: 2735: 2712: 2656: 2629: 2602: 2575: 2548: 2523: 2499: 2474: 2454: 2408: 2393:relative to the base 2388: 2386:{\displaystyle \Phi } 2364: 2344: 2324: 2296: 2256: 2209: 2189: 2169: 2142: 2140:{\displaystyle \Phi } 2122: 2081: 2061: 2032: 2012: 1986: 1971:: Fix a Weyl chamber 1941: 1939:{\displaystyle \Phi } 1921: 1878: 1852: 1814: 1780: 1758:generated by all the 1753: 1733: 1706: 1686: 1657: 1615: 1593: 1567: 1565:{\displaystyle A_{n}} 1540: 1520: 1500: 1480: 1445: 1425: 1423:{\displaystyle e_{i}} 1398: 1345: 1310: 1290: 1288:{\displaystyle A_{n}} 1260: 1240: 1238:{\displaystyle \Phi } 1220: 1200: 1180: 1178:{\displaystyle A_{2}} 1150: 1130: 1128:{\displaystyle \Phi } 1110: 1083: 1061:generated by all the 1056: 1027: 1025:{\displaystyle \Phi } 1007: 987: 967: 931: 839: 819: 792: 766: 751:in a Euclidean space 742: 740:{\displaystyle \Phi } 718: 716:{\displaystyle A_{2}} 695: 663:finite Coxeter groups 435:Representation theory 5768:J. London Math. Soc. 5669:J. London Math. Soc. 5587: 5206: 5075: 4979: 4931: 4863: 4728: 4720:Bruhat decomposition 4714:is chosen to lie in 4680:Bruhat decomposition 4674:Bruhat decomposition 4621:permutation matrices 4497: 4390: 4275: 4229: 4192: 4146: 4126: 4115:{\displaystyle N(T)} 4097: 4070: 4044: 4024: 4004: 3968: 3948: 3892: 3854: 3807: 3784: 3764: 3744: 3648: 3634:{\displaystyle Z(T)} 3616: 3596: 3576: 3473: 3459:{\displaystyle N(T)} 3441: 3421: 3401: 3377: 3353: 3333: 3256: 3232: 3141: 3121: 3098: 3078: 3058: 3038: 2977: 2952: 2932: 2873: 2848: 2828: 2769: 2744: 2724: 2665: 2638: 2611: 2584: 2557: 2532: 2512: 2483: 2463: 2417: 2397: 2377: 2353: 2333: 2313: 2265: 2222: 2198: 2178: 2151: 2131: 2111: 2070: 2041: 2021: 2017:, the Weyl-orbit of 1995: 1975: 1930: 1890: 1861: 1823: 1797: 1762: 1742: 1715: 1695: 1669: 1620: 1576: 1549: 1529: 1509: 1489: 1454: 1434: 1407: 1354: 1319: 1299: 1272: 1249: 1229: 1209: 1189: 1162: 1139: 1119: 1092: 1065: 1054:{\displaystyle O(V)} 1036: 1016: 996: 976: 944: 851: 828: 801: 775: 755: 731: 700: 670:semisimple Lie group 668:The Weyl group of a 5604: 3568:We also define the 3275:Weyl groups have a 1591:{\displaystyle n+1} 1158:In the case of the 1155:is a finite group. 580:Table of Lie groups 421:Compact Lie algebra 5938:Weisstein, Eric W. 5657: 5590: 5343:Propositions 11.35 5234: 5104: 5046: 4962: 4927:of the normalizer 4915:of the Weyl group 4885: 4762: 4752: 4696:, i.e., a maximal 4657:semidirect product 4655:is not always the 4645:semidirect product 4532: 4449: 4281: 4261: 4215: 4178: 4132: 4112: 4083: 4056: 4030: 4010: 3986: 3954: 3930: 3875: 3836: 3790: 3770: 3750: 3726: 3631: 3602: 3582: 3554: 3456: 3427: 3407: 3383: 3359: 3339: 3262: 3238: 3161:As a Coxeter group 3147: 3127: 3107: 3084: 3064: 3044: 3019: 2966:{\displaystyle v'} 2963: 2938: 2915: 2862:{\displaystyle v'} 2859: 2834: 2811: 2758:{\displaystyle v'} 2755: 2730: 2707: 2651: 2624: 2597: 2570: 2546:{\displaystyle v'} 2543: 2518: 2497:{\displaystyle v'} 2494: 2469: 2449: 2403: 2383: 2359: 2339: 2319: 2291: 2251: 2204: 2184: 2164: 2137: 2117: 2076: 2056: 2027: 2007: 1981: 1936: 1916: 1873: 1847: 1809: 1775: 1748: 1728: 1701: 1681: 1663: 1652: 1588: 1562: 1535: 1515: 1495: 1475: 1440: 1420: 1393: 1340: 1305: 1285: 1255: 1235: 1215: 1195: 1175: 1145: 1125: 1105: 1078: 1051: 1022: 1002: 982: 962: 926: 834: 814: 787: 761: 737: 725: 713: 352:Affine Lie algebra 342:Simple Lie algebra 83:Special orthogonal 5860:978-0-8176-4259-4 5834:978-0-387-98979-2 5751:978-0-273-08517-1 5731:978-0-387-96082-1 5703:978-0-691-13138-2 5581:Coxeter, H. S. M. 5540:Coxeter, H. S. M. 5524:978-3-540-27596-1 5489:978-3-540-42650-9 5431:978-0-521-43613-7 5384:978-3-319-13466-6 5302:Propositions 8.24 5124:Affine Weyl group 4809:and in dimension 4737: 4448: 4305:Cartan subalgebra 4295:In other settings 4135:{\displaystyle T} 4033:{\displaystyle K} 4013:{\displaystyle T} 3793:{\displaystyle T} 3773:{\displaystyle K} 3753:{\displaystyle W} 3712: 3605:{\displaystyle K} 3585:{\displaystyle T} 3540: 3430:{\displaystyle K} 3410:{\displaystyle T} 3386:{\displaystyle K} 3362:{\displaystyle T} 3342:{\displaystyle K} 3321:for a Lie group. 3315:Cartan subalgebra 3265:{\displaystyle W} 3241:{\displaystyle W} 3192:are of the form ( 2941:{\displaystyle v} 2837:{\displaystyle v} 2733:{\displaystyle v} 2521:{\displaystyle v} 2472:{\displaystyle v} 2079:{\displaystyle C} 2053: 2030:{\displaystyle v} 1984:{\displaystyle C} 1751:{\displaystyle V} 1538:{\displaystyle j} 1518:{\displaystyle i} 1498:{\displaystyle V} 1443:{\displaystyle i} 1308:{\displaystyle V} 1258:{\displaystyle W} 1218:{\displaystyle W} 1198:{\displaystyle W} 1148:{\displaystyle W} 1005:{\displaystyle W} 992:. The Weyl group 985:{\displaystyle V} 921: 764:{\displaystyle V} 616: 615: 416:Split Lie algebra 379:Cartan subalgebra 241: 240: 132:Simple Lie groups 5991: 5960: 5951: 5950: 5932: 5906: 5878: 5863: 5845: 5817: 5800: 5790: 5762: 5734: 5714: 5695: 5683: 5666: 5664: 5663: 5658: 5650: 5649: 5648: 5647: 5630: 5629: 5620: 5619: 5603: 5598: 5576: 5559: 5535: 5500: 5463: 5442: 5414: 5397: 5387: 5358: 5353: 5344: 5338: 5332: 5326: 5317: 5312: 5303: 5297: 5291: 5290:Proposition 8.29 5285: 5279: 5273: 5267: 5261: 5245: 5243: 5241: 5240: 5235: 5218: 5217: 5193: 5187: 5165: 5113: 5111: 5110: 5105: 5103: 5102: 5090: 5085: 5055: 5053: 5052: 5047: 5009: 5008: 4971: 4969: 4968: 4963: 4949: 4948: 4913:group cohomology 4894: 4892: 4891: 4886: 4881: 4880: 4847:algebraic groups 4803:PoincarĂ© duality 4771: 4769: 4768: 4763: 4751: 4541: 4539: 4538: 4533: 4531: 4530: 4515: 4514: 4458: 4456: 4455: 4450: 4446: 4430: 4290: 4288: 4287: 4282: 4270: 4268: 4267: 4262: 4248: 4224: 4222: 4221: 4216: 4211: 4187: 4185: 4184: 4179: 4165: 4141: 4139: 4138: 4133: 4122:whose action on 4121: 4119: 4118: 4113: 4092: 4090: 4089: 4084: 4082: 4081: 4065: 4063: 4062: 4057: 4039: 4037: 4036: 4031: 4019: 4017: 4016: 4011: 3995: 3993: 3992: 3987: 3963: 3961: 3960: 3955: 3939: 3937: 3936: 3931: 3917: 3884: 3882: 3881: 3876: 3845: 3843: 3842: 3837: 3832: 3799: 3797: 3796: 3791: 3779: 3777: 3776: 3771: 3759: 3757: 3756: 3751: 3735: 3733: 3732: 3727: 3713: 3710: 3701: 3700: 3682: 3640: 3638: 3637: 3632: 3611: 3609: 3608: 3603: 3591: 3589: 3588: 3583: 3563: 3561: 3560: 3555: 3541: 3538: 3526: 3525: 3507: 3465: 3463: 3462: 3457: 3436: 3434: 3433: 3428: 3416: 3414: 3413: 3408: 3392: 3390: 3389: 3384: 3368: 3366: 3365: 3360: 3348: 3346: 3345: 3340: 3271: 3269: 3268: 3263: 3247: 3245: 3244: 3239: 3156: 3154: 3153: 3148: 3136: 3134: 3133: 3128: 3116: 3114: 3113: 3108: 3093: 3091: 3090: 3085: 3073: 3071: 3070: 3065: 3053: 3051: 3050: 3045: 3028: 3026: 3025: 3020: 3012: 3011: 3002: 3001: 2992: 2991: 2972: 2970: 2969: 2964: 2962: 2947: 2945: 2944: 2939: 2924: 2922: 2921: 2916: 2908: 2907: 2898: 2897: 2888: 2887: 2868: 2866: 2865: 2860: 2858: 2843: 2841: 2840: 2835: 2820: 2818: 2817: 2812: 2804: 2803: 2794: 2793: 2784: 2783: 2764: 2762: 2761: 2756: 2754: 2739: 2737: 2736: 2731: 2716: 2714: 2713: 2708: 2700: 2699: 2690: 2689: 2680: 2679: 2660: 2658: 2657: 2652: 2650: 2649: 2633: 2631: 2630: 2625: 2623: 2622: 2606: 2604: 2603: 2598: 2596: 2595: 2579: 2577: 2576: 2571: 2569: 2568: 2552: 2550: 2549: 2544: 2542: 2527: 2525: 2524: 2519: 2503: 2501: 2500: 2495: 2493: 2478: 2476: 2475: 2470: 2458: 2456: 2455: 2450: 2445: 2444: 2432: 2431: 2412: 2410: 2409: 2404: 2392: 2390: 2389: 2384: 2368: 2366: 2365: 2360: 2348: 2346: 2345: 2340: 2328: 2326: 2325: 2320: 2300: 2298: 2297: 2292: 2277: 2276: 2260: 2258: 2257: 2252: 2234: 2233: 2213: 2211: 2210: 2205: 2193: 2191: 2190: 2185: 2173: 2171: 2170: 2165: 2163: 2162: 2146: 2144: 2143: 2138: 2126: 2124: 2123: 2118: 2085: 2083: 2082: 2077: 2065: 2063: 2062: 2057: 2055: 2054: 2046: 2036: 2034: 2033: 2028: 2016: 2014: 2013: 2008: 1990: 1988: 1987: 1982: 1945: 1943: 1942: 1937: 1925: 1923: 1922: 1917: 1902: 1901: 1882: 1880: 1879: 1874: 1856: 1854: 1853: 1848: 1818: 1816: 1815: 1810: 1784: 1782: 1781: 1776: 1774: 1773: 1757: 1755: 1754: 1749: 1737: 1735: 1734: 1729: 1727: 1726: 1710: 1708: 1707: 1702: 1690: 1688: 1687: 1682: 1661: 1659: 1658: 1653: 1648: 1647: 1635: 1634: 1597: 1595: 1594: 1589: 1571: 1569: 1568: 1563: 1561: 1560: 1544: 1542: 1541: 1536: 1524: 1522: 1521: 1516: 1504: 1502: 1501: 1496: 1484: 1482: 1481: 1476: 1474: 1473: 1462: 1449: 1447: 1446: 1441: 1429: 1427: 1426: 1421: 1419: 1418: 1402: 1400: 1399: 1394: 1379: 1378: 1366: 1365: 1349: 1347: 1346: 1341: 1339: 1338: 1327: 1314: 1312: 1311: 1306: 1294: 1292: 1291: 1286: 1284: 1283: 1264: 1262: 1261: 1256: 1244: 1242: 1241: 1236: 1224: 1222: 1221: 1216: 1204: 1202: 1201: 1196: 1184: 1182: 1181: 1176: 1174: 1173: 1154: 1152: 1151: 1146: 1134: 1132: 1131: 1126: 1114: 1112: 1111: 1106: 1104: 1103: 1087: 1085: 1084: 1079: 1077: 1076: 1060: 1058: 1057: 1052: 1031: 1029: 1028: 1023: 1011: 1009: 1008: 1003: 991: 989: 988: 983: 971: 969: 968: 963: 935: 933: 932: 927: 922: 920: 903: 886: 863: 862: 843: 841: 840: 835: 823: 821: 820: 815: 813: 812: 796: 794: 793: 788: 771:. For each root 770: 768: 767: 762: 746: 744: 743: 738: 722: 720: 719: 714: 712: 711: 608: 601: 594: 551:Claude Chevalley 408:Complexification 251:Other Lie groups 137: 136: 45:Classical groups 37: 19: 18: 5999: 5998: 5994: 5993: 5992: 5990: 5989: 5988: 5964: 5963: 5954: 5941:"Coxeter group" 5919:"Coxeter group" 5917: 5914: 5909: 5861: 5835: 5798: 5752: 5732: 5704: 5693: 5640: 5636: 5635: 5631: 5625: 5621: 5615: 5611: 5599: 5594: 5588: 5585: 5584: 5566:10.2307/1968753 5525: 5505:Björner, Anders 5490: 5471: 5469:Further reading 5466: 5432: 5395: 5385: 5366: 5361: 5354: 5347: 5339: 5335: 5327: 5320: 5313: 5306: 5298: 5294: 5286: 5282: 5274: 5270: 5262: 5258: 5254: 5249: 5248: 5213: 5209: 5207: 5204: 5203: 5194: 5190: 5166: 5162: 5157: 5152: 5120: 5098: 5094: 5086: 5081: 5076: 5073: 5072: 5004: 5000: 4980: 4977: 4976: 4944: 4940: 4932: 4929: 4928: 4905: 4876: 4872: 4864: 4861: 4860: 4843: 4837: 4831: 4741: 4729: 4726: 4725: 4713: 4682: 4676: 4625:symmetric group 4526: 4522: 4510: 4506: 4498: 4495: 4494: 4488: 4426: 4391: 4388: 4387: 4377: 4350: 4327:with respect to 4297: 4276: 4273: 4272: 4244: 4230: 4227: 4226: 4207: 4193: 4190: 4189: 4161: 4147: 4144: 4143: 4127: 4124: 4123: 4098: 4095: 4094: 4077: 4073: 4071: 4068: 4067: 4045: 4042: 4041: 4025: 4022: 4021: 4005: 4002: 4001: 3969: 3966: 3965: 3949: 3946: 3945: 3913: 3893: 3890: 3889: 3855: 3852: 3851: 3828: 3808: 3805: 3804: 3785: 3782: 3781: 3765: 3762: 3761: 3745: 3742: 3741: 3740:The Weyl group 3709: 3693: 3689: 3678: 3649: 3646: 3645: 3641:and defined as 3617: 3614: 3613: 3597: 3594: 3593: 3577: 3574: 3573: 3537: 3518: 3514: 3503: 3474: 3471: 3470: 3466:and defined as 3442: 3439: 3438: 3422: 3419: 3418: 3402: 3399: 3398: 3378: 3375: 3374: 3354: 3351: 3350: 3334: 3331: 3330: 3327: 3311:symmetric space 3299: 3281:length function 3257: 3254: 3253: 3233: 3230: 3229: 3214: 3208: 3200: 3189: 3182: 3163: 3142: 3139: 3138: 3122: 3119: 3118: 3099: 3096: 3095: 3079: 3076: 3075: 3059: 3056: 3055: 3039: 3036: 3035: 3007: 3003: 2997: 2993: 2987: 2983: 2978: 2975: 2974: 2955: 2953: 2950: 2949: 2933: 2930: 2929: 2903: 2899: 2893: 2889: 2883: 2879: 2874: 2871: 2870: 2851: 2849: 2846: 2845: 2829: 2826: 2825: 2799: 2795: 2789: 2785: 2779: 2775: 2770: 2767: 2766: 2747: 2745: 2742: 2741: 2725: 2722: 2721: 2695: 2691: 2685: 2681: 2675: 2671: 2666: 2663: 2662: 2645: 2641: 2639: 2636: 2635: 2618: 2614: 2612: 2609: 2608: 2607:commute. Since 2591: 2587: 2585: 2582: 2581: 2564: 2560: 2558: 2555: 2554: 2535: 2533: 2530: 2529: 2513: 2510: 2509: 2486: 2484: 2481: 2480: 2464: 2461: 2460: 2440: 2436: 2427: 2423: 2418: 2415: 2414: 2398: 2395: 2394: 2378: 2375: 2374: 2354: 2351: 2350: 2334: 2331: 2330: 2314: 2311: 2310: 2307: 2272: 2268: 2266: 2263: 2262: 2229: 2225: 2223: 2220: 2219: 2199: 2196: 2195: 2179: 2176: 2175: 2158: 2154: 2152: 2149: 2148: 2132: 2129: 2128: 2112: 2109: 2108: 2098: 2093: 2071: 2068: 2067: 2045: 2044: 2042: 2039: 2038: 2022: 2019: 2018: 1996: 1993: 1992: 1991:. Then for all 1976: 1973: 1972: 1931: 1928: 1927: 1897: 1893: 1891: 1888: 1887: 1862: 1859: 1858: 1824: 1821: 1820: 1798: 1795: 1794: 1769: 1765: 1763: 1760: 1759: 1743: 1740: 1739: 1722: 1718: 1716: 1713: 1712: 1696: 1693: 1692: 1670: 1667: 1666: 1643: 1639: 1630: 1626: 1621: 1618: 1617: 1610: 1604: 1577: 1574: 1573: 1556: 1552: 1550: 1547: 1546: 1530: 1527: 1526: 1510: 1507: 1506: 1490: 1487: 1486: 1463: 1458: 1457: 1455: 1452: 1451: 1435: 1432: 1431: 1414: 1410: 1408: 1405: 1404: 1374: 1370: 1361: 1357: 1355: 1352: 1351: 1328: 1323: 1322: 1320: 1317: 1316: 1300: 1297: 1296: 1279: 1275: 1273: 1270: 1269: 1250: 1247: 1246: 1230: 1227: 1226: 1210: 1207: 1206: 1190: 1187: 1186: 1169: 1165: 1163: 1160: 1159: 1140: 1137: 1136: 1120: 1117: 1116: 1099: 1095: 1093: 1090: 1089: 1072: 1068: 1066: 1063: 1062: 1037: 1034: 1033: 1017: 1014: 1013: 997: 994: 993: 977: 974: 973: 945: 942: 941: 904: 887: 885: 858: 854: 852: 849: 848: 829: 826: 825: 808: 804: 802: 799: 798: 776: 773: 772: 756: 753: 752: 732: 729: 728: 707: 703: 701: 698: 697: 690: 676:, a semisimple 672:, a semisimple 612: 567: 566: 565: 536:Wilhelm Killing 520: 512: 511: 510: 485: 474: 473: 472: 437: 427: 426: 425: 412: 396: 374:Dynkin diagrams 368: 358: 357: 356: 338: 316:Exponential map 305: 295: 294: 293: 274:Conformal group 253: 243: 242: 234: 226: 218: 210: 202: 183: 173: 163: 153: 134: 124: 123: 122: 103:Special unitary 47: 17: 12: 11: 5: 5997: 5987: 5986: 5981: 5976: 5962: 5961: 5952: 5933: 5913: 5912:External links 5910: 5908: 5907: 5879: 5868:Vinberg, E. B. 5864: 5859: 5846: 5833: 5818: 5791: 5774:(2): 263–276, 5763: 5750: 5735: 5730: 5715: 5702: 5684: 5656: 5653: 5646: 5643: 5639: 5634: 5628: 5624: 5618: 5614: 5610: 5607: 5602: 5597: 5593: 5577: 5557:10.1.1.128.471 5550:(3): 588–621, 5536: 5523: 5501: 5488: 5472: 5470: 5467: 5465: 5464: 5443: 5430: 5415: 5388: 5383: 5367: 5365: 5362: 5360: 5359: 5345: 5333: 5318: 5304: 5292: 5280: 5268: 5264:Humphreys 1992 5255: 5253: 5250: 5247: 5246: 5233: 5230: 5227: 5224: 5221: 5216: 5212: 5188: 5159: 5158: 5156: 5153: 5151: 5148: 5147: 5146: 5141: 5136: 5131: 5126: 5119: 5116: 5101: 5097: 5093: 5089: 5084: 5080: 5065:Dynkin diagram 5057: 5056: 5045: 5042: 5039: 5036: 5033: 5030: 5027: 5024: 5021: 5018: 5015: 5012: 5007: 5003: 4999: 4996: 4993: 4990: 4987: 4984: 4961: 4958: 4955: 4952: 4947: 4943: 4939: 4936: 4904: 4901: 4884: 4879: 4875: 4871: 4868: 4833:Main article: 4830: 4827: 4788:Schubert cells 4773: 4772: 4761: 4758: 4755: 4750: 4747: 4744: 4740: 4736: 4733: 4711: 4690:Borel subgroup 4675: 4672: 4569:, and denoted 4529: 4525: 4521: 4518: 4513: 4509: 4505: 4502: 4486: 4460: 4459: 4445: 4442: 4439: 4436: 4433: 4429: 4425: 4422: 4419: 4416: 4413: 4410: 4407: 4404: 4401: 4398: 4395: 4375: 4348: 4296: 4293: 4280: 4260: 4257: 4254: 4251: 4247: 4243: 4240: 4237: 4234: 4214: 4210: 4206: 4203: 4200: 4197: 4177: 4174: 4171: 4168: 4164: 4160: 4157: 4154: 4151: 4131: 4111: 4108: 4105: 4102: 4080: 4076: 4055: 4052: 4049: 4029: 4009: 3985: 3982: 3979: 3976: 3973: 3953: 3942: 3941: 3929: 3926: 3923: 3920: 3916: 3912: 3909: 3906: 3903: 3900: 3897: 3874: 3871: 3868: 3865: 3862: 3859: 3848: 3847: 3835: 3831: 3827: 3824: 3821: 3818: 3815: 3812: 3789: 3769: 3749: 3738: 3737: 3725: 3722: 3719: 3716: 3707: 3704: 3699: 3696: 3692: 3688: 3685: 3681: 3677: 3674: 3671: 3668: 3665: 3662: 3659: 3656: 3653: 3630: 3627: 3624: 3621: 3601: 3581: 3566: 3565: 3553: 3550: 3547: 3544: 3535: 3532: 3529: 3524: 3521: 3517: 3513: 3510: 3506: 3502: 3499: 3496: 3493: 3490: 3487: 3484: 3481: 3478: 3455: 3452: 3449: 3446: 3426: 3406: 3382: 3358: 3338: 3326: 3323: 3298: 3295: 3261: 3237: 3226:Dynkin diagram 3212: 3204: 3196: 3187: 3180: 3162: 3159: 3146: 3126: 3106: 3103: 3083: 3063: 3043: 3031: 3030: 3018: 3015: 3010: 3006: 3000: 2996: 2990: 2986: 2982: 2961: 2958: 2937: 2926: 2914: 2911: 2906: 2902: 2896: 2892: 2886: 2882: 2878: 2857: 2854: 2833: 2822: 2810: 2807: 2802: 2798: 2792: 2788: 2782: 2778: 2774: 2753: 2750: 2729: 2718: 2706: 2703: 2698: 2694: 2688: 2684: 2678: 2674: 2670: 2648: 2644: 2621: 2617: 2594: 2590: 2567: 2563: 2541: 2538: 2517: 2492: 2489: 2468: 2448: 2443: 2439: 2435: 2430: 2426: 2422: 2402: 2382: 2371:Dynkin diagram 2358: 2338: 2318: 2309:Meanwhile, if 2306: 2303: 2290: 2287: 2284: 2280: 2275: 2271: 2250: 2247: 2244: 2241: 2237: 2232: 2228: 2216: 2215: 2203: 2183: 2161: 2157: 2136: 2116: 2097: 2096:Generating set 2094: 2092: 2089: 2088: 2087: 2075: 2052: 2049: 2026: 2006: 2003: 2000: 1980: 1962: 1961: 1935: 1915: 1912: 1909: 1905: 1900: 1896: 1872: 1869: 1866: 1846: 1843: 1840: 1837: 1834: 1831: 1828: 1808: 1805: 1802: 1772: 1768: 1747: 1725: 1721: 1711:. Recall that 1700: 1680: 1677: 1674: 1651: 1646: 1642: 1638: 1633: 1629: 1625: 1603: 1600: 1587: 1584: 1581: 1559: 1555: 1534: 1514: 1494: 1472: 1469: 1466: 1461: 1439: 1417: 1413: 1392: 1389: 1386: 1382: 1377: 1373: 1369: 1364: 1360: 1337: 1334: 1331: 1326: 1304: 1282: 1278: 1254: 1234: 1214: 1194: 1172: 1168: 1144: 1124: 1102: 1098: 1075: 1071: 1050: 1047: 1044: 1041: 1021: 1001: 981: 961: 958: 955: 952: 949: 938: 937: 925: 919: 916: 913: 910: 907: 902: 899: 896: 893: 890: 884: 881: 878: 875: 872: 869: 866: 861: 857: 833: 811: 807: 786: 783: 780: 760: 736: 710: 706: 689: 686: 644:isometry group 614: 613: 611: 610: 603: 596: 588: 585: 584: 583: 582: 577: 569: 568: 564: 563: 558: 556:Harish-Chandra 553: 548: 543: 538: 533: 531:Henri PoincarĂ© 528: 522: 521: 518: 517: 514: 513: 509: 508: 503: 498: 493: 487: 486: 481:Lie groups in 480: 479: 476: 475: 471: 470: 465: 460: 455: 450: 445: 439: 438: 433: 432: 429: 428: 424: 423: 418: 413: 411: 410: 405: 399: 397: 395: 394: 389: 383: 381: 376: 370: 369: 364: 363: 360: 359: 355: 354: 349: 344: 339: 337: 336: 331: 325: 323: 318: 313: 307: 306: 301: 300: 297: 296: 292: 291: 286: 281: 279:Diffeomorphism 276: 271: 266: 261: 255: 254: 249: 248: 245: 244: 239: 238: 237: 236: 232: 228: 224: 220: 216: 212: 208: 204: 200: 193: 192: 188: 187: 186: 185: 179: 175: 169: 165: 159: 155: 149: 142: 141: 135: 130: 129: 126: 125: 121: 120: 110: 100: 90: 80: 70: 63:Special linear 60: 53:General linear 49: 48: 43: 42: 39: 38: 30: 29: 15: 9: 6: 4: 3: 2: 5996: 5985: 5982: 5980: 5977: 5975: 5972: 5971: 5969: 5959: 5958: 5953: 5948: 5947: 5942: 5939: 5934: 5930: 5926: 5925: 5920: 5916: 5915: 5905: 5901: 5897: 5893: 5889: 5885: 5880: 5877: 5873: 5869: 5865: 5862: 5856: 5852: 5847: 5844: 5840: 5836: 5830: 5826: 5825: 5819: 5816: 5812: 5808: 5804: 5797: 5792: 5789: 5785: 5781: 5777: 5773: 5769: 5764: 5761: 5757: 5753: 5747: 5743: 5742: 5736: 5733: 5727: 5723: 5722: 5716: 5713: 5709: 5705: 5699: 5692: 5691: 5685: 5682: 5678: 5674: 5670: 5654: 5651: 5644: 5641: 5637: 5626: 5622: 5616: 5612: 5605: 5600: 5595: 5591: 5582: 5578: 5575: 5571: 5567: 5563: 5558: 5553: 5549: 5545: 5544:Ann. of Math. 5541: 5537: 5534: 5530: 5526: 5520: 5516: 5512: 5511: 5506: 5502: 5499: 5495: 5491: 5485: 5481: 5480: 5474: 5473: 5462: 5458: 5457: 5452: 5448: 5444: 5441: 5437: 5433: 5427: 5423: 5422: 5416: 5413: 5409: 5405: 5401: 5394: 5389: 5386: 5380: 5376: 5375: 5369: 5368: 5357: 5352: 5350: 5342: 5337: 5331:Theorem 11.36 5330: 5325: 5323: 5316: 5311: 5309: 5301: 5296: 5289: 5284: 5277: 5272: 5265: 5260: 5256: 5228: 5225: 5222: 5214: 5210: 5201: 5197: 5192: 5185: 5183: 5178: 5174: 5170: 5164: 5160: 5145: 5144:Hasse diagram 5142: 5140: 5137: 5135: 5134:Maximal torus 5132: 5130: 5127: 5125: 5122: 5121: 5115: 5099: 5091: 5087: 5070: 5066: 5062: 5043: 5037: 5031: 5028: 5025: 5019: 5016: 5013: 5005: 5001: 4997: 4991: 4985: 4982: 4975: 4974: 4973: 4959: 4953: 4945: 4941: 4937: 4934: 4926: 4922: 4918: 4914: 4910: 4900: 4898: 4882: 4877: 4869: 4859: 4857: 4852: 4848: 4842: 4836: 4826: 4824: 4820: 4816: 4812: 4808: 4804: 4800: 4799:Hasse diagram 4795: 4793: 4789: 4785: 4781: 4778: 4759: 4756: 4753: 4748: 4745: 4742: 4738: 4734: 4731: 4724: 4723: 4722: 4721: 4717: 4710: 4706: 4702: 4699: 4695: 4691: 4687: 4681: 4671: 4670: 4666: 4662: 4658: 4654: 4650: 4646: 4642: 4638: 4634: 4630: 4626: 4622: 4618: 4614: 4610: 4605: 4603: 4599: 4595: 4591: 4586: 4584: 4580: 4576: 4572: 4568: 4564: 4561: 4557: 4553: 4549: 4545: 4527: 4523: 4519: 4511: 4507: 4500: 4492: 4491:maximal torus 4485: 4481: 4477: 4473: 4470:is of finite 4469: 4465: 4443: 4437: 4431: 4427: 4420: 4414: 4411: 4405: 4402: 4399: 4393: 4386: 4385: 4384: 4382: 4378: 4371: 4367: 4363: 4360:of the torus 4359: 4355: 4351: 4344: 4340: 4336: 4333:of the torus 4332: 4328: 4324: 4320: 4316: 4313: 4308: 4306: 4302: 4292: 4255: 4249: 4245: 4238: 4232: 4212: 4208: 4201: 4195: 4172: 4166: 4162: 4155: 4149: 4129: 4106: 4100: 4078: 4074: 4050: 4047: 4027: 4007: 3999: 3980: 3977: 3974: 3924: 3918: 3914: 3907: 3901: 3898: 3895: 3888: 3887: 3886: 3872: 3869: 3863: 3857: 3833: 3829: 3822: 3816: 3813: 3810: 3803: 3802: 3801: 3787: 3767: 3747: 3720: 3717: 3714: 3711:for all  3705: 3702: 3697: 3694: 3690: 3686: 3683: 3675: 3672: 3669: 3663: 3657: 3651: 3644: 3643: 3642: 3625: 3619: 3599: 3579: 3571: 3548: 3545: 3542: 3539:for all  3533: 3530: 3527: 3522: 3519: 3515: 3511: 3508: 3500: 3497: 3494: 3488: 3482: 3476: 3469: 3468: 3467: 3450: 3444: 3424: 3404: 3396: 3380: 3372: 3371:maximal torus 3356: 3336: 3322: 3320: 3319:maximal torus 3316: 3312: 3308: 3304: 3294: 3292: 3288: 3287: 3282: 3278: 3273: 3259: 3252:relations in 3251: 3235: 3227: 3223: 3219: 3215: 3207: 3203: 3199: 3195: 3191: 3183: 3176: 3172: 3168: 3158: 3144: 3124: 3104: 3101: 3081: 3061: 3041: 3016: 3013: 3008: 2998: 2994: 2988: 2984: 2959: 2956: 2935: 2927: 2912: 2909: 2904: 2894: 2890: 2884: 2880: 2855: 2852: 2831: 2823: 2808: 2805: 2800: 2790: 2786: 2780: 2776: 2751: 2748: 2727: 2719: 2704: 2701: 2696: 2686: 2682: 2676: 2672: 2646: 2642: 2619: 2615: 2592: 2588: 2565: 2561: 2539: 2536: 2515: 2507: 2506: 2505: 2490: 2487: 2466: 2441: 2437: 2433: 2428: 2424: 2372: 2336: 2316: 2302: 2285: 2282: 2278: 2273: 2269: 2248: 2242: 2239: 2235: 2230: 2226: 2181: 2159: 2155: 2106: 2103: 2102: 2101: 2073: 2047: 2024: 2004: 2001: 1998: 1978: 1970: 1967: 1966: 1965: 1959: 1956: 1955: 1954: 1951: 1947: 1910: 1907: 1903: 1898: 1894: 1884: 1867: 1864: 1844: 1841: 1835: 1832: 1829: 1806: 1803: 1800: 1792: 1788: 1770: 1766: 1745: 1723: 1719: 1698: 1678: 1675: 1644: 1640: 1636: 1631: 1627: 1614: 1609: 1602:Weyl chambers 1599: 1585: 1582: 1579: 1557: 1553: 1532: 1512: 1492: 1470: 1467: 1464: 1437: 1415: 1411: 1390: 1387: 1384: 1380: 1375: 1371: 1367: 1362: 1358: 1335: 1332: 1329: 1302: 1280: 1276: 1266: 1252: 1212: 1192: 1170: 1166: 1156: 1142: 1100: 1096: 1073: 1069: 1045: 1039: 999: 979: 956: 953: 950: 923: 914: 911: 908: 897: 894: 891: 882: 879: 876: 873: 867: 859: 855: 847: 846: 845: 831: 809: 805: 781: 778: 758: 750: 708: 704: 694: 685: 683: 679: 675: 671: 666: 664: 660: 656: 652: 649: 645: 641: 637: 633: 630:(named after 629: 625: 621: 609: 604: 602: 597: 595: 590: 589: 587: 586: 581: 578: 576: 573: 572: 571: 570: 562: 559: 557: 554: 552: 549: 547: 544: 542: 539: 537: 534: 532: 529: 527: 524: 523: 516: 515: 507: 504: 502: 499: 497: 494: 492: 489: 488: 484: 478: 477: 469: 466: 464: 461: 459: 456: 454: 451: 449: 446: 444: 441: 440: 436: 431: 430: 422: 419: 417: 414: 409: 406: 404: 401: 400: 398: 393: 390: 388: 385: 384: 382: 380: 377: 375: 372: 371: 367: 362: 361: 353: 350: 348: 345: 343: 340: 335: 332: 330: 327: 326: 324: 322: 319: 317: 314: 312: 309: 308: 304: 299: 298: 290: 287: 285: 282: 280: 277: 275: 272: 270: 267: 265: 262: 260: 257: 256: 252: 247: 246: 235: 229: 227: 221: 219: 213: 211: 205: 203: 197: 196: 195: 194: 190: 189: 184: 182: 176: 174: 172: 166: 164: 162: 156: 154: 152: 146: 145: 144: 143: 139: 138: 133: 128: 127: 118: 114: 111: 108: 104: 101: 98: 94: 91: 88: 84: 81: 78: 74: 71: 68: 64: 61: 58: 54: 51: 50: 46: 41: 40: 36: 32: 31: 28: 24: 21: 20: 5979:Lie algebras 5956: 5944: 5922: 5887: 5883: 5875: 5871: 5850: 5823: 5806: 5802: 5771: 5767: 5740: 5720: 5689: 5675:(1): 21–25, 5672: 5668: 5547: 5543: 5509: 5478: 5454: 5451:"Weyl group" 5420: 5403: 5399: 5373: 5336: 5295: 5283: 5271: 5266:, p. 6. 5259: 5199: 5195: 5191: 5181: 5176: 5168: 5163: 5060: 5058: 4920: 4916: 4908: 4906: 4855: 4850: 4844: 4818: 4814: 4810: 4806: 4796: 4792:Grassmannian 4787: 4783: 4779: 4777:flag variety 4774: 4715: 4708: 4704: 4693: 4685: 4683: 4668: 4664: 4660: 4652: 4648: 4640: 4636: 4632: 4628: 4612: 4608: 4606: 4601: 4597: 4593: 4589: 4587: 4582: 4574: 4570: 4566: 4559: 4555: 4551: 4547: 4543: 4483: 4479: 4475: 4467: 4466:is finite – 4463: 4461: 4380: 4373: 4369: 4365: 4361: 4353: 4346: 4342: 4338: 4334: 4326: 4322: 4318: 4314: 4309: 4300: 4298: 3943: 3849: 3739: 3569: 3567: 3394: 3328: 3300: 3284: 3277:Bruhat order 3274: 3249: 3221: 3217: 3210: 3205: 3201: 3197: 3193: 3185: 3178: 3175:presentation 3164: 3032: 2308: 2217: 2127:is base for 2104: 2099: 1968: 1963: 1957: 1952: 1948: 1885: 1790: 1787:Weyl chamber 1786: 1664: 1267: 1157: 939: 726: 667: 658: 632:Hermann Weyl 627: 624:Lie algebras 617: 561:Armand Borel 546:Hermann Weyl 391: 347:Loop algebra 329:Killing form 303:Lie algebras 180: 170: 160: 150: 116: 106: 96: 86: 76: 66: 56: 27:Lie algebras 5890:: 173–186, 5809:: 155–171, 5447:Popov, V.L. 4358:centralizer 4040:. For each 3570:centralizer 3303:Lie algebra 2369:, then the 749:root system 674:Lie algebra 648:hyperplanes 636:root system 620:mathematics 541:Élie Cartan 387:Root system 191:Exceptional 5984:Lie groups 5968:Categories 5904:0136.28803 5843:0986.20038 5815:0136.28802 5788:0627.20019 5760:0483.57002 5712:1142.20020 5533:1110.05001 5498:0983.17001 5440:0725.20028 5412:1092.22004 5364:References 4911:the first 4903:Cohomology 4858:-factorial 4839:See also: 4563:Weyl group 4558:is called 4462:The group 4331:normalizer 3612:, denoted 3437:, denoted 3395:normalizer 1819:such that 1606:See also: 1598:elements. 1115:preserves 651:orthogonal 628:Weyl group 526:Sophus Lie 519:Scientists 392:Weyl group 113:Symplectic 73:Orthogonal 23:Lie groups 5946:MathWorld 5929:EMS Press 5896:2261/6049 5552:CiteSeerX 5461:EMS Press 5341:Hall 2015 5329:Hall 2015 5300:Hall 2015 5288:Hall 2015 5276:Hall 2015 5252:Citations 5184:Lie group 5150:Footnotes 5032:⁡ 5026:⋊ 4998:≅ 4986:⁡ 4746:∈ 4739:⋃ 4698:connected 4356:) by the 4312:Lie group 4279:Φ 4079:α 4054:Φ 4051:∈ 4048:α 3952:Φ 3718:∈ 3695:− 3673:∈ 3546:∈ 3528:∈ 3520:− 3498:∈ 3307:Lie group 3145:β 3125:α 3105:θ 3082:θ 3062:β 3042:α 2999:β 2989:α 2895:β 2885:α 2791:β 2781:α 2687:β 2677:α 2647:β 2620:α 2593:β 2566:α 2442:β 2429:α 2401:Δ 2381:Φ 2357:Δ 2337:β 2317:α 2305:Relations 2289:Φ 2286:∈ 2283:α 2274:α 2246:Δ 2243:∈ 2240:α 2231:α 2202:Δ 2182:α 2160:α 2135:Φ 2115:Δ 2051:¯ 2002:∈ 1934:Φ 1926:preserve 1914:Φ 1911:∈ 1908:α 1899:α 1871:Δ 1868:∈ 1865:α 1830:α 1804:∈ 1771:α 1724:α 1699:α 1676:⊂ 1673:Φ 1641:α 1628:α 1388:≠ 1368:− 1233:Φ 1123:Φ 1101:α 1074:α 1020:Φ 957:⋅ 951:⋅ 924:α 915:α 909:α 898:α 880:− 860:α 832:α 810:α 785:Φ 782:∈ 779:α 735:Φ 403:Real form 289:Euclidean 140:Classical 5198:acts on 5177:relative 5175:, but a 5118:See also 4835:q-analog 4701:solvable 2960:′ 2856:′ 2752:′ 2540:′ 2491:′ 1857:for all 1403:, where 640:subgroup 575:Glossary 269:PoincarĂ© 5931:, 2001 5574:1968753 4817:(where 4598:maximal 4301:defined 3998:weights 2973:, then 2869:, then 2765:, then 2553:, then 2349:are in 2105:Theorem 1969:Theorem 1958:Theorem 1525:th and 1430:is the 642:of the 638:Φ is a 634:) of a 483:physics 264:Lorentz 93:Unitary 5902:  5857:  5841:  5831:  5813:  5786:  5758:  5748:  5728:  5710:  5700:  5572:  5554:  5531:  5521:  5496:  5486:  5438:  5428:  5410:  5381:  4447:  4310:For a 3286:length 940:where 797:, let 626:, the 259:Circle 5799:(PDF) 5770:, 2, 5694:(PDF) 5671:, 1, 5570:JSTOR 5396:(PDF) 5182:split 5155:Notes 4790:(see 4786:into 4688:is a 4643:is a 4596:is a 4579:torus 4489:is a 4478:. If 4472:index 4321:< 3369:be a 2174:with 2107:: If 747:be a 334:Index 5855:ISBN 5829:ISBN 5746:ISBN 5726:ISBN 5698:ISBN 5519:ISBN 5484:ISBN 5426:ISBN 5379:ISBN 4972:as: 4663:and 4372:) = 4345:) = 3329:Let 3279:and 3250:only 3220:and 3137:and 3054:and 2948:and 2844:and 2740:and 2634:and 2580:and 2528:and 2479:and 2373:for 2329:and 1842:> 727:Let 659:most 284:Loop 25:and 5900:Zbl 5892:hdl 5839:Zbl 5811:Zbl 5784:Zbl 5776:doi 5756:Zbl 5708:Zbl 5677:doi 5667:", 5562:doi 5529:Zbl 5494:Zbl 5436:Zbl 5408:Zbl 5029:Out 4983:Out 4794:). 4692:of 4684:If 4659:of 4609:GL, 4588:If 4565:of 4560:the 4474:in 4383:), 4225:or 4093:of 3760:of 3592:in 3572:of 3417:in 3397:of 3373:in 2194:in 2066:of 1665:If 1012:of 618:In 115:Sp( 105:SU( 85:SO( 65:SL( 55:GL( 5970:: 5943:. 5927:, 5921:, 5898:, 5888:11 5886:, 5876:47 5874:, 5837:, 5807:11 5805:, 5801:, 5782:, 5772:38 5754:, 5706:, 5673:10 5568:, 5560:, 5548:35 5546:, 5527:, 5513:, 5492:, 5459:, 5453:, 5434:, 5404:14 5402:, 5398:, 5348:^ 5321:^ 5307:^ 4909:G, 4825:. 4813:- 4707:= 4669:G. 4665:Z, 4631:→ 4550:= 4482:= 4412::= 4364:= 4337:= 4307:. 4291:. 3309:, 3305:, 3272:. 3213:ij 3190:=1 2301:. 1883:. 1265:. 684:. 95:U( 75:O( 5949:. 5894:: 5778:: 5679:: 5655:1 5652:= 5645:j 5642:i 5638:k 5633:) 5627:j 5623:r 5617:i 5613:r 5609:( 5606:= 5601:2 5596:i 5592:r 5564:: 5232:) 5229:T 5226:; 5223:W 5220:( 5215:1 5211:H 5200:T 5196:W 5186:. 5169:G 5100:k 5096:) 5092:2 5088:/ 5083:Z 5079:( 5061:G 5044:. 5041:) 5038:G 5035:( 5023:) 5020:T 5017:; 5014:W 5011:( 5006:1 5002:H 4995:) 4992:N 4989:( 4960:, 4957:) 4954:T 4951:( 4946:G 4942:N 4938:= 4935:N 4921:T 4917:W 4883:! 4878:q 4874:] 4870:n 4867:[ 4856:q 4851:n 4819:n 4815:k 4811:n 4807:k 4784:B 4782:/ 4780:G 4760:B 4757:w 4754:B 4749:W 4743:w 4735:= 4732:G 4716:B 4712:0 4709:T 4705:T 4694:G 4686:B 4661:W 4653:N 4649:G 4641:N 4637:T 4635:/ 4633:N 4629:N 4613:D 4602:G 4594:T 4590:G 4583:G 4575:G 4573:( 4571:W 4567:G 4556:T 4554:/ 4552:N 4548:Z 4546:/ 4544:N 4528:0 4524:T 4520:= 4517:) 4512:0 4508:T 4504:( 4501:Z 4487:0 4484:T 4480:T 4476:N 4468:Z 4464:W 4444:. 4441:) 4438:T 4435:( 4432:Z 4428:/ 4424:) 4421:T 4418:( 4415:N 4409:) 4406:G 4403:, 4400:T 4397:( 4394:W 4381:T 4379:( 4376:G 4374:Z 4370:T 4368:( 4366:Z 4362:Z 4354:T 4352:( 4349:G 4347:N 4343:T 4341:( 4339:N 4335:N 4323:G 4319:T 4315:G 4259:) 4256:T 4253:( 4250:Z 4246:/ 4242:) 4239:T 4236:( 4233:N 4213:T 4209:/ 4205:) 4202:T 4199:( 4196:N 4176:) 4173:T 4170:( 4167:Z 4163:/ 4159:) 4156:T 4153:( 4150:N 4130:T 4110:) 4107:T 4104:( 4101:N 4075:x 4028:K 4008:T 3984:) 3981:T 3978:, 3975:K 3972:( 3940:. 3928:) 3925:T 3922:( 3919:Z 3915:/ 3911:) 3908:T 3905:( 3902:N 3899:= 3896:W 3873:T 3870:= 3867:) 3864:T 3861:( 3858:Z 3846:. 3834:T 3830:/ 3826:) 3823:T 3820:( 3817:N 3814:= 3811:W 3788:T 3768:K 3748:W 3736:. 3724:} 3721:T 3715:t 3706:t 3703:= 3698:1 3691:x 3687:t 3684:x 3680:| 3676:K 3670:x 3667:{ 3664:= 3661:) 3658:T 3655:( 3652:Z 3629:) 3626:T 3623:( 3620:Z 3600:K 3580:T 3564:. 3552:} 3549:T 3543:t 3534:, 3531:T 3523:1 3516:x 3512:t 3509:x 3505:| 3501:K 3495:x 3492:{ 3489:= 3486:) 3483:T 3480:( 3477:N 3454:) 3451:T 3448:( 3445:N 3425:K 3405:T 3381:K 3357:T 3337:K 3260:W 3236:W 3222:j 3218:i 3211:m 3206:j 3202:x 3198:i 3194:x 3188:i 3186:x 3181:i 3179:x 3102:2 3029:. 3017:1 3014:= 3009:6 3005:) 2995:s 2985:s 2981:( 2957:v 2936:v 2925:. 2913:1 2910:= 2905:4 2901:) 2891:s 2881:s 2877:( 2853:v 2832:v 2821:. 2809:1 2806:= 2801:3 2797:) 2787:s 2777:s 2773:( 2749:v 2728:v 2717:. 2705:1 2702:= 2697:2 2693:) 2683:s 2673:s 2669:( 2643:s 2616:s 2589:s 2562:s 2537:v 2516:v 2488:v 2467:v 2447:} 2438:s 2434:, 2425:s 2421:{ 2279:, 2270:s 2249:, 2236:, 2227:s 2214:. 2156:s 2086:. 2074:C 2048:C 2025:v 2005:V 1999:v 1979:C 1904:, 1895:s 1845:0 1839:) 1836:v 1833:, 1827:( 1807:V 1801:v 1767:s 1746:V 1720:s 1679:V 1650:} 1645:2 1637:, 1632:1 1624:{ 1586:1 1583:+ 1580:n 1558:n 1554:A 1533:j 1513:i 1493:V 1471:1 1468:+ 1465:n 1460:R 1438:i 1416:i 1412:e 1391:j 1385:i 1381:, 1376:j 1372:e 1363:i 1359:e 1336:1 1333:+ 1330:n 1325:R 1303:V 1281:n 1277:A 1253:W 1213:W 1193:W 1171:2 1167:A 1143:W 1097:s 1070:s 1049:) 1046:V 1043:( 1040:O 1000:W 980:V 960:) 954:, 948:( 936:, 918:) 912:, 906:( 901:) 895:, 892:v 889:( 883:2 877:v 874:= 871:) 868:v 865:( 856:s 806:s 759:V 709:2 705:A 607:e 600:t 593:v 233:8 231:E 225:7 223:E 217:6 215:E 209:4 207:F 201:2 199:G 181:n 178:D 171:n 168:C 161:n 158:B 151:n 148:A 119:) 117:n 109:) 107:n 99:) 97:n 89:) 87:n 79:) 77:n 69:) 67:n 59:) 57:n

Index

Lie groups
Lie algebras

Classical groups
General linear
Special linear
Orthogonal
Special orthogonal
Unitary
Special unitary
Symplectic
Simple Lie groups
An
Bn
Cn
Dn
G2
F4
E6
E7
E8
Other Lie groups
Circle
Lorentz
Poincaré
Conformal group
Diffeomorphism
Loop
Euclidean
Lie algebras

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑