Knowledge

Yang–Mills equations

Source 📝

3302: 31: 40: 2722: 51: 3297:{\displaystyle {\begin{aligned}{\frac {d}{dt}}\left(\operatorname {YM} (A+ta)\right)_{t=0}&={\frac {d}{dt}}\left(\int _{X}\langle F_{A}+t\,d_{A}a+t^{2}a\wedge a,F_{A}+t\,d_{A}a+t^{2}a\wedge a\rangle \,d\mathrm {vol} _{g}\right)_{t=0}\\&={\frac {d}{dt}}\left(\int _{X}\|F_{A}\|^{2}+2t\langle F_{A},d_{A}a\rangle +2t^{2}\langle F_{A},a\wedge a\rangle +t^{4}\|a\wedge a\|^{2}\,d\mathrm {vol} _{g}\right)_{t=0}\\&=2\int _{X}\langle d_{A}^{*}F_{A},a\rangle \,d\mathrm {vol} _{g}.\end{aligned}}} 60: 3633: 5547:
The moduli space of ASD instantons may be used to define further invariants of four-manifolds. Donaldson defined polynomials on the second homology group of a suitably restricted class of four-manifolds, arising from pairings of cohomology classes on the moduli space. This work has subsequently been
1014:
of this functional, either the absolute minima or local minima. That is to say, Yang–Mills connections are precisely those that minimize their curvature. In this sense they are the natural choice of connection on a principal or vector bundle over a manifold from a mathematical point of view.
4784:. For various choices of principal bundle, one obtains moduli spaces with interesting properties. These spaces are Hausdorff, even when allowing reducible connections, and are generically smooth. It was shown by Donaldson that the smooth part is orientable. By the 5543:
in two ways: once using that signature is a cobordism invariant, and another using a Hodge-theoretic interpretation of reducible connections. Interpreting these counts carefully, one can conclude that such a smooth manifold has diagonalisable intersection form.
611:
In addition to the physical origins of the theory, the Yang–Mills equations are of important geometric interest. There is in general no natural choice of connection on a vector bundle or principal bundle. In the special case where this bundle is the
3450: 1954: 2446: 533: 1727: 699: 5759:
The duality observed for these solutions is theorized to hold for arbitrary dual groups of symmetries of a four-manifold. Indeed there is a similar duality between instantons invariant under dual lattices inside
4977: 4782: 4277: 820: 1531: 760:. The first attempt at choosing a canonical connection might be to demand that these forms vanish. However, this is not possible unless the trivialisation is flat, in the sense that the transition functions 5748:, who first described how to construct monopoles from Nahm equation data. Hitchin showed the converse, and Donaldson proved that solutions to the Nahm equations could further be linked to moduli spaces of 3785: 6134:
Atiyah, M. F., & Bott, R. (1983). The Yang–Mills equations over riemann surfaces. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 308(1505),
5279: 624:, but in general there is an infinite-dimensional space of possible choices. A Yang–Mills connection gives some kind of natural choice of a connection for a general fibre bundle, as we now describe. 4144: 2701: 2727: 2012: 2556: 5881: 5440:
The moduli space of Yang–Mills equations was used by Donaldson to prove Donaldson's theorem about the intersection form of simply-connected four-manifolds. Using analytical results of
4648: 2324: 911: 367: 4822: 4704: 3442: 1563: 1473: 1312: 5120: 4607: 4576: 290: 6222:
Nahm, W. (1983). All self-dual multimonopoles for arbitrary gauge groups. In Structural elements in particle physics and statistical mechanics (pp. 301–310). Springer, Boston, MA.
4461: 4413: 2191: 601: 4545: 4514: 3998: 3967: 3936: 5541: 5509: 2092: 5820: 5787: 5720: 5661: 5624: 5591: 5368: 5339: 732: 6007: 3857: 3833: 3809: 3715: 2486: 2338:
class of a differential form. The analogy being that a Yang–Mills connection is like a harmonic representative in the set of all possible connections on a principal bundle.
4023:, which was proved in this form relating Yang–Mills connections to holomorphic vector bundles by Donaldson. In this setting the moduli space has the structure of a compact 5742: 2272: 847: 4864: 5917:
of Ward. In this sense it is a 'master theory' for integrable systems, allowing many known systems to be recovered by picking appropriate parameters, such as choice of
2140: 5076: 5016: 3688: 1766: 5961: 5177: 4300: 2032: 758: 5420: 5310: 1848: 1817: 1630: 1382: 1253: 1008: 942: 437: 3628:{\displaystyle \operatorname {YM} (g\cdot A)=\int _{X}\|gF_{A}g^{-1}\|^{2}\,d\mathrm {vol} _{g}=\int _{X}\|F_{A}\|^{2}\,d\mathrm {vol} _{g}=\operatorname {YM} (A)} 2585: 5911: 5560:
Through the process of dimensional reduction, the Yang–Mills equations may be used to derive other important equations in differential geometry and gauge theory.
5203: 5391: 4194: 5470: 5144: 5040: 4668: 4368: 4348: 4328: 4171: 4077: 4045: 3905: 3881: 3739: 3656: 3410: 3390: 3345: 3325: 2605: 2506: 1790: 1603: 1583: 1437: 1402: 1352: 1332: 1277: 1223: 1200: 1176: 1156: 1136: 1116: 1093: 1073: 1041: 962: 402: 317: 1856: 376:
The essential points of the work of Yang and Mills are as follows. One assumes that the fundamental description of a physical model is through the use of
2358: 445: 1638: 240:
developed (essentially independent of the mathematical literature) the theory of principal bundles and connections in order to explain the concept of
630: 6174:
Donaldson, S. K. (1986). Connections, cohomology and the intersection forms of 4-manifolds. Journal of Differential Geometry, 24(3), 275–341.
822:
are constant functions. Not every bundle is flat, so this is not possible in general. Instead one might ask that the local connection forms
4872: 5833:
is that in fact all known integrable ODEs and PDEs come from symmetry reduction of ASDYM. For example reductions of SU(2) ASDYM give the
4713: 4202: 6165:
Donaldson, S. K. (1983). An application of gauge theory to four-dimensional topology. Journal of Differential Geometry, 18(2), 279–315.
6050: 763: 6240:
Donaldson, S. K. (1984). Nahm's equations and the classification of monopoles. Communications in Mathematical Physics, 96(3), 387–408.
6195:
Taubes, C. H. (1982). Self-dual Yang–Mills connections on non-self-dual 4-manifolds. Journal of Differential Geometry, 17(1), 139–170.
1478: 6283:
Axelrod, S., Della Pietra, S., & Witten, E. (1991). Geometric quantization of Chern Simons gauge theory. representations, 34, 39.
2041:
Assuming the above set up, the Yang–Mills equations are a system of (in general non-linear) partial differential equations given by
5922: 132:(bottom right). The BPST instanton is a solution to the anti-self duality equations, and therefore of the Yang–Mills equations, on 3744: 384:(change of local trivialisation of principal bundle), these physical fields must transform in precisely the way that a connection 6309: 6144:
Donaldson, S. K. (1983). A new proof of a theorem of Narasimhan and Seshadri. Journal of Differential Geometry, 18(2), 269–277.
6153:
Friedman, R., & Morgan, J. W. (1998). Gauge theory and the topology of four-manifolds (Vol. 4). American Mathematical Soc.
5208: 6098:
Yang, C.N. and Mills, R.L., 1954. Conservation of isotopic spin and isotopic gauge invariance. Physical review, 96(1), p.191.
5753: 4085: 6274:
Hitchin, N. J. (1990). Flat connections and geometric quantization. Communications in mathematical physics, 131(2), 347–380.
6213:
Uhlenbeck, K. K. (1982). Removable singularities in Yang–Mills fields. Communications in Mathematical Physics, 83(1), 11–29.
2613: 5370:
may be extended across the point at infinity using Uhlenbeck's removable singularity theorem. More generally, for positive
1203: 6045: 6055: 6204:
Uhlenbeck, K. K. (1982). Connections with L bounds on curvature. Communications in Mathematical Physics, 83(1), 31–42.
6259: 5964: 1963: 439:
of the connection, and the energy of the gauge field is given (up to a constant) by the Yang–Mills action functional
2515: 5844: 19:
This article discusses the Yang–Mills equations from a mathematical perspective. For the physics perspective, see
4785: 4020: 6231:
Hitchin, N. J. (1983). On the construction of monopoles. Communications in Mathematical Physics, 89(2), 145–190.
4612:
The moduli space of ASD connections, or instantons, was most intensively studied by Donaldson in the case where
4047:
is four. Here the Yang–Mills equations admit a simplification from a second-order PDE to a first-order PDE, the
6299: 5838: 5123: 122: 6107:
Pauli, W., 1941. Relativistic field theories of elementary particles. Reviews of Modern Physics, 13(3), p.203.
4615: 849:
are themselves constant. On a principal bundle the correct way to phrase this condition is that the curvature
296:
and others. The novelty of the work of Yang and Mills was to define gauge theories for an arbitrary choice of
6304: 6035: 5549: 2284: 1355: 1179: 852: 334: 171: 4791: 4677: 3415: 1536: 1446: 1285: 5081: 4581: 4550: 2707: 1011: 547: 263: 6125:
Donaldson, S. K., & Kronheimer, P. B. (1990). The geometry of four-manifolds. Oxford University Press.
4418: 5666:
By requiring the self-duality equations to be invariant under translation in two directions, one obtains
5597:
By requiring the anti-self-duality equations to be invariant under translations in a single direction of
4373: 2150: 560: 187: 4519: 4488: 3972: 3941: 3910: 6030: 5514: 5482: 2275: 2049: 979:
The best one can hope for is then to ask that instead of vanishing curvature, the bundle has curvature
163: 5796: 5763: 5696: 5637: 5600: 5567: 5344: 5315: 3718: 704: 539: 328: 5974: 5452:) the moduli space of ASD instantons on a smooth, compact, oriented, simply-connected four-manifold 4016: 3838: 3814: 3790: 3696: 2467: 369:
corresponding to electromagnetism, and the right framework to discuss such objects is the theory of
6186:
Donaldson, S. K. (1990). Polynomial invariants for smooth four-manifolds. Topology, 29(3), 257–315.
5477: 233: 175: 5725: 5685:
By requiring the anti-self-duality equations to be invariant in three directions, one obtains the
4027:. Moduli of Yang–Mills connections have been most studied when the dimension of the base manifold 2234: 5968: 5938: 5914: 5449: 4003:
Moduli spaces of Yang–Mills connections have been intensively studied in specific circumstances.
825: 4827: 6010: 5667: 5435: 3863:
or a smooth manifold. However, by restricting to irreducible connections, that is, connections
2113: 1769: 1413: 621: 257: 216: 5045: 4985: 3667: 1735: 976:
to the existence of flat connections: not every principal bundle can have a flat connection.
30: 5946: 5149: 914: 248:
as it applies to physical theories. The gauge theories Yang and Mills discovered, now called
159: 117:(bottom left). A visual representation of the field strength of a BPST instanton with center 39: 20: 4285: 2017: 737: 105:
coefficient (top right). These coefficients determine the restriction of the BPST instanton
5834: 5830: 5448:, Donaldson was able to show that in specific circumstances (when the intersection form is 5396: 5288: 1826: 1795: 1608: 1360: 1231: 1055:. The Yang–Mills equations can be phrased for a connection on a vector bundle or principal 986: 920: 415: 3693:
There is a moduli space of Yang–Mills connections modulo gauge transformations. Denote by
2561: 8: 5926: 5890: 5627: 5182: 2035: 1405: 1052: 617: 543: 253: 5373: 4176: 3327:
is a critical point of the Yang–Mills functional if and only if this vanishes for every
5884: 5631: 5455: 5129: 5025: 4653: 4353: 4333: 4313: 4156: 4062: 4030: 3890: 3866: 3724: 3641: 3395: 3375: 3330: 3310: 2590: 2491: 2335: 1775: 1588: 1568: 1422: 1387: 1337: 1317: 1262: 1208: 1185: 1161: 1141: 1121: 1101: 1078: 1058: 1026: 973: 947: 387: 302: 4024: 6255: 5826: 5790: 1949:{\displaystyle \langle d_{A}s,t\rangle _{L^{2}}=\langle s,d_{A}^{*}t\rangle _{L^{2}}} 1256: 5593:, and imposing that the solutions be invariant under a symmetry group. For example: 4079:
is four, a coincidence occurs: the Hodge star operator maps two-forms to two-forms,
3907:, one does obtain Hausdorff spaces. The space of irreducible connections is denoted 983:. The Yang–Mills action functional described above is precisely (the square of) the 6040: 5693:
There is a duality between solutions of the dimensionally reduced ASD equations on
4671: 2441:{\displaystyle \operatorname {YM} (A)=\int _{X}\|F_{A}\|^{2}\,d\mathrm {vol} _{g}.} 2229: 1820: 1440: 528:{\displaystyle \operatorname {YM} (A)=\int _{X}\|F_{A}\|^{2}\,d\mathrm {vol} _{g}.} 370: 183: 5564:
is the process of taking the Yang–Mills equations over a four-manifold, typically
4469:), the connection is a Yang–Mills connection. These connections are called either 1722:{\displaystyle \langle s,t\rangle _{L^{2}}=\int _{X}\langle s,t\rangle \,dvol_{g}} 140:'s removable singularity theorem to a topologically non-trivial ASD connection on 5445: 5441: 4012: 3860: 3362: 212: 137: 5686: 5679: 5282: 4004: 1280: 1226: 613: 293: 237: 76: 3787:
classifies all connections modulo gauge transformations, and the moduli space
694:{\displaystyle A_{\alpha }\in \Omega ^{1}(U_{\alpha },\operatorname {ad} (P))} 50: 6293: 6018: 6014: 5671: 5476:
between a copy of the manifold itself, and a disjoint union of copies of the
1409: 1048: 1044: 179: 5749: 5675: 5019: 3370: 2509: 2331: 208: 95: 1732:
where inside the integral the fiber-wise inner product is being used, and
331:
for more details). This group could be non-Abelian as opposed to the case
5918: 5745: 4707: 4150:
The Hodge star operator squares to the identity in this case, and so has
969: 155: 5943:
The moduli space of Yang–Mills equations over a compact Riemann surface
4485:. The spaces of self-dual and anti-self-dual connections are denoted by 4151: 4008: 2330:
In this sense the search for Yang–Mills connections can be compared to
5205:, the intersection form is trivial and the moduli space has dimension 1010:-norm of the curvature, and its Euler–Lagrange equations describe the 5473: 4972:{\displaystyle \dim {\mathcal {M}}_{k}^{-}=8k-3(1-b_{1}(X)+b_{+}(X))} 1096: 297: 203: 6075: 2274:, so Yang–Mills connections can be seen as a non-linear analogue of 2110:
Since the Hodge star is an isomorphism, by the explicit formula for
4777:{\displaystyle c_{2}(P)\in H^{4}(X,\mathbb {Z} )\cong \mathbb {Z} } 3884: 2464:
To derive the equations from the functional, recall that the space
5825:
Symmetry reductions of the ASD equations also lead to a number of
4272:{\displaystyle \Omega ^{2}(X)=\Omega _{+}(X)\oplus \Omega _{-}(X)} 1225:
on the total space of the principal bundle. This connection has a
4015:. There the moduli space obtains an alternative description as a 2346:
The Yang–Mills equations are the Euler–Lagrange equations of the
815:{\displaystyle g_{\alpha \beta }:U_{\alpha }\cap U_{\beta }\to G} 151: 59: 5555: 1526:{\displaystyle \operatorname {ad} (P)\otimes \Lambda ^{2}T^{*}X} 113:
to this slice. The corresponding field strength centered around
5921:
and symmetry reduction scheme. Other such master theories are
16:
Partial differential equations whose solutions are instantons
3780:{\displaystyle {\mathcal {B}}={\mathcal {A}}/{\mathcal {G}}} 232:
In their foundational paper on the topic of gauge theories,
4011:
studied the Yang–Mills equations for bundles over compact
3811:
of Yang–Mills connections is a subset. In general neither
968:), then the underlying principal bundle must have trivial 3356: 5274:{\displaystyle \dim {\mathcal {M}}_{1}^{-}(S^{4})=8-3=5} 1632:-inner product on the sections of this bundle. Namely, 194:. They have also found significant use in mathematics. 4139:{\displaystyle \star :\Omega ^{2}(X)\to \Omega ^{2}(X)} 550:
of this functional, which are the Yang–Mills equations
5078:
is the dimension of the positive-definite subspace of
2696:{\displaystyle F_{A+ta}=F_{A}+td_{A}a+t^{2}a\wedge a.} 6254:. Oxford: Oxford University Press. pp. 151–154. 5977: 5949: 5893: 5847: 5799: 5793:
can be thought of as a duality between instantons on
5766: 5728: 5699: 5640: 5603: 5570: 5517: 5485: 5458: 5399: 5376: 5347: 5318: 5291: 5211: 5185: 5152: 5132: 5084: 5048: 5028: 4988: 4875: 4830: 4794: 4716: 4680: 4656: 4618: 4584: 4553: 4522: 4491: 4421: 4376: 4356: 4336: 4316: 4288: 4205: 4179: 4159: 4088: 4065: 4033: 3975: 3944: 3913: 3893: 3869: 3841: 3817: 3793: 3747: 3727: 3699: 3670: 3644: 3453: 3418: 3398: 3378: 3333: 3313: 2725: 2616: 2593: 2564: 2518: 2494: 2470: 2361: 2287: 2237: 2153: 2142:
the Yang–Mills equations can equivalently be written
2116: 2052: 2020: 1966: 1859: 1829: 1798: 1778: 1738: 1641: 1611: 1591: 1571: 1539: 1481: 1449: 1425: 1390: 1384:, defined on the adjoint bundle. Additionally, since 1363: 1340: 1320: 1288: 1265: 1234: 1211: 1188: 1164: 1144: 1124: 1104: 1081: 1061: 1029: 989: 950: 923: 855: 828: 766: 740: 707: 633: 563: 448: 418: 390: 337: 305: 266: 5789:, instantons on dual four-dimensional tori, and the 2607:
in this affine space, the curvatures are related by
1443:, and combined with the invariant inner product on 6001: 5955: 5905: 5875: 5814: 5781: 5736: 5714: 5655: 5618: 5585: 5535: 5503: 5464: 5414: 5385: 5362: 5333: 5312:up to a 5 parameter family defining its centre in 5304: 5273: 5197: 5171: 5138: 5114: 5070: 5034: 5010: 4971: 4858: 4816: 4776: 4698: 4662: 4642: 4601: 4570: 4539: 4508: 4455: 4407: 4362: 4342: 4322: 4294: 4271: 4188: 4165: 4138: 4071: 4039: 3992: 3961: 3930: 3899: 3875: 3851: 3827: 3803: 3779: 3733: 3709: 3682: 3650: 3627: 3444:is invariant, the Yang–Mills functional satisfies 3436: 3404: 3384: 3339: 3319: 3296: 2695: 2599: 2579: 2550: 2500: 2480: 2440: 2318: 2266: 2185: 2134: 2086: 2026: 2006: 1948: 1842: 1811: 1784: 1760: 1721: 1624: 1597: 1577: 1557: 1525: 1467: 1431: 1396: 1376: 1346: 1326: 1306: 1271: 1247: 1217: 1194: 1170: 1150: 1130: 1110: 1087: 1067: 1035: 1002: 956: 936: 905: 841: 814: 752: 726: 693: 595: 527: 431: 396: 361: 311: 284: 5674:. These equations naturally lead to the study of 6291: 4048: 1439:is Riemannian, there is an inner product on the 546:for this physical theory should be given by the 2334:, which seeks a harmonic representative in the 2007:{\displaystyle d_{A}^{*}=\pm \star d_{A}\star } 1118:. Here the latter convention is presented. Let 4282:into the positive and negative eigenspaces of 4054: 2551:{\displaystyle \Omega ^{1}(P;{\mathfrak {g}})} 260:, which had been phrased in the language of a 5876:{\displaystyle \mathrm {SL} (3,\mathbb {R} )} 5822:and dual algebraic data over a single point. 5556:Dimensional reduction and other moduli spaces 2228:Every connection automatically satisfies the 3576: 3562: 3518: 3488: 3262: 3228: 3157: 3144: 3128: 3103: 3084: 3055: 3037: 3023: 2940: 2830: 2404: 2390: 1930: 1902: 1883: 1860: 1696: 1684: 1655: 1642: 721: 708: 491: 477: 4824:, the moduli space of ASD connections when 627:A connection is defined by its local forms 4196:. In particular, there is a decomposition 4017:moduli space of holomorphic vector bundles 6009:. In this case the moduli space admits a 5866: 5802: 5769: 5730: 5702: 5643: 5606: 5573: 5523: 5520: 5491: 5488: 5350: 5321: 5105: 4770: 4759: 3585: 3527: 3265: 3166: 2943: 2904: 2849: 2413: 1699: 500: 6249: 6243: 4788:, one may compute that the dimension of 4643:{\displaystyle G=\operatorname {SU} (2)} 4059:When the dimension of the base manifold 1475:there is an inner product on the bundle 408:) on a principal bundle transforms. The 6074:For a proof of this fact, see the post 6051:Deformed Hermitian Yang–Mills equations 5511:. We can count the number of copies of 5285:, which is the unique ASD instanton on 3938:, and so the moduli spaces are denoted 2319:{\displaystyle d\omega =d^{*}\omega =0} 906:{\displaystyle F_{A}=dA+{\frac {1}{2}}} 362:{\displaystyle G=\operatorname {U} (1)} 6292: 6182: 6180: 6161: 6159: 5932: 5429: 4817:{\displaystyle {\mathcal {M}}_{k}^{-}} 4699:{\displaystyle \operatorname {SU} (2)} 3437:{\displaystyle \operatorname {ad} (P)} 3357:Moduli space of Yang–Mills connections 1558:{\displaystyle \operatorname {ad} (P)} 1468:{\displaystyle \operatorname {ad} (P)} 1307:{\displaystyle \operatorname {ad} (P)} 620:, there is such a natural choice, the 197:Solutions of the equations are called 5115:{\displaystyle H_{2}(X,\mathbb {R} )} 4602:{\displaystyle {\mathcal {M}}^{\pm }} 4571:{\displaystyle {\mathcal {B}}^{\pm }} 285:{\displaystyle \operatorname {U} (1)} 6121: 6119: 6117: 6115: 6113: 5923:four-dimensional Chern–Simons theory 5281:. This agrees with existence of the 4706:-bundle is classified by its second 4456:{\displaystyle F_{A}=-{\star F_{A}}} 2352: 2144: 2043: 1204:Lie algebra-valued differential form 252:, generalised the classical work of 6177: 6156: 4408:{\displaystyle F_{A}={\star F_{A}}} 2540: 2186:{\displaystyle d_{A}\star F_{A}=0.} 596:{\displaystyle d_{A}\star F_{A}=0.} 136:. This solution can be extended by 13: 6252:Solitons, instantons, and twistors 5978: 5950: 5852: 5849: 5341:and its scale. Such instantons on 5221: 4885: 4798: 4588: 4557: 4540:{\displaystyle {\mathcal {A}}^{-}} 4526: 4509:{\displaystyle {\mathcal {A}}^{+}} 4495: 4251: 4229: 4207: 4118: 4096: 3993:{\displaystyle {\mathcal {M}}^{*}} 3979: 3962:{\displaystyle {\mathcal {B}}^{*}} 3948: 3931:{\displaystyle {\mathcal {A}}^{*}} 3917: 3844: 3820: 3796: 3772: 3760: 3750: 3702: 3597: 3594: 3591: 3539: 3536: 3533: 3347:, and this occurs precisely when ( 3277: 3274: 3271: 3178: 3175: 3172: 2955: 2952: 2949: 2520: 2473: 2425: 2422: 2419: 1501: 648: 512: 509: 506: 344: 267: 14: 6321: 6110: 6076:https://mathoverflow.net/a/265399 5744:called the Nahm transform, after 5536:{\displaystyle \mathbb {CP} ^{2}} 5504:{\displaystyle \mathbb {CP} ^{2}} 4674:. In this setting, the principal 4483:anti-self-duality (ASD) equations 3412:, and since the inner product on 2087:{\displaystyle d_{A}^{*}F_{A}=0.} 5887:, and a particular reduction to 5815:{\displaystyle \mathbb {R} ^{4}} 5782:{\displaystyle \mathbb {R} ^{4}} 5715:{\displaystyle \mathbb {R} ^{3}} 5656:{\displaystyle \mathbb {R} ^{3}} 5619:{\displaystyle \mathbb {R} ^{4}} 5586:{\displaystyle \mathbb {R} ^{4}} 5363:{\displaystyle \mathbb {R} ^{4}} 5334:{\displaystyle \mathbb {R} ^{4}} 58: 49: 38: 29: 6277: 6268: 6234: 6225: 6216: 6207: 6198: 6189: 6068: 5424: 5393:the moduli space has dimension 1334:. Associated to the connection 727:{\displaystyle \{U_{\alpha }\}} 186:. They arise in physics as the 6310:Partial differential equations 6168: 6147: 6138: 6128: 6101: 6092: 6046:Hermitian Yang–Mills equations 6013:, discovered independently by 6002:{\displaystyle \Sigma \times } 5996: 5984: 5870: 5856: 5250: 5237: 5109: 5095: 5065: 5059: 5005: 4999: 4966: 4963: 4957: 4941: 4935: 4916: 4847: 4841: 4763: 4749: 4733: 4727: 4693: 4687: 4637: 4631: 4266: 4260: 4244: 4238: 4222: 4216: 4133: 4127: 4114: 4111: 4105: 3852:{\displaystyle {\mathcal {M}}} 3828:{\displaystyle {\mathcal {B}}} 3804:{\displaystyle {\mathcal {M}}} 3710:{\displaystyle {\mathcal {G}}} 3622: 3616: 3472: 3460: 3431: 3425: 2772: 2757: 2545: 2529: 2481:{\displaystyle {\mathcal {A}}} 2374: 2368: 1552: 1546: 1494: 1488: 1462: 1456: 1301: 1295: 900: 888: 806: 744: 701:for a trivialising open cover 688: 685: 679: 657: 606: 551: 461: 455: 356: 350: 279: 273: 172:partial differential equations 1: 6085: 6036:Connection (principal bundle) 4350:-bundle over a four-manifold 3361:The Yang–Mills equations are 2512:modelled on the vector space 2341: 1356:exterior covariant derivative 1018: 222: 5737:{\displaystyle \mathbb {R} } 2558:. Given a small deformation 2267:{\displaystyle d_{A}F_{A}=0} 1960:Explicitly this is given by 192:Yang–Mills action functional 7: 6024: 4786:Atiyah–Singer index theorem 4479:self-duality (SD) equations 4465: 4310:two-forms. If a connection 4055:Anti-self-duality equations 4049:anti-self-duality equations 4021:Narasimhan–Seshadri theorem 3660: 3349: 2712: 2454: 2276:harmonic differential forms 2217: 2211: 2199: 2100: 1819:-inner product, the formal 1404:is compact, its associated 842:{\displaystyle A_{\alpha }} 380:, and derives that under a 10: 6326: 6056:Yang–Mills–Higgs equations 6031:Connection (vector bundle) 5936: 5839:Korteweg–de Vries equation 5433: 4859:{\displaystyle c_{2}(P)=k} 4475:anti-self-dual connections 944:vanishes (that is to say, 542:dictates that the correct 382:local gauge transformation 227: 211:of instantons was used by 18: 6250:Dunajski, Maciej (2010). 6017:and Axelrod–Della Pietra– 5550:Seiberg–Witten invariants 3887:group is given by all of 2209:A connection satisfying ( 2135:{\displaystyle d_{A}^{*}} 1605:is oriented, there is an 540:principle of least action 329:Gauge group (mathematics) 6061: 5478:complex projective plane 5071:{\displaystyle b_{+}(X)} 5011:{\displaystyle b_{1}(X)} 4477:, and the equations the 3683:{\displaystyle g\cdot A} 3392:of the principal bundle 1761:{\displaystyle dvol_{g}} 548:Euler–Lagrange equations 188:Euler–Lagrange equations 5956:{\displaystyle \Sigma } 5915:integrable chiral model 5754:complex projective line 5172:{\displaystyle X=S^{4}} 974:topological obstruction 6011:geometric quantization 6003: 5957: 5907: 5877: 5816: 5783: 5738: 5716: 5670:first investigated by 5657: 5620: 5587: 5537: 5505: 5466: 5416: 5387: 5364: 5335: 5306: 5275: 5199: 5173: 5140: 5116: 5072: 5036: 5012: 4973: 4860: 4818: 4778: 4700: 4664: 4644: 4603: 4572: 4541: 4510: 4457: 4409: 4364: 4344: 4324: 4296: 4295:{\displaystyle \star } 4273: 4190: 4167: 4140: 4073: 4041: 3994: 3963: 3932: 3901: 3877: 3853: 3829: 3805: 3781: 3735: 3711: 3684: 3652: 3629: 3438: 3406: 3386: 3341: 3321: 3298: 2697: 2601: 2581: 2552: 2502: 2488:of all connections on 2482: 2442: 2320: 2268: 2187: 2136: 2088: 2028: 2027:{\displaystyle \star } 2008: 1950: 1844: 1813: 1786: 1770:Riemannian volume form 1762: 1723: 1626: 1599: 1579: 1559: 1527: 1469: 1433: 1414:adjoint representation 1398: 1378: 1348: 1328: 1308: 1273: 1249: 1219: 1202:may be specified by a 1196: 1172: 1152: 1132: 1112: 1089: 1069: 1037: 1004: 958: 938: 913:vanishes. However, by 907: 843: 816: 754: 753:{\displaystyle P\to X} 728: 695: 622:Levi-Civita connection 597: 529: 433: 398: 363: 313: 286: 199:Yang–Mills connections 6300:Differential geometry 6004: 5963:can be viewed as the 5958: 5913:dimensions gives the 5908: 5878: 5817: 5784: 5739: 5717: 5658: 5621: 5588: 5562:Dimensional reduction 5538: 5506: 5467: 5417: 5415:{\displaystyle 8k-3.} 5388: 5365: 5336: 5307: 5305:{\displaystyle S^{4}} 5276: 5200: 5174: 5141: 5117: 5073: 5037: 5013: 4974: 4861: 4819: 4779: 4701: 4665: 4645: 4604: 4573: 4542: 4511: 4471:self-dual connections 4458: 4410: 4365: 4345: 4325: 4297: 4274: 4191: 4168: 4141: 4074: 4042: 3995: 3964: 3933: 3902: 3878: 3854: 3830: 3806: 3782: 3736: 3712: 3685: 3653: 3630: 3439: 3407: 3387: 3342: 3322: 3299: 2698: 2602: 2582: 2553: 2503: 2483: 2443: 2348:Yang–Mills functional 2321: 2269: 2223:Yang–Mills connection 2188: 2137: 2089: 2038:acting on two-forms. 2029: 2009: 1951: 1845: 1843:{\displaystyle d_{A}} 1814: 1812:{\displaystyle L^{2}} 1787: 1763: 1724: 1627: 1625:{\displaystyle L^{2}} 1600: 1580: 1565:-valued two-forms on 1560: 1528: 1470: 1434: 1399: 1379: 1377:{\displaystyle d_{A}} 1349: 1329: 1309: 1274: 1250: 1248:{\displaystyle F_{A}} 1220: 1197: 1173: 1153: 1133: 1113: 1090: 1070: 1038: 1005: 1003:{\displaystyle L^{2}} 959: 939: 937:{\displaystyle F_{A}} 908: 844: 817: 755: 729: 696: 598: 530: 434: 432:{\displaystyle F_{A}} 399: 364: 314: 287: 160:differential geometry 6305:Mathematical physics 5975: 5947: 5891: 5845: 5797: 5764: 5726: 5697: 5638: 5601: 5568: 5515: 5483: 5456: 5397: 5374: 5345: 5316: 5289: 5209: 5183: 5150: 5146:. For example, when 5130: 5122:with respect to the 5082: 5046: 5026: 4986: 4873: 4828: 4792: 4714: 4678: 4654: 4616: 4582: 4551: 4547:, and similarly for 4520: 4489: 4419: 4374: 4354: 4334: 4314: 4286: 4203: 4177: 4157: 4086: 4063: 4031: 3973: 3942: 3911: 3891: 3867: 3839: 3815: 3791: 3745: 3725: 3721:of automorphisms of 3697: 3668: 3642: 3451: 3416: 3396: 3376: 3367:gauge transformation 3365:. Mathematically, a 3331: 3311: 2723: 2614: 2591: 2580:{\displaystyle A+ta} 2562: 2516: 2492: 2468: 2359: 2285: 2235: 2151: 2114: 2050: 2018: 1964: 1857: 1827: 1796: 1776: 1736: 1639: 1609: 1589: 1569: 1537: 1479: 1447: 1423: 1408:admits an invariant 1388: 1361: 1338: 1318: 1286: 1263: 1232: 1209: 1186: 1162: 1142: 1122: 1102: 1079: 1059: 1027: 987: 981:as small as possible 948: 921: 853: 826: 764: 738: 705: 631: 561: 446: 416: 410:gauge field strength 388: 335: 303: 264: 168:Yang–Mills equations 5969:Chern–Simons theory 5965:configuration space 5939:Chern–Simons theory 5933:Chern–Simons theory 5927:affine Gaudin model 5906:{\displaystyle 2+1} 5668:Hitchin's equations 5628:Bogomolny equations 5436:Donaldson's theorem 5430:Donaldson's theorem 5236: 5198:{\displaystyle k=1} 4900: 4813: 3245: 2131: 2067: 2036:Hodge star operator 1981: 1925: 1406:compact Lie algebra 1279:with values in the 1138:denote a principal 1095:, for some compact 1053:Riemannian manifold 618:Riemannian manifold 544:equations of motion 323:(or in physics the 258:Maxwell's equations 250:Yang–Mills theories 217:Donaldson's theorem 5999: 5953: 5903: 5885:Tzitzeica equation 5873: 5827:integrable systems 5812: 5779: 5734: 5712: 5653: 5632:magnetic monopoles 5626:, one obtains the 5616: 5583: 5533: 5501: 5462: 5412: 5386:{\displaystyle k,} 5383: 5360: 5331: 5302: 5271: 5218: 5195: 5169: 5136: 5112: 5068: 5032: 5008: 4969: 4882: 4856: 4814: 4795: 4774: 4696: 4660: 4640: 4599: 4568: 4537: 4506: 4453: 4405: 4360: 4340: 4320: 4292: 4269: 4189:{\displaystyle -1} 4186: 4163: 4136: 4069: 4037: 3990: 3959: 3928: 3897: 3873: 3849: 3825: 3801: 3777: 3731: 3707: 3680: 3648: 3625: 3434: 3402: 3382: 3337: 3317: 3294: 3292: 3231: 2693: 2597: 2577: 2548: 2498: 2478: 2438: 2336:de Rham cohomology 2316: 2264: 2183: 2132: 2117: 2084: 2053: 2024: 2004: 1967: 1946: 1911: 1840: 1809: 1782: 1758: 1719: 1622: 1595: 1575: 1555: 1523: 1465: 1429: 1394: 1374: 1344: 1324: 1304: 1269: 1245: 1215: 1192: 1168: 1148: 1128: 1108: 1085: 1065: 1033: 1000: 954: 934: 903: 839: 812: 750: 724: 691: 593: 525: 429: 394: 359: 309: 282: 5831:Ward's conjecture 5791:ADHM construction 5465:{\displaystyle X} 5139:{\displaystyle X} 5124:intersection form 5035:{\displaystyle X} 4663:{\displaystyle X} 4370:satisfies either 4363:{\displaystyle X} 4343:{\displaystyle G} 4323:{\displaystyle A} 4166:{\displaystyle 1} 4072:{\displaystyle X} 4040:{\displaystyle X} 3900:{\displaystyle G} 3876:{\displaystyle A} 3734:{\displaystyle P} 3651:{\displaystyle A} 3405:{\displaystyle P} 3385:{\displaystyle g} 3340:{\displaystyle a} 3320:{\displaystyle A} 3005: 2812: 2743: 2706:To determine the 2600:{\displaystyle A} 2501:{\displaystyle P} 2462: 2461: 2207: 2206: 2108: 2107: 1785:{\displaystyle X} 1598:{\displaystyle X} 1578:{\displaystyle X} 1432:{\displaystyle X} 1397:{\displaystyle G} 1347:{\displaystyle A} 1327:{\displaystyle P} 1272:{\displaystyle X} 1218:{\displaystyle A} 1195:{\displaystyle P} 1171:{\displaystyle X} 1151:{\displaystyle G} 1131:{\displaystyle P} 1111:{\displaystyle G} 1088:{\displaystyle X} 1068:{\displaystyle G} 1036:{\displaystyle X} 957:{\displaystyle A} 917:if the curvature 915:Chern–Weil theory 886: 412:is the curvature 397:{\displaystyle A} 371:principal bundles 312:{\displaystyle G} 158:, and especially 75:coefficient of a 21:Yang–Mills theory 6317: 6284: 6281: 6275: 6272: 6266: 6265: 6247: 6241: 6238: 6232: 6229: 6223: 6220: 6214: 6211: 6205: 6202: 6196: 6193: 6187: 6184: 6175: 6172: 6166: 6163: 6154: 6151: 6145: 6142: 6136: 6132: 6126: 6123: 6108: 6105: 6099: 6096: 6079: 6072: 6041:Donaldson theory 6008: 6006: 6005: 6000: 5962: 5960: 5959: 5954: 5912: 5910: 5909: 5904: 5883:ASDYM gives the 5882: 5880: 5879: 5874: 5869: 5855: 5821: 5819: 5818: 5813: 5811: 5810: 5805: 5788: 5786: 5785: 5780: 5778: 5777: 5772: 5743: 5741: 5740: 5735: 5733: 5721: 5719: 5718: 5713: 5711: 5710: 5705: 5662: 5660: 5659: 5654: 5652: 5651: 5646: 5625: 5623: 5622: 5617: 5615: 5614: 5609: 5592: 5590: 5589: 5584: 5582: 5581: 5576: 5542: 5540: 5539: 5534: 5532: 5531: 5526: 5510: 5508: 5507: 5502: 5500: 5499: 5494: 5471: 5469: 5468: 5463: 5421: 5419: 5418: 5413: 5392: 5390: 5389: 5384: 5369: 5367: 5366: 5361: 5359: 5358: 5353: 5340: 5338: 5337: 5332: 5330: 5329: 5324: 5311: 5309: 5308: 5303: 5301: 5300: 5280: 5278: 5277: 5272: 5249: 5248: 5235: 5230: 5225: 5224: 5204: 5202: 5201: 5196: 5178: 5176: 5175: 5170: 5168: 5167: 5145: 5143: 5142: 5137: 5121: 5119: 5118: 5113: 5108: 5094: 5093: 5077: 5075: 5074: 5069: 5058: 5057: 5041: 5039: 5038: 5033: 5017: 5015: 5014: 5009: 4998: 4997: 4978: 4976: 4975: 4970: 4956: 4955: 4934: 4933: 4899: 4894: 4889: 4888: 4865: 4863: 4862: 4857: 4840: 4839: 4823: 4821: 4820: 4815: 4812: 4807: 4802: 4801: 4783: 4781: 4780: 4775: 4773: 4762: 4748: 4747: 4726: 4725: 4705: 4703: 4702: 4697: 4672:simply-connected 4669: 4667: 4666: 4661: 4649: 4647: 4646: 4641: 4608: 4606: 4605: 4600: 4598: 4597: 4592: 4591: 4577: 4575: 4574: 4569: 4567: 4566: 4561: 4560: 4546: 4544: 4543: 4538: 4536: 4535: 4530: 4529: 4515: 4513: 4512: 4507: 4505: 4504: 4499: 4498: 4462: 4460: 4459: 4454: 4452: 4451: 4450: 4431: 4430: 4414: 4412: 4411: 4406: 4404: 4403: 4402: 4386: 4385: 4369: 4367: 4366: 4361: 4349: 4347: 4346: 4341: 4329: 4327: 4326: 4321: 4301: 4299: 4298: 4293: 4278: 4276: 4275: 4270: 4259: 4258: 4237: 4236: 4215: 4214: 4195: 4193: 4192: 4187: 4172: 4170: 4169: 4164: 4145: 4143: 4142: 4137: 4126: 4125: 4104: 4103: 4078: 4076: 4075: 4070: 4046: 4044: 4043: 4038: 4013:Riemann surfaces 3999: 3997: 3996: 3991: 3989: 3988: 3983: 3982: 3968: 3966: 3965: 3960: 3958: 3957: 3952: 3951: 3937: 3935: 3934: 3929: 3927: 3926: 3921: 3920: 3906: 3904: 3903: 3898: 3882: 3880: 3879: 3874: 3858: 3856: 3855: 3850: 3848: 3847: 3834: 3832: 3831: 3826: 3824: 3823: 3810: 3808: 3807: 3802: 3800: 3799: 3786: 3784: 3783: 3778: 3776: 3775: 3769: 3764: 3763: 3754: 3753: 3740: 3738: 3737: 3732: 3716: 3714: 3713: 3708: 3706: 3705: 3689: 3687: 3686: 3681: 3657: 3655: 3654: 3649: 3634: 3632: 3631: 3626: 3606: 3605: 3600: 3584: 3583: 3574: 3573: 3561: 3560: 3548: 3547: 3542: 3526: 3525: 3516: 3515: 3503: 3502: 3487: 3486: 3443: 3441: 3440: 3435: 3411: 3409: 3408: 3403: 3391: 3389: 3388: 3383: 3353:) is satisfied. 3346: 3344: 3343: 3338: 3326: 3324: 3323: 3318: 3303: 3301: 3300: 3295: 3293: 3286: 3285: 3280: 3255: 3254: 3244: 3239: 3227: 3226: 3208: 3204: 3203: 3192: 3188: 3187: 3186: 3181: 3165: 3164: 3143: 3142: 3115: 3114: 3102: 3101: 3080: 3079: 3067: 3066: 3045: 3044: 3035: 3034: 3022: 3021: 3006: 3004: 2993: 2985: 2981: 2980: 2969: 2965: 2964: 2963: 2958: 2930: 2929: 2914: 2913: 2897: 2896: 2875: 2874: 2859: 2858: 2842: 2841: 2829: 2828: 2813: 2811: 2800: 2791: 2790: 2779: 2775: 2744: 2742: 2731: 2702: 2700: 2699: 2694: 2680: 2679: 2664: 2663: 2648: 2647: 2635: 2634: 2606: 2604: 2603: 2598: 2587:of a connection 2586: 2584: 2583: 2578: 2557: 2555: 2554: 2549: 2544: 2543: 2528: 2527: 2507: 2505: 2504: 2499: 2487: 2485: 2484: 2479: 2477: 2476: 2456: 2447: 2445: 2444: 2439: 2434: 2433: 2428: 2412: 2411: 2402: 2401: 2389: 2388: 2353: 2325: 2323: 2322: 2317: 2306: 2305: 2278:, which satisfy 2273: 2271: 2270: 2265: 2257: 2256: 2247: 2246: 2230:Bianchi identity 2201: 2192: 2190: 2189: 2184: 2176: 2175: 2163: 2162: 2145: 2141: 2139: 2138: 2133: 2130: 2125: 2102: 2093: 2091: 2090: 2085: 2077: 2076: 2066: 2061: 2044: 2033: 2031: 2030: 2025: 2013: 2011: 2010: 2005: 2000: 1999: 1980: 1975: 1955: 1953: 1952: 1947: 1945: 1944: 1943: 1942: 1924: 1919: 1898: 1897: 1896: 1895: 1872: 1871: 1849: 1847: 1846: 1841: 1839: 1838: 1821:adjoint operator 1818: 1816: 1815: 1810: 1808: 1807: 1791: 1789: 1788: 1783: 1767: 1765: 1764: 1759: 1757: 1756: 1728: 1726: 1725: 1720: 1718: 1717: 1683: 1682: 1670: 1669: 1668: 1667: 1631: 1629: 1628: 1623: 1621: 1620: 1604: 1602: 1601: 1596: 1584: 1582: 1581: 1576: 1564: 1562: 1561: 1556: 1532: 1530: 1529: 1524: 1519: 1518: 1509: 1508: 1474: 1472: 1471: 1466: 1441:cotangent bundle 1438: 1436: 1435: 1430: 1403: 1401: 1400: 1395: 1383: 1381: 1380: 1375: 1373: 1372: 1353: 1351: 1350: 1345: 1333: 1331: 1330: 1325: 1313: 1311: 1310: 1305: 1278: 1276: 1275: 1270: 1254: 1252: 1251: 1246: 1244: 1243: 1224: 1222: 1221: 1216: 1201: 1199: 1198: 1193: 1177: 1175: 1174: 1169: 1157: 1155: 1154: 1149: 1137: 1135: 1134: 1129: 1117: 1115: 1114: 1109: 1094: 1092: 1091: 1086: 1074: 1072: 1071: 1066: 1042: 1040: 1039: 1034: 1009: 1007: 1006: 1001: 999: 998: 963: 961: 960: 955: 943: 941: 940: 935: 933: 932: 912: 910: 909: 904: 887: 879: 865: 864: 848: 846: 845: 840: 838: 837: 821: 819: 818: 813: 805: 804: 792: 791: 779: 778: 759: 757: 756: 751: 733: 731: 730: 725: 720: 719: 700: 698: 697: 692: 669: 668: 656: 655: 643: 642: 602: 600: 599: 594: 586: 585: 573: 572: 534: 532: 531: 526: 521: 520: 515: 499: 498: 489: 488: 476: 475: 438: 436: 435: 430: 428: 427: 403: 401: 400: 395: 368: 366: 365: 360: 318: 316: 315: 310: 292:gauge theory by 291: 289: 288: 283: 246:gauge invariance 184:principal bundle 170:are a system of 123:compactification 98:(top left). The 62: 53: 42: 33: 6325: 6324: 6320: 6319: 6318: 6316: 6315: 6314: 6290: 6289: 6288: 6287: 6282: 6278: 6273: 6269: 6262: 6248: 6244: 6239: 6235: 6230: 6226: 6221: 6217: 6212: 6208: 6203: 6199: 6194: 6190: 6185: 6178: 6173: 6169: 6164: 6157: 6152: 6148: 6143: 6139: 6133: 6129: 6124: 6111: 6106: 6102: 6097: 6093: 6088: 6083: 6082: 6073: 6069: 6064: 6027: 5976: 5973: 5972: 5948: 5945: 5944: 5941: 5935: 5892: 5889: 5888: 5865: 5848: 5846: 5843: 5842: 5806: 5801: 5800: 5798: 5795: 5794: 5773: 5768: 5767: 5765: 5762: 5761: 5729: 5727: 5724: 5723: 5706: 5701: 5700: 5698: 5695: 5694: 5689:on an interval. 5647: 5642: 5641: 5639: 5636: 5635: 5630:which describe 5610: 5605: 5604: 5602: 5599: 5598: 5577: 5572: 5571: 5569: 5566: 5565: 5558: 5527: 5519: 5518: 5516: 5513: 5512: 5495: 5487: 5486: 5484: 5481: 5480: 5457: 5454: 5453: 5446:Karen Uhlenbeck 5442:Clifford Taubes 5438: 5432: 5427: 5398: 5395: 5394: 5375: 5372: 5371: 5354: 5349: 5348: 5346: 5343: 5342: 5325: 5320: 5319: 5317: 5314: 5313: 5296: 5292: 5290: 5287: 5286: 5244: 5240: 5231: 5226: 5220: 5219: 5210: 5207: 5206: 5184: 5181: 5180: 5163: 5159: 5151: 5148: 5147: 5131: 5128: 5127: 5104: 5089: 5085: 5083: 5080: 5079: 5053: 5049: 5047: 5044: 5043: 5027: 5024: 5023: 4993: 4989: 4987: 4984: 4983: 4951: 4947: 4929: 4925: 4895: 4890: 4884: 4883: 4874: 4871: 4870: 4835: 4831: 4829: 4826: 4825: 4808: 4803: 4797: 4796: 4793: 4790: 4789: 4769: 4758: 4743: 4739: 4721: 4717: 4715: 4712: 4711: 4679: 4676: 4675: 4655: 4652: 4651: 4617: 4614: 4613: 4593: 4587: 4586: 4585: 4583: 4580: 4579: 4562: 4556: 4555: 4554: 4552: 4549: 4548: 4531: 4525: 4524: 4523: 4521: 4518: 4517: 4500: 4494: 4493: 4492: 4490: 4487: 4486: 4446: 4442: 4438: 4426: 4422: 4420: 4417: 4416: 4398: 4394: 4390: 4381: 4377: 4375: 4372: 4371: 4355: 4352: 4351: 4335: 4332: 4331: 4330:on a principal 4315: 4312: 4311: 4287: 4284: 4283: 4254: 4250: 4232: 4228: 4210: 4206: 4204: 4201: 4200: 4178: 4175: 4174: 4158: 4155: 4154: 4121: 4117: 4099: 4095: 4087: 4084: 4083: 4064: 4061: 4060: 4057: 4032: 4029: 4028: 4025:Kähler manifold 3984: 3978: 3977: 3976: 3974: 3971: 3970: 3953: 3947: 3946: 3945: 3943: 3940: 3939: 3922: 3916: 3915: 3914: 3912: 3909: 3908: 3892: 3889: 3888: 3868: 3865: 3864: 3843: 3842: 3840: 3837: 3836: 3819: 3818: 3816: 3813: 3812: 3795: 3794: 3792: 3789: 3788: 3771: 3770: 3765: 3759: 3758: 3749: 3748: 3746: 3743: 3742: 3726: 3723: 3722: 3701: 3700: 3698: 3695: 3694: 3669: 3666: 3665: 3643: 3640: 3639: 3601: 3590: 3589: 3579: 3575: 3569: 3565: 3556: 3552: 3543: 3532: 3531: 3521: 3517: 3508: 3504: 3498: 3494: 3482: 3478: 3452: 3449: 3448: 3417: 3414: 3413: 3397: 3394: 3393: 3377: 3374: 3373: 3363:gauge invariant 3359: 3332: 3329: 3328: 3312: 3309: 3308: 3307:The connection 3291: 3290: 3281: 3270: 3269: 3250: 3246: 3240: 3235: 3222: 3218: 3206: 3205: 3193: 3182: 3171: 3170: 3160: 3156: 3138: 3134: 3110: 3106: 3097: 3093: 3075: 3071: 3062: 3058: 3040: 3036: 3030: 3026: 3017: 3013: 3012: 3008: 3007: 2997: 2992: 2983: 2982: 2970: 2959: 2948: 2947: 2925: 2921: 2909: 2905: 2892: 2888: 2870: 2866: 2854: 2850: 2837: 2833: 2824: 2820: 2819: 2815: 2814: 2804: 2799: 2792: 2780: 2750: 2746: 2745: 2735: 2730: 2726: 2724: 2721: 2720: 2708:critical points 2675: 2671: 2659: 2655: 2643: 2639: 2621: 2617: 2615: 2612: 2611: 2592: 2589: 2588: 2563: 2560: 2559: 2539: 2538: 2523: 2519: 2517: 2514: 2513: 2493: 2490: 2489: 2472: 2471: 2469: 2466: 2465: 2429: 2418: 2417: 2407: 2403: 2397: 2393: 2384: 2380: 2360: 2357: 2356: 2344: 2301: 2297: 2286: 2283: 2282: 2252: 2248: 2242: 2238: 2236: 2233: 2232: 2171: 2167: 2158: 2154: 2152: 2149: 2148: 2126: 2121: 2115: 2112: 2111: 2072: 2068: 2062: 2057: 2051: 2048: 2047: 2019: 2016: 2015: 1995: 1991: 1976: 1971: 1965: 1962: 1961: 1938: 1934: 1933: 1929: 1920: 1915: 1891: 1887: 1886: 1882: 1867: 1863: 1858: 1855: 1854: 1834: 1830: 1828: 1825: 1824: 1803: 1799: 1797: 1794: 1793: 1777: 1774: 1773: 1752: 1748: 1737: 1734: 1733: 1713: 1709: 1678: 1674: 1663: 1659: 1658: 1654: 1640: 1637: 1636: 1616: 1612: 1610: 1607: 1606: 1590: 1587: 1586: 1570: 1567: 1566: 1538: 1535: 1534: 1514: 1510: 1504: 1500: 1480: 1477: 1476: 1448: 1445: 1444: 1424: 1421: 1420: 1389: 1386: 1385: 1368: 1364: 1362: 1359: 1358: 1339: 1336: 1335: 1319: 1316: 1315: 1287: 1284: 1283: 1264: 1261: 1260: 1239: 1235: 1233: 1230: 1229: 1210: 1207: 1206: 1187: 1184: 1183: 1163: 1160: 1159: 1143: 1140: 1139: 1123: 1120: 1119: 1103: 1100: 1099: 1080: 1077: 1076: 1060: 1057: 1056: 1028: 1025: 1024: 1021: 1012:critical points 994: 990: 988: 985: 984: 966:flat connection 949: 946: 945: 928: 924: 922: 919: 918: 878: 860: 856: 854: 851: 850: 833: 829: 827: 824: 823: 800: 796: 787: 783: 771: 767: 765: 762: 761: 739: 736: 735: 734:for the bundle 715: 711: 706: 703: 702: 664: 660: 651: 647: 638: 634: 632: 629: 628: 609: 581: 577: 568: 564: 562: 559: 558: 516: 505: 504: 494: 490: 484: 480: 471: 467: 447: 444: 443: 423: 419: 417: 414: 413: 404:(in physics, a 389: 386: 385: 336: 333: 332: 321:structure group 304: 301: 300: 265: 262: 261: 230: 225: 213:Simon Donaldson 148: 147: 146: 145: 103: 92: 73: 65: 64: 63: 55: 54: 45: 44: 43: 35: 34: 23: 17: 12: 11: 5: 6323: 6313: 6312: 6307: 6302: 6286: 6285: 6276: 6267: 6260: 6242: 6233: 6224: 6215: 6206: 6197: 6188: 6176: 6167: 6155: 6146: 6137: 6127: 6109: 6100: 6090: 6089: 6087: 6084: 6081: 6080: 6066: 6065: 6063: 6060: 6059: 6058: 6053: 6048: 6043: 6038: 6033: 6026: 6023: 5998: 5995: 5992: 5989: 5986: 5983: 5980: 5971:on a cylinder 5952: 5937:Main article: 5934: 5931: 5902: 5899: 5896: 5872: 5868: 5864: 5861: 5858: 5854: 5851: 5809: 5804: 5776: 5771: 5732: 5709: 5704: 5691: 5690: 5687:Nahm equations 5683: 5680:Hitchin system 5664: 5650: 5645: 5613: 5608: 5580: 5575: 5557: 5554: 5530: 5525: 5522: 5498: 5493: 5490: 5461: 5434:Main article: 5431: 5428: 5426: 5423: 5411: 5408: 5405: 5402: 5382: 5379: 5357: 5352: 5328: 5323: 5299: 5295: 5283:BPST instanton 5270: 5267: 5264: 5261: 5258: 5255: 5252: 5247: 5243: 5239: 5234: 5229: 5223: 5217: 5214: 5194: 5191: 5188: 5166: 5162: 5158: 5155: 5135: 5111: 5107: 5103: 5100: 5097: 5092: 5088: 5067: 5064: 5061: 5056: 5052: 5031: 5007: 5004: 5001: 4996: 4992: 4980: 4979: 4968: 4965: 4962: 4959: 4954: 4950: 4946: 4943: 4940: 4937: 4932: 4928: 4924: 4921: 4918: 4915: 4912: 4909: 4906: 4903: 4898: 4893: 4887: 4881: 4878: 4855: 4852: 4849: 4846: 4843: 4838: 4834: 4811: 4806: 4800: 4772: 4768: 4765: 4761: 4757: 4754: 4751: 4746: 4742: 4738: 4735: 4732: 4729: 4724: 4720: 4695: 4692: 4689: 4686: 4683: 4659: 4639: 4636: 4633: 4630: 4627: 4624: 4621: 4596: 4590: 4565: 4559: 4534: 4528: 4503: 4497: 4449: 4445: 4441: 4437: 4434: 4429: 4425: 4401: 4397: 4393: 4389: 4384: 4380: 4359: 4339: 4319: 4308:anti-self-dual 4291: 4280: 4279: 4268: 4265: 4262: 4257: 4253: 4249: 4246: 4243: 4240: 4235: 4231: 4227: 4224: 4221: 4218: 4213: 4209: 4185: 4182: 4162: 4148: 4147: 4135: 4132: 4129: 4124: 4120: 4116: 4113: 4110: 4107: 4102: 4098: 4094: 4091: 4068: 4056: 4053: 4036: 4019:. This is the 4005:Michael Atiyah 3987: 3981: 3956: 3950: 3925: 3919: 3896: 3872: 3846: 3822: 3798: 3774: 3768: 3762: 3757: 3752: 3730: 3704: 3679: 3676: 3673: 3647: 3636: 3635: 3624: 3621: 3618: 3615: 3612: 3609: 3604: 3599: 3596: 3593: 3588: 3582: 3578: 3572: 3568: 3564: 3559: 3555: 3551: 3546: 3541: 3538: 3535: 3530: 3524: 3520: 3514: 3511: 3507: 3501: 3497: 3493: 3490: 3485: 3481: 3477: 3474: 3471: 3468: 3465: 3462: 3459: 3456: 3433: 3430: 3427: 3424: 3421: 3401: 3381: 3358: 3355: 3336: 3316: 3305: 3304: 3289: 3284: 3279: 3276: 3273: 3268: 3264: 3261: 3258: 3253: 3249: 3243: 3238: 3234: 3230: 3225: 3221: 3217: 3214: 3211: 3209: 3207: 3202: 3199: 3196: 3191: 3185: 3180: 3177: 3174: 3169: 3163: 3159: 3155: 3152: 3149: 3146: 3141: 3137: 3133: 3130: 3127: 3124: 3121: 3118: 3113: 3109: 3105: 3100: 3096: 3092: 3089: 3086: 3083: 3078: 3074: 3070: 3065: 3061: 3057: 3054: 3051: 3048: 3043: 3039: 3033: 3029: 3025: 3020: 3016: 3011: 3003: 3000: 2996: 2991: 2988: 2986: 2984: 2979: 2976: 2973: 2968: 2962: 2957: 2954: 2951: 2946: 2942: 2939: 2936: 2933: 2928: 2924: 2920: 2917: 2912: 2908: 2903: 2900: 2895: 2891: 2887: 2884: 2881: 2878: 2873: 2869: 2865: 2862: 2857: 2853: 2848: 2845: 2840: 2836: 2832: 2827: 2823: 2818: 2810: 2807: 2803: 2798: 2795: 2793: 2789: 2786: 2783: 2778: 2774: 2771: 2768: 2765: 2762: 2759: 2756: 2753: 2749: 2741: 2738: 2734: 2729: 2728: 2704: 2703: 2692: 2689: 2686: 2683: 2678: 2674: 2670: 2667: 2662: 2658: 2654: 2651: 2646: 2642: 2638: 2633: 2630: 2627: 2624: 2620: 2596: 2576: 2573: 2570: 2567: 2547: 2542: 2537: 2534: 2531: 2526: 2522: 2497: 2475: 2460: 2459: 2450: 2448: 2437: 2432: 2427: 2424: 2421: 2416: 2410: 2406: 2400: 2396: 2392: 2387: 2383: 2379: 2376: 2373: 2370: 2367: 2364: 2343: 2340: 2328: 2327: 2315: 2312: 2309: 2304: 2300: 2296: 2293: 2290: 2263: 2260: 2255: 2251: 2245: 2241: 2221:) is called a 2205: 2204: 2195: 2193: 2182: 2179: 2174: 2170: 2166: 2161: 2157: 2129: 2124: 2120: 2106: 2105: 2096: 2094: 2083: 2080: 2075: 2071: 2065: 2060: 2056: 2023: 2003: 1998: 1994: 1990: 1987: 1984: 1979: 1974: 1970: 1958: 1957: 1941: 1937: 1932: 1928: 1923: 1918: 1914: 1910: 1907: 1904: 1901: 1894: 1890: 1885: 1881: 1878: 1875: 1870: 1866: 1862: 1850:is defined by 1837: 1833: 1806: 1802: 1781: 1755: 1751: 1747: 1744: 1741: 1730: 1729: 1716: 1712: 1708: 1705: 1702: 1698: 1695: 1692: 1689: 1686: 1681: 1677: 1673: 1666: 1662: 1657: 1653: 1650: 1647: 1644: 1619: 1615: 1594: 1574: 1554: 1551: 1548: 1545: 1542: 1522: 1517: 1513: 1507: 1503: 1499: 1496: 1493: 1490: 1487: 1484: 1464: 1461: 1458: 1455: 1452: 1428: 1393: 1371: 1367: 1343: 1323: 1303: 1300: 1297: 1294: 1291: 1281:adjoint bundle 1268: 1242: 1238: 1227:curvature form 1214: 1191: 1167: 1147: 1127: 1107: 1084: 1064: 1032: 1020: 1017: 997: 993: 953: 931: 927: 902: 899: 896: 893: 890: 885: 882: 877: 874: 871: 868: 863: 859: 836: 832: 811: 808: 803: 799: 795: 790: 786: 782: 777: 774: 770: 749: 746: 743: 723: 718: 714: 710: 690: 687: 684: 681: 678: 675: 672: 667: 663: 659: 654: 650: 646: 641: 637: 614:tangent bundle 608: 605: 604: 603: 592: 589: 584: 580: 576: 571: 567: 536: 535: 524: 519: 514: 511: 508: 503: 497: 493: 487: 483: 479: 474: 470: 466: 463: 460: 457: 454: 451: 426: 422: 393: 358: 355: 352: 349: 346: 343: 340: 308: 294:Wolfgang Pauli 281: 278: 275: 272: 269: 242:gauge symmetry 238:Chen-Ning Yang 229: 226: 224: 221: 101: 90: 77:BPST instanton 71: 67: 66: 57: 56: 48: 47: 46: 37: 36: 28: 27: 26: 25: 24: 15: 9: 6: 4: 3: 2: 6322: 6311: 6308: 6306: 6303: 6301: 6298: 6297: 6295: 6280: 6271: 6263: 6261:9780198570639 6257: 6253: 6246: 6237: 6228: 6219: 6210: 6201: 6192: 6183: 6181: 6171: 6162: 6160: 6150: 6141: 6131: 6122: 6120: 6118: 6116: 6114: 6104: 6095: 6091: 6077: 6071: 6067: 6057: 6054: 6052: 6049: 6047: 6044: 6042: 6039: 6037: 6034: 6032: 6029: 6028: 6022: 6020: 6016: 6015:Nigel Hitchin 6012: 5993: 5990: 5987: 5981: 5970: 5966: 5940: 5930: 5928: 5924: 5920: 5916: 5900: 5897: 5894: 5886: 5862: 5859: 5840: 5836: 5832: 5828: 5823: 5807: 5792: 5774: 5757: 5755: 5751: 5750:rational maps 5747: 5707: 5688: 5684: 5681: 5677: 5676:Higgs bundles 5673: 5669: 5665: 5648: 5633: 5629: 5611: 5596: 5595: 5594: 5578: 5563: 5553: 5551: 5548:surpassed by 5545: 5528: 5496: 5479: 5475: 5459: 5451: 5447: 5443: 5437: 5422: 5409: 5406: 5403: 5400: 5380: 5377: 5355: 5326: 5297: 5293: 5284: 5268: 5265: 5262: 5259: 5256: 5253: 5245: 5241: 5232: 5227: 5215: 5212: 5192: 5189: 5186: 5164: 5160: 5156: 5153: 5133: 5125: 5101: 5098: 5090: 5086: 5062: 5054: 5050: 5029: 5021: 5018:is the first 5002: 4994: 4990: 4960: 4952: 4948: 4944: 4938: 4930: 4926: 4922: 4919: 4913: 4910: 4907: 4904: 4901: 4896: 4891: 4879: 4876: 4869: 4868: 4867: 4853: 4850: 4844: 4836: 4832: 4809: 4804: 4787: 4766: 4755: 4752: 4744: 4740: 4736: 4730: 4722: 4718: 4709: 4690: 4684: 4681: 4673: 4657: 4634: 4628: 4625: 4622: 4619: 4610: 4594: 4563: 4532: 4501: 4484: 4480: 4476: 4472: 4468: 4467: 4447: 4443: 4439: 4435: 4432: 4427: 4423: 4399: 4395: 4391: 4387: 4382: 4378: 4357: 4337: 4317: 4309: 4305: 4289: 4263: 4255: 4247: 4241: 4233: 4225: 4219: 4211: 4199: 4198: 4197: 4183: 4180: 4160: 4153: 4130: 4122: 4108: 4100: 4092: 4089: 4082: 4081: 4080: 4066: 4052: 4050: 4034: 4026: 4022: 4018: 4014: 4010: 4006: 4001: 3985: 3954: 3923: 3894: 3886: 3870: 3862: 3766: 3755: 3728: 3720: 3691: 3677: 3674: 3671: 3663: 3662: 3645: 3619: 3613: 3610: 3607: 3602: 3586: 3580: 3570: 3566: 3557: 3553: 3549: 3544: 3528: 3522: 3512: 3509: 3505: 3499: 3495: 3491: 3483: 3479: 3475: 3469: 3466: 3463: 3457: 3454: 3447: 3446: 3445: 3428: 3422: 3419: 3399: 3379: 3372: 3368: 3364: 3354: 3352: 3351: 3334: 3314: 3287: 3282: 3266: 3259: 3256: 3251: 3247: 3241: 3236: 3232: 3223: 3219: 3215: 3212: 3210: 3200: 3197: 3194: 3189: 3183: 3167: 3161: 3153: 3150: 3147: 3139: 3135: 3131: 3125: 3122: 3119: 3116: 3111: 3107: 3098: 3094: 3090: 3087: 3081: 3076: 3072: 3068: 3063: 3059: 3052: 3049: 3046: 3041: 3031: 3027: 3018: 3014: 3009: 3001: 2998: 2994: 2989: 2987: 2977: 2974: 2971: 2966: 2960: 2944: 2937: 2934: 2931: 2926: 2922: 2918: 2915: 2910: 2906: 2901: 2898: 2893: 2889: 2885: 2882: 2879: 2876: 2871: 2867: 2863: 2860: 2855: 2851: 2846: 2843: 2838: 2834: 2825: 2821: 2816: 2808: 2805: 2801: 2796: 2794: 2787: 2784: 2781: 2776: 2769: 2766: 2763: 2760: 2754: 2751: 2747: 2739: 2736: 2732: 2719: 2718: 2717: 2715: 2714: 2709: 2690: 2687: 2684: 2681: 2676: 2672: 2668: 2665: 2660: 2656: 2652: 2649: 2644: 2640: 2636: 2631: 2628: 2625: 2622: 2618: 2610: 2609: 2608: 2594: 2574: 2571: 2568: 2565: 2535: 2532: 2524: 2511: 2495: 2458: 2451: 2449: 2435: 2430: 2414: 2408: 2398: 2394: 2385: 2381: 2377: 2371: 2365: 2362: 2355: 2354: 2351: 2350:, defined by 2349: 2339: 2337: 2333: 2313: 2310: 2307: 2302: 2298: 2294: 2291: 2288: 2281: 2280: 2279: 2277: 2261: 2258: 2253: 2249: 2243: 2239: 2231: 2226: 2224: 2220: 2219: 2214: 2213: 2203: 2196: 2194: 2180: 2177: 2172: 2168: 2164: 2159: 2155: 2147: 2146: 2143: 2127: 2122: 2118: 2104: 2097: 2095: 2081: 2078: 2073: 2069: 2063: 2058: 2054: 2046: 2045: 2042: 2039: 2037: 2021: 2001: 1996: 1992: 1988: 1985: 1982: 1977: 1972: 1968: 1939: 1935: 1926: 1921: 1916: 1912: 1908: 1905: 1899: 1892: 1888: 1879: 1876: 1873: 1868: 1864: 1853: 1852: 1851: 1835: 1831: 1822: 1804: 1800: 1792:. Using this 1779: 1771: 1753: 1749: 1745: 1742: 1739: 1714: 1710: 1706: 1703: 1700: 1693: 1690: 1687: 1679: 1675: 1671: 1664: 1660: 1651: 1648: 1645: 1635: 1634: 1633: 1617: 1613: 1592: 1572: 1549: 1543: 1540: 1520: 1515: 1511: 1505: 1497: 1491: 1485: 1482: 1459: 1453: 1450: 1442: 1426: 1417: 1415: 1411: 1410:inner product 1407: 1391: 1369: 1365: 1357: 1341: 1321: 1298: 1292: 1289: 1282: 1266: 1258: 1255:, which is a 1240: 1236: 1228: 1212: 1205: 1189: 1181: 1165: 1158:-bundle over 1145: 1125: 1105: 1098: 1082: 1075:-bundle over 1062: 1054: 1050: 1046: 1030: 1016: 1013: 995: 991: 982: 977: 975: 972:, which is a 971: 970:Chern classes 967: 951: 929: 925: 916: 897: 894: 891: 883: 880: 875: 872: 869: 866: 861: 857: 834: 830: 809: 801: 797: 793: 788: 784: 780: 775: 772: 768: 747: 741: 716: 712: 682: 676: 673: 670: 665: 661: 652: 644: 639: 635: 625: 623: 619: 615: 590: 587: 582: 578: 574: 569: 565: 557: 556: 555: 553: 552:derived below 549: 545: 541: 522: 517: 501: 495: 485: 481: 472: 468: 464: 458: 452: 449: 442: 441: 440: 424: 420: 411: 407: 391: 383: 379: 374: 372: 353: 347: 341: 338: 330: 326: 322: 319:, called the 306: 299: 295: 276: 270: 259: 255: 254:James Maxwell 251: 247: 243: 239: 235: 220: 218: 214: 210: 206: 205: 200: 195: 193: 189: 185: 181: 180:vector bundle 177: 173: 169: 165: 161: 157: 153: 143: 139: 135: 131: 127: 124: 120: 116: 112: 108: 104: 97: 94:is the third 93: 86: 82: 78: 74: 61: 52: 41: 32: 22: 6279: 6270: 6251: 6245: 6236: 6227: 6218: 6209: 6200: 6191: 6170: 6149: 6140: 6130: 6103: 6094: 6070: 5942: 5824: 5758: 5692: 5561: 5559: 5546: 5439: 5425:Applications 5020:Betti number 4981: 4611: 4482: 4478: 4474: 4470: 4464: 4307: 4303: 4281: 4149: 4058: 4002: 3692: 3659: 3637: 3371:automorphism 3366: 3360: 3348: 3306: 2711: 2705: 2510:affine space 2463: 2452: 2347: 2345: 2332:Hodge theory 2329: 2227: 2222: 2216: 2210: 2208: 2197: 2109: 2098: 2040: 1959: 1731: 1418: 1022: 980: 978: 965: 626: 610: 537: 409: 405: 381: 377: 375: 324: 320: 249: 245: 241: 234:Robert Mills 231: 209:moduli space 202: 198: 196: 191: 167: 164:gauge theory 149: 141: 133: 129: 125: 118: 114: 111:g=2, ρ=1,z=0 110: 106: 99: 96:Pauli matrix 88: 84: 80: 69: 5919:gauge group 5835:sine-Gordon 5756:to itself. 5746:Werner Nahm 4708:Chern class 4463:, then by ( 4152:eigenvalues 3719:gauge group 3664:), so does 3658:satisfies ( 2716:), compute 607:Mathematics 406:gauge field 325:gauge group 156:mathematics 6294:Categories 6086:References 4009:Raoul Bott 3741:. The set 3638:and so if 2342:Derivation 1412:under the 1180:connection 1019:Definition 223:Motivation 204:instantons 176:connection 83:-slice of 5982:× 5979:Σ 5951:Σ 5752:from the 5474:cobordism 5407:− 5260:− 5233:− 5216:⁡ 4923:− 4911:− 4897:− 4880:⁡ 4810:− 4767:≅ 4737:∈ 4685:⁡ 4629:⁡ 4595:± 4564:± 4533:− 4440:⋆ 4436:− 4392:⋆ 4304:self-dual 4290:⋆ 4256:− 4252:Ω 4248:⊕ 4230:Ω 4208:Ω 4181:− 4119:Ω 4115:→ 4097:Ω 4090:⋆ 3986:∗ 3955:∗ 3924:∗ 3861:Hausdorff 3675:⋅ 3614:⁡ 3577:‖ 3563:‖ 3554:∫ 3519:‖ 3510:− 3489:‖ 3480:∫ 3467:⋅ 3458:⁡ 3423:⁡ 3263:⟩ 3242:∗ 3229:⟨ 3220:∫ 3158:‖ 3151:∧ 3145:‖ 3129:⟩ 3123:∧ 3104:⟨ 3085:⟩ 3056:⟨ 3038:‖ 3024:‖ 3015:∫ 2941:⟩ 2935:∧ 2880:∧ 2831:⟨ 2822:∫ 2755:⁡ 2685:∧ 2521:Ω 2405:‖ 2391:‖ 2382:∫ 2366:⁡ 2308:ω 2303:∗ 2292:ω 2165:⋆ 2128:∗ 2064:∗ 2022:⋆ 2002:⋆ 1989:⋆ 1986:± 1978:∗ 1931:⟩ 1922:∗ 1903:⟨ 1884:⟩ 1861:⟨ 1697:⟩ 1685:⟨ 1676:∫ 1656:⟩ 1643:⟨ 1544:⁡ 1516:∗ 1502:Λ 1498:⊗ 1486:⁡ 1454:⁡ 1293:⁡ 1178:. Then a 1097:Lie group 835:α 807:→ 802:β 794:∩ 789:α 776:β 773:α 745:→ 717:α 677:⁡ 666:α 649:Ω 645:∈ 640:α 575:⋆ 492:‖ 478:‖ 469:∫ 453:⁡ 348:⁡ 298:Lie group 271:⁡ 215:to prove 138:Uhlenbeck 6135:523–615. 6025:See also 5925:and the 5678:and the 5472:gives a 5450:definite 4866:, to be 4481:and the 3885:holonomy 1585:. Since 1257:two-form 1049:oriented 5672:Hitchin 2034:is the 1768:is the 1045:compact 228:Physics 190:of the 152:physics 121:on the 79:on the 6258:  6019:Witten 5829:, and 5042:, and 4982:where 4302:, the 3883:whose 3369:is an 2508:is an 2215:) or ( 2014:where 1419:Since 1354:is an 378:fields 327:, see 207:. The 174:for a 166:, the 87:where 6062:Notes 5841:, of 1043:be a 964:is a 616:to a 178:on a 109:with 81:(x,x) 6256:ISBN 5837:and 5722:and 5444:and 5179:and 4650:and 4578:and 4516:and 4306:and 4173:and 4007:and 3969:and 3717:the 2710:of ( 1023:Let 538:The 244:and 236:and 162:and 154:and 100:dx⊗σ 70:dx⊗σ 68:The 5967:of 5634:on 5213:dim 5126:on 5022:of 4877:dim 4670:is 4609:. 4473:or 4415:or 3859:is 3835:or 3690:. 1823:of 1772:of 1533:of 1314:of 1259:on 1182:on 256:on 201:or 182:or 150:In 128:of 115:z=0 6296:: 6179:^ 6158:^ 6112:^ 6021:. 5929:. 5552:. 5410:3. 4710:, 4682:SU 4626:SU 4051:. 4000:. 3611:YM 3455:YM 3420:ad 2752:YM 2363:YM 2225:. 2181:0. 2082:0. 1541:ad 1483:ad 1451:ad 1416:. 1290:ad 1051:, 1047:, 674:ad 591:0. 554:: 450:YM 373:. 219:. 6264:. 6078:. 5997:] 5994:1 5991:, 5988:0 5985:[ 5901:1 5898:+ 5895:2 5871:) 5867:R 5863:, 5860:3 5857:( 5853:L 5850:S 5808:4 5803:R 5775:4 5770:R 5731:R 5708:3 5703:R 5682:. 5663:. 5649:3 5644:R 5612:4 5607:R 5579:4 5574:R 5529:2 5524:P 5521:C 5497:2 5492:P 5489:C 5460:X 5404:k 5401:8 5381:, 5378:k 5356:4 5351:R 5327:4 5322:R 5298:4 5294:S 5269:5 5266:= 5263:3 5257:8 5254:= 5251:) 5246:4 5242:S 5238:( 5228:1 5222:M 5193:1 5190:= 5187:k 5165:4 5161:S 5157:= 5154:X 5134:X 5110:) 5106:R 5102:, 5099:X 5096:( 5091:2 5087:H 5066:) 5063:X 5060:( 5055:+ 5051:b 5030:X 5006:) 5003:X 5000:( 4995:1 4991:b 4967:) 4964:) 4961:X 4958:( 4953:+ 4949:b 4945:+ 4942:) 4939:X 4936:( 4931:1 4927:b 4920:1 4917:( 4914:3 4908:k 4905:8 4902:= 4892:k 4886:M 4854:k 4851:= 4848:) 4845:P 4842:( 4837:2 4833:c 4805:k 4799:M 4771:Z 4764:) 4760:Z 4756:, 4753:X 4750:( 4745:4 4741:H 4734:) 4731:P 4728:( 4723:2 4719:c 4694:) 4691:2 4688:( 4658:X 4638:) 4635:2 4632:( 4623:= 4620:G 4589:M 4558:B 4527:A 4502:+ 4496:A 4466:2 4448:A 4444:F 4433:= 4428:A 4424:F 4400:A 4396:F 4388:= 4383:A 4379:F 4358:X 4338:G 4318:A 4267:) 4264:X 4261:( 4245:) 4242:X 4239:( 4234:+ 4226:= 4223:) 4220:X 4217:( 4212:2 4184:1 4161:1 4146:. 4134:) 4131:X 4128:( 4123:2 4112:) 4109:X 4106:( 4101:2 4093:: 4067:X 4035:X 3980:M 3949:B 3918:A 3895:G 3871:A 3845:M 3821:B 3797:M 3773:G 3767:/ 3761:A 3756:= 3751:B 3729:P 3703:G 3678:A 3672:g 3661:1 3646:A 3623:) 3620:A 3617:( 3608:= 3603:g 3598:l 3595:o 3592:v 3587:d 3581:2 3571:A 3567:F 3558:X 3550:= 3545:g 3540:l 3537:o 3534:v 3529:d 3523:2 3513:1 3506:g 3500:A 3496:F 3492:g 3484:X 3476:= 3473:) 3470:A 3464:g 3461:( 3432:) 3429:P 3426:( 3400:P 3380:g 3350:1 3335:a 3315:A 3288:. 3283:g 3278:l 3275:o 3272:v 3267:d 3260:a 3257:, 3252:A 3248:F 3237:A 3233:d 3224:X 3216:2 3213:= 3201:0 3198:= 3195:t 3190:) 3184:g 3179:l 3176:o 3173:v 3168:d 3162:2 3154:a 3148:a 3140:4 3136:t 3132:+ 3126:a 3120:a 3117:, 3112:A 3108:F 3099:2 3095:t 3091:2 3088:+ 3082:a 3077:A 3073:d 3069:, 3064:A 3060:F 3053:t 3050:2 3047:+ 3042:2 3032:A 3028:F 3019:X 3010:( 3002:t 2999:d 2995:d 2990:= 2978:0 2975:= 2972:t 2967:) 2961:g 2956:l 2953:o 2950:v 2945:d 2938:a 2932:a 2927:2 2923:t 2919:+ 2916:a 2911:A 2907:d 2902:t 2899:+ 2894:A 2890:F 2886:, 2883:a 2877:a 2872:2 2868:t 2864:+ 2861:a 2856:A 2852:d 2847:t 2844:+ 2839:A 2835:F 2826:X 2817:( 2809:t 2806:d 2802:d 2797:= 2788:0 2785:= 2782:t 2777:) 2773:) 2770:a 2767:t 2764:+ 2761:A 2758:( 2748:( 2740:t 2737:d 2733:d 2713:3 2691:. 2688:a 2682:a 2677:2 2673:t 2669:+ 2666:a 2661:A 2657:d 2653:t 2650:+ 2645:A 2641:F 2637:= 2632:a 2629:t 2626:+ 2623:A 2619:F 2595:A 2575:a 2572:t 2569:+ 2566:A 2546:) 2541:g 2536:; 2533:P 2530:( 2525:1 2496:P 2474:A 2457:) 2455:3 2453:( 2436:. 2431:g 2426:l 2423:o 2420:v 2415:d 2409:2 2399:A 2395:F 2386:X 2378:= 2375:) 2372:A 2369:( 2326:. 2314:0 2311:= 2299:d 2295:= 2289:d 2262:0 2259:= 2254:A 2250:F 2244:A 2240:d 2218:2 2212:1 2202:) 2200:2 2198:( 2178:= 2173:A 2169:F 2160:A 2156:d 2123:A 2119:d 2103:) 2101:1 2099:( 2079:= 2074:A 2070:F 2059:A 2055:d 1997:A 1993:d 1983:= 1973:A 1969:d 1956:. 1940:2 1936:L 1927:t 1917:A 1913:d 1909:, 1906:s 1900:= 1893:2 1889:L 1880:t 1877:, 1874:s 1869:A 1865:d 1836:A 1832:d 1805:2 1801:L 1780:X 1754:g 1750:l 1746:o 1743:v 1740:d 1715:g 1711:l 1707:o 1704:v 1701:d 1694:t 1691:, 1688:s 1680:X 1672:= 1665:2 1661:L 1652:t 1649:, 1646:s 1618:2 1614:L 1593:X 1573:X 1553:) 1550:P 1547:( 1521:X 1512:T 1506:2 1495:) 1492:P 1489:( 1463:) 1460:P 1457:( 1427:X 1392:G 1370:A 1366:d 1342:A 1322:P 1302:) 1299:P 1296:( 1267:X 1241:A 1237:F 1213:A 1190:P 1166:X 1146:G 1126:P 1106:G 1083:X 1063:G 1031:X 996:2 992:L 952:A 930:A 926:F 901:] 898:A 895:, 892:A 889:[ 884:2 881:1 876:+ 873:A 870:d 867:= 862:A 858:F 831:A 810:G 798:U 785:U 781:: 769:g 748:X 742:P 722:} 713:U 709:{ 689:) 686:) 683:P 680:( 671:, 662:U 658:( 653:1 636:A 588:= 583:A 579:F 570:A 566:d 523:. 518:g 513:l 510:o 507:v 502:d 496:2 486:A 482:F 473:X 465:= 462:) 459:A 456:( 425:A 421:F 392:A 357:) 354:1 351:( 345:U 342:= 339:G 307:G 280:) 277:1 274:( 268:U 144:. 142:S 134:R 130:R 126:S 119:z 107:A 102:3 91:3 89:σ 85:R 72:3

Index

Yang–Mills theory




BPST instanton
Pauli matrix
compactification
Uhlenbeck
physics
mathematics
differential geometry
gauge theory
partial differential equations
connection
vector bundle
principal bundle
Euler–Lagrange equations
instantons
moduli space
Simon Donaldson
Donaldson's theorem
Robert Mills
Chen-Ning Yang
James Maxwell
Maxwell's equations
Wolfgang Pauli
Lie group
Gauge group (mathematics)
principal bundles

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.