Knowledge

Zariski topology

Source 📝

31: 171:, not only the usual points corresponding to maximal ideals, but also all (irreducible) algebraic varieties, which correspond to prime ideals. Thus the Zariski topology on the set of prime ideals (spectrum) of a commutative ring is the topology such that a set of prime ideals is closed if and only if it is the set of all prime ideals that contain a fixed ideal. 1385:
The projective Zariski topology is defined for projective algebraic sets just as the affine one is defined for affine algebraic sets, by taking the subspace topology. Similarly, it may be shown that this topology is defined intrinsically by sets of elements of the projective coordinate ring, by the
1526:
in the Zariski topology. In fact, the Zariski topology is the weakest topology (with the fewest open sets) in which this is true and in which points are closed. This is easily verified by noting that the Zariski-closed sets are simply the intersections of the inverse images of 0 by the polynomial
2066:
replaces projective varieties in modern algebraic geometry. Just as in the classical case, to move from the affine to the projective definition we need only replace "ideal" by "homogeneous ideal", though there is a complication involving the "irrelevant maximal ideal", which is discussed in the
1933: 2059:-tuples. Since as shown above, the classical definition is essentially the modern definition with only maximal ideals considered, this shows that the interpretation of the modern definition as "zero sets of functions" agrees with the classical definition where they both make sense. 2497:
Just as in classical algebraic geometry, any spectrum or projective spectrum is (quasi)compact, and if the ring in question is Noetherian then the space is a Noetherian topological space. However, these facts are counterintuitive: we do not normally expect open sets, other than
1465:. In the old topological literature "compact" was taken to include the Hausdorff property, and this convention is still honored in algebraic geometry; therefore compactness in the modern sense is called "quasicompactness" in algebraic geometry. However, since every point ( 2502:, to be compact, and for affine varieties (for example, Euclidean space) we do not even expect the space itself to be compact. This is one instance of the geometric unsuitability of the Zariski topology. Grothendieck solved this problem by defining the notion of 2076: 163:. This suggests defining the Zariski topology on the set of the maximal ideals of a commutative ring as the topology such that a set of maximal ideals is closed if and only if it is the set of all maximal ideals that contain a given ideal. Another basic idea of 1756:. Grothendieck's innovation in defining Spec was to replace maximal ideals with all prime ideals; in this formulation it is natural to simply generalize this observation to the definition of a closed set in the spectrum of a ring. 397: 1817: 1310: 1670: 996: 2010: 1415:. That these form a basis follows from the formula for the intersection of two Zariski-closed sets given above (apply it repeatedly to the principal ideals generated by the generators of 2166: 591: 520: 2442:
The most dramatic change in the topology from the classical picture to the new is that points are no longer necessarily closed; by expanding the definition, Grothendieck introduced
1116: 1557: 1361: 690: 648: 306: 263: 1204: 1081: 1037: 874: 786: 2404: 2362: 2328: 2192: 2118: 311: 1744:; moreover, these are maximal ideals and by the "weak" Nullstellensatz, an ideal of any affine coordinate ring is maximal if and only if it is of this form. Thus, 1210:
the condition of having zero or nonzero value on any given projective point is well-defined since the scalar multiple factors out of the polynomial. Therefore, if
1175: 845: 2680:. Lecture Notes in Mathematics. Vol. 1358 (expanded, Includes Michigan Lectures (1974) on Curves and their Jacobians ed.). Berlin, New York: 1928:{\displaystyle e_{a}\colon {\bigl (}P\in \operatorname {Spec} A{\bigr )}\mapsto \left({\frac {a\;{\bmod {P}}}{1}}\in \operatorname {Frac} (A/P)\right)} 913: 276:. The topology is defined by specifying its closed sets, rather than its open sets, and these are taken simply to be all the algebraic sets in 1220: 1610: 1450:, every affine or projective coordinate ring is Noetherian. As a consequence, affine or projective spaces with the Zariski topology are 2697: 2663: 2620: 2510:(actually, of a morphism of schemes), which recovers the intuitive idea of compactness: Proj is proper, but Spec is not. 1952: 1759:
Another way, perhaps more similar to the original, to interpret the modern definition is to realize that the elements of
606:) are also of this form, so that these sets form the closed sets of a topology (equivalently, their complements, denoted 144:, the Zariski topology is thus coarser than the usual topology, as every algebraic set is closed for the usual topology. 1315:
The same facts as above may be established for these sets, except that the word "ideal" must be replaced by the phrase "
2592: 702: 1519: 17: 207:, it is useful to make this definition more explicit in both cases. We assume that we are working over a fixed, 2137: 1523: 526: 458: 2655: 2172:(i.e., whose closure is the whole space) corresponding to the zero ideal (0). So the closed subsets of Spec 656:
is an affine algebraic set (irreducible or not) then the Zariski topology on it is defined simply to be the
2742: 2031:
vanish, which is formally similar to the classical definition. In fact, they agree in the sense that when
1687: 1451: 1010:
This establishes that the above equation, clearly a generalization of the definition of the closed sets in
148: 2299:
irreducible polynomial, and a generic point corresponding to the zero ideal. For example, the spectrum of
147:
The generalization of the Zariski topology to the set of prime ideals of a commutative ring follows from
2429:, and, in a principal ideal domain, the prime ideals that contain an ideal are the prime factors of the 1086: 1530: 1439: 1334: 663: 621: 279: 236: 208: 152: 1431:
open sets. The importance of this property results in particular from its use in the definition of an
1180: 1057: 1013: 850: 151:, that establishes a bijective correspondence between the points of an affine variety defined over an 2752: 2607: 1206:
because any point has many representatives that yield different values in a polynomial; however, for
179:
In classical algebraic geometry (that is, the part of algebraic geometry in which one does not use
2387: 2345: 2302: 2175: 2101: 2649: 1942:"), which assigns to each point its reflection in the residue field there, as a function on Spec 2747: 2426: 2292: 2217: 2213: 1207: 2275:
equipped with its Zariski topology. Because of this homeomorphism, some authors use the term
191:. The Zariski topology, defined on the points of the variety, is the topology such that the 2707: 2630: 2507: 2233: 1575: 1567: 204: 180: 55: 2421:
are finite unions of closed points, and the whole space. (This results from the fact that
2264:
and a generic point, corresponding to the zero ideal, and the set of the closed points is
1566:
In modern algebraic geometry, an algebraic variety is often represented by its associated
8: 2447: 2430: 2206: 2089: 435: 188: 102: 47: 2055:, and the "evaluation" maps are actually evaluation of polynomials at the corresponding 1795:
has a reflection in this residue field. Furthermore, the elements that are actually in
1780: 1579: 1125: 795: 87: 43: 1946:(whose values, admittedly, lie in different fields at different points), then we have 2717: 2693: 2659: 2634: 2616: 2588: 2063: 1571: 1316: 657: 106: 98: 59: 2417:< 0, and finally a generic point (0). For any field, the closed subsets of Spec 2240:, a non-constant polynomial is irreducible if and only if it is linear, of the form 2685: 2602: 2296: 1052: 160: 122: 114: 83: 67: 1409:
for individual polynomials (or for projective varieties, homogeneous polynomials)
2703: 2681: 2626: 2612: 2503: 2499: 2237: 2202: 1462: 1443: 1395: 697: 392:{\displaystyle V(S)=\{x\in \mathbb {A} ^{n}\mid f(x)=0{\text{ for all }}f\in S\}} 71: 2519: 219: 200: 141: 2291:, the picture becomes more complicated because of the existence of non-linear 2736: 2673: 2443: 2221: 2169: 2132: 1776: 1455: 1447: 1432: 196: 156: 137: 110: 75: 63: 2638: 2407: 2265: 2125: 231: 184: 164: 126: 113:, which allows one to build general algebraic varieties by gluing together 35: 2645: 2288: 2269: 1305:{\displaystyle V(S)=\{x\in \mathbb {P} ^{n}\mid f(x)=0,\forall f\in S\}.} 79: 1682:
To see the connection with the classical picture, note that for any set
192: 133: 1461:
However, except for finite algebraic sets, no algebraic set is ever a
1083:
is defined to be the set of equivalence classes of non-zero points in
598:
It follows that finite unions and arbitrary intersections of the sets
2722: 2194:
are precisely the whole space and the finite unions of closed points.
1686:
of polynomials (over an algebraically closed field), it follows from
1665:{\displaystyle V(I)=\{P\in \operatorname {Spec} A\mid P\supseteq I\}} 998:(these notations are not standard) is equal to the intersection with 30: 2689: 2455: 2295:. In this case, the spectrum consists of one closed point for each 1508: 132:
The Zariski topology of an algebraic variety is the topology whose
118: 94: 2256:. So, the spectrum consists of one closed point for every element 2121: 1214:
is any set of homogeneous polynomials we may reasonably speak of
62:. It is very different from topologies that are commonly used in 2035:
is the ring of polynomials over some algebraically closed field
1394:
An important property of Zariski topologies is that they have a
199:
of the variety. As the most elementary algebraic varieties are
1763:
can actually be thought of as functions on the prime ideals of
266: 1118:
by identifying two points that differ by a scalar multiple in
618:, form the topology itself). This is the Zariski topology on 2043:
are (as discussed in the previous paragraph) identified with
1879: 140:
of the variety. In the case of an algebraic variety over the
2537: 2535: 1039:
above, defines the Zariski topology on any affine variety.
2454:. However, the spectrum and projective spectrum are still 2287:
is not algebraically closed, for example the field of the
1454:, which implies that any closed subset of these spaces is 991:{\displaystyle V'(T)=\{x\in X\mid f(x)=0,\forall f\in T\}} 2714: 2446:, which are the points with maximal closure, that is the 2075: 2532: 1803:. So if we think of the map, associated to any element 1507:, points are closed and so every variety satisfies the 2559: 411:. It is a straightforward verification to show that: 2450:. The closed points correspond to maximal ideals of 2390: 2348: 2305: 2178: 2140: 2104: 1955: 1820: 1613: 1533: 1337: 1223: 1183: 1128: 1089: 1060: 1016: 916: 853: 798: 705: 666: 624: 529: 461: 314: 282: 239: 121:
theory, where manifolds are built by gluing together
2005:{\displaystyle e_{a}(P)=0\Leftrightarrow P\in V(a)} 1712:) such that the ideal generated by the polynomials 1363:As above the complements of these sets are denoted 2547: 2398: 2356: 2322: 2186: 2160: 2112: 2027:is the common set on which all the "functions" in 2004: 1927: 1664: 1551: 1355: 1304: 1198: 1169: 1110: 1075: 1031: 990: 868: 839: 780: 684: 642: 585: 514: 391: 300: 257: 1799:are precisely those whose reflection vanishes at 1752:) is "the same as" the maximal ideals containing 1331:of homogeneous polynomials, define a topology on 187:around 1960), the Zariski topology is defined on 2734: 174: 27:Topology on prime ideals and algebraic varieties 884:) is the ideal of all polynomials vanishing on 308:That is, the closed sets are those of the form 1574:(equipped with additional structures) that is 1858: 1836: 1698:) (in the old sense) are exactly the tuples ( 2062:Just as Spec replaces affine varieties, the 1659: 1629: 1296: 1239: 985: 937: 386: 330: 78:and later generalized for making the set of 74:. This topology was introduced primarily by 2582: 2565: 1527:functions, considered as regular maps into 2601: 2212:: such a polynomial ring is known to be a 2095:is the topological space with one element. 1877: 1398:consisting of simple elements, namely the 2392: 2350: 2307: 2180: 2161:{\displaystyle (p)\subseteq \mathbb {Z} } 2154: 2106: 1604:, for which the closed sets are the sets 1536: 1423:). The open sets in this base are called 1371:), or, if confusion is likely to result, 1340: 1250: 1186: 1092: 1063: 1019: 856: 722: 718: 669: 627: 586:{\displaystyle V(I)\cap V(J)\,=\,V(I+J).} 561: 557: 493: 489: 341: 285: 242: 2074: 515:{\displaystyle V(I)\cup V(J)\,=\,V(IJ);} 29: 2672: 2553: 1122:. The elements of the polynomial ring 1042: 93:The Zariski topology allows tools from 38:, this graph of a polynomial is closed. 14: 2735: 692:Equivalently, it can be checked that: 2715: 2678:The Red Book of Varieties and Schemes 2644: 2587:(3 ed.). Wiley. pp. 71–72. 2541: 2437: 1561: 1479:) is the zero set of the polynomials 230:First, we define the topology on the 2478:, does not contain the other. Then 1596:, is the set of the prime ideals of 109:. This is one of the basic ideas of 58:defined on geometric objects called 660:induced by its inclusion into some 225: 167:'s scheme theory is to consider as 24: 1284: 1111:{\displaystyle \mathbb {A} ^{n+1}} 973: 445:For any two ideals of polynomials 214:(in classical algebraic geometry, 90:of the ring) a topological space. 25: 2764: 2583:Dummit, D. S.; Foote, R. (2004). 1552:{\displaystyle \mathbb {A} ^{1}.} 1356:{\displaystyle \mathbb {P} ^{n}.} 685:{\displaystyle \mathbb {A} ^{n}.} 643:{\displaystyle \mathbb {A} ^{n}.} 301:{\displaystyle \mathbb {A} ^{n}.} 258:{\displaystyle \mathbb {A} ^{n},} 125:, which are open subsets of real 2051:, their residue fields are just 1199:{\displaystyle \mathbb {P} ^{n}} 1076:{\displaystyle \mathbb {P} ^{n}} 1032:{\displaystyle \mathbb {A} ^{n}} 869:{\displaystyle \mathbb {A} ^{n}} 2330:consists of the closed points ( 1767:; namely, as functions on Spec 1177:are not generally functions on 781:{\displaystyle A(X)\,=\,k/I(X)} 34:In the Zariski topology on the 2317: 2311: 2147: 2141: 1999: 1993: 1981: 1972: 1966: 1917: 1903: 1863: 1623: 1617: 1584:spectrum of a commutative ring 1272: 1266: 1233: 1227: 1164: 1132: 961: 955: 931: 925: 899:be the set of their images in 834: 802: 775: 769: 758: 726: 715: 709: 577: 565: 554: 548: 539: 533: 506: 497: 486: 480: 471: 465: 363: 357: 324: 318: 13: 1: 2651:Elementary Algebraic Geometry 2575: 2433:of a generator of the ideal). 2124:has a closed point for every 1452:Noetherian topological spaces 1389: 438:generated by the elements of 403:is any set of polynomials in 175:Zariski topology of varieties 2525: 2474:, at least one of them, say 2399:{\displaystyle \mathbb {R} } 2357:{\displaystyle \mathbb {R} } 2323:{\displaystyle \mathbb {R} } 2187:{\displaystyle \mathbb {Z} } 2113:{\displaystyle \mathbb {Z} } 117:in a way similar to that in 7: 2513: 2236:, for example the field of 2070: 1771:. Simply, any prime ideal 891:For any set of polynomials 696:The elements of the affine 183:, which were introduced by 101:, even when the underlying 70:; in particular, it is not 10: 2769: 209:algebraically closed field 153:algebraically closed field 2470:that are prime ideals of 1688:Hilbert's Nullstellensatz 149:Hilbert's Nullstellensatz 2039:, the maximal ideals of 792:just as the elements of 218:is usually the field of 2566:Dummit & Foote 2004 2293:irreducible polynomials 2218:irreducible polynomials 2047:-tuples of elements of 1440:Hilbert's basis theorem 1386:same formula as above. 1208:homogeneous polynomials 907:). Then the subset of 2427:principal ideal domain 2400: 2358: 2324: 2214:principal ideal domain 2201:, the spectrum of the 2188: 2162: 2120:, the spectrum of the 2114: 2080: 2006: 1929: 1666: 1553: 1357: 1306: 1200: 1171: 1112: 1077: 1033: 992: 870: 841: 782: 686: 644: 587: 516: 393: 302: 259: 39: 2544:, p. 19, 1.1.1.. 2401: 2364:, the closed points ( 2359: 2325: 2189: 2168:, and one non-closed 2163: 2131:corresponding to the 2115: 2078: 2007: 1930: 1791:, and any element of 1667: 1554: 1358: 1307: 1201: 1172: 1113: 1078: 1034: 993: 871: 842: 783: 687: 645: 588: 517: 394: 303: 260: 33: 2611:, Berlin, New York: 2500:connected components 2490:but, of course, not 2448:minimal prime ideals 2388: 2346: 2303: 2279:for the spectrum of 2234:algebraically closed 2176: 2138: 2102: 2088:, the spectrum of a 1953: 1818: 1775:has a corresponding 1611: 1600:, equipped with the 1576:locally homeomorphic 1531: 1335: 1221: 1181: 1126: 1087: 1058: 1043:Projective varieties 1014: 914: 851: 847:act as functions on 796: 788:act as functions on 703: 664: 622: 527: 459: 312: 280: 237: 205:projective varieties 97:to be used to study 2743:Algebraic varieties 2462:: given two points 2431:prime factorization 2248:, for some element 1690:that the points of 616:principal open sets 374: for all  189:algebraic varieties 159:of the ring of its 99:algebraic varieties 48:commutative algebra 2718:"Zariski Topology" 2608:Algebraic Geometry 2438:Further properties 2406:and with negative 2396: 2354: 2320: 2184: 2158: 2110: 2081: 2002: 1925: 1781:field of fractions 1662: 1580:spectrum of a ring 1562:Spectrum of a ring 1549: 1442:and the fact that 1353: 1302: 1196: 1167: 1108: 1073: 1029: 988: 866: 837: 778: 682: 640: 583: 512: 389: 298: 255: 44:algebraic geometry 40: 2699:978-3-540-63293-1 2665:978-0-8218-2952-3 2622:978-0-387-90244-9 2603:Hartshorne, Robin 2079:The spectrum of ℤ 2064:Proj construction 1892: 1572:topological space 1446:are closed under 1317:homogeneous ideal 1170:{\displaystyle k} 840:{\displaystyle k} 658:subspace topology 375: 197:algebraic subsets 161:regular functions 138:algebraic subsets 107:topological field 16:(Redirected from 2760: 2753:General topology 2728: 2727: 2711: 2669: 2641: 2598: 2585:Abstract Algebra 2569: 2563: 2557: 2551: 2545: 2539: 2405: 2403: 2402: 2397: 2395: 2363: 2361: 2360: 2355: 2353: 2329: 2327: 2326: 2321: 2310: 2193: 2191: 2190: 2185: 2183: 2167: 2165: 2164: 2159: 2157: 2119: 2117: 2116: 2111: 2109: 2023:) for any ideal 2015:More generally, 2011: 2009: 2008: 2003: 1965: 1964: 1938:("evaluation of 1934: 1932: 1931: 1926: 1924: 1920: 1913: 1893: 1888: 1887: 1886: 1872: 1862: 1861: 1840: 1839: 1830: 1829: 1783:of the quotient 1671: 1669: 1668: 1663: 1602:Zariski topology 1595: 1558: 1556: 1555: 1550: 1545: 1544: 1539: 1522:of varieties is 1444:Noetherian rings 1422: 1414: 1408: 1376: 1362: 1360: 1359: 1354: 1349: 1348: 1343: 1311: 1309: 1308: 1303: 1259: 1258: 1253: 1205: 1203: 1202: 1197: 1195: 1194: 1189: 1176: 1174: 1173: 1168: 1163: 1162: 1144: 1143: 1117: 1115: 1114: 1109: 1107: 1106: 1095: 1082: 1080: 1079: 1074: 1072: 1071: 1066: 1053:projective space 1038: 1036: 1035: 1030: 1028: 1027: 1022: 997: 995: 994: 989: 924: 875: 873: 872: 867: 865: 864: 859: 846: 844: 843: 838: 833: 832: 814: 813: 787: 785: 784: 779: 765: 757: 756: 738: 737: 691: 689: 688: 683: 678: 677: 672: 649: 647: 646: 641: 636: 635: 630: 592: 590: 589: 584: 521: 519: 518: 513: 398: 396: 395: 390: 376: 373: 350: 349: 344: 307: 305: 304: 299: 294: 293: 288: 275: 269: 264: 262: 261: 256: 251: 250: 245: 226:Affine varieties 115:affine varieties 84:commutative ring 68:complex analysis 52:Zariski topology 21: 2768: 2767: 2763: 2762: 2761: 2759: 2758: 2757: 2733: 2732: 2731: 2700: 2682:Springer-Verlag 2666: 2623: 2613:Springer-Verlag 2595: 2578: 2573: 2572: 2564: 2560: 2552: 2548: 2540: 2533: 2528: 2516: 2459: 2440: 2391: 2389: 2386: 2385: 2349: 2347: 2344: 2343: 2306: 2304: 2301: 2300: 2238:complex numbers 2203:polynomial ring 2179: 2177: 2174: 2173: 2153: 2139: 2136: 2135: 2105: 2103: 2100: 2099: 2073: 2067:cited article. 1960: 1956: 1954: 1951: 1950: 1909: 1882: 1878: 1873: 1871: 1870: 1866: 1857: 1856: 1835: 1834: 1825: 1821: 1819: 1816: 1815: 1779:, which is the 1738: 1731: 1725: 1718: 1710: 1704: 1612: 1609: 1608: 1590: 1564: 1540: 1535: 1534: 1532: 1529: 1528: 1512: 1505: 1498: 1491: 1484: 1477: 1470: 1463:Hausdorff space 1416: 1410: 1399: 1392: 1374: 1344: 1339: 1338: 1336: 1333: 1332: 1319:", so that the 1254: 1249: 1248: 1222: 1219: 1218: 1190: 1185: 1184: 1182: 1179: 1178: 1158: 1154: 1139: 1135: 1127: 1124: 1123: 1096: 1091: 1090: 1088: 1085: 1084: 1067: 1062: 1061: 1059: 1056: 1055: 1045: 1023: 1018: 1017: 1015: 1012: 1011: 917: 915: 912: 911: 860: 855: 854: 852: 849: 848: 828: 824: 809: 805: 797: 794: 793: 761: 752: 748: 733: 729: 704: 701: 700: 698:coordinate ring 673: 668: 667: 665: 662: 661: 631: 626: 625: 623: 620: 619: 528: 525: 524: 460: 457: 456: 407:variables over 372: 345: 340: 339: 313: 310: 309: 289: 284: 283: 281: 278: 277: 273: 272:of elements of 267: 246: 241: 240: 238: 235: 234: 228: 220:complex numbers 177: 142:complex numbers 28: 23: 22: 18:Zariski closure 15: 12: 11: 5: 2766: 2756: 2755: 2750: 2745: 2730: 2729: 2716:Todd Rowland. 2712: 2698: 2690:10.1007/b62130 2674:Mumford, David 2670: 2664: 2642: 2621: 2599: 2593: 2579: 2577: 2574: 2571: 2570: 2558: 2546: 2530: 2529: 2527: 2524: 2523: 2522: 2520:Spectral space 2515: 2512: 2457: 2444:generic points 2439: 2436: 2435: 2434: 2394: 2352: 2319: 2316: 2313: 2309: 2222:prime elements 2195: 2182: 2156: 2152: 2149: 2146: 2143: 2108: 2096: 2072: 2069: 2013: 2012: 2001: 1998: 1995: 1992: 1989: 1986: 1983: 1980: 1977: 1974: 1971: 1968: 1963: 1959: 1936: 1935: 1923: 1919: 1916: 1912: 1908: 1905: 1902: 1899: 1896: 1891: 1885: 1881: 1876: 1869: 1865: 1860: 1855: 1852: 1849: 1846: 1843: 1838: 1833: 1828: 1824: 1736: 1729: 1723: 1716: 1708: 1702: 1673: 1672: 1661: 1658: 1655: 1652: 1649: 1646: 1643: 1640: 1637: 1634: 1631: 1628: 1625: 1622: 1619: 1616: 1563: 1560: 1548: 1543: 1538: 1510: 1503: 1496: 1489: 1482: 1475: 1468: 1391: 1388: 1352: 1347: 1342: 1313: 1312: 1301: 1298: 1295: 1292: 1289: 1286: 1283: 1280: 1277: 1274: 1271: 1268: 1265: 1262: 1257: 1252: 1247: 1244: 1241: 1238: 1235: 1232: 1229: 1226: 1193: 1188: 1166: 1161: 1157: 1153: 1150: 1147: 1142: 1138: 1134: 1131: 1105: 1102: 1099: 1094: 1070: 1065: 1044: 1041: 1026: 1021: 1008: 1007: 987: 984: 981: 978: 975: 972: 969: 966: 963: 960: 957: 954: 951: 948: 945: 942: 939: 936: 933: 930: 927: 923: 920: 889: 863: 858: 836: 831: 827: 823: 820: 817: 812: 808: 804: 801: 777: 774: 771: 768: 764: 760: 755: 751: 747: 744: 741: 736: 732: 728: 725: 721: 717: 714: 711: 708: 681: 676: 671: 639: 634: 629: 596: 595: 594: 593: 582: 579: 576: 573: 570: 567: 564: 560: 556: 553: 550: 547: 544: 541: 538: 535: 532: 522: 511: 508: 505: 502: 499: 496: 492: 488: 485: 482: 479: 476: 473: 470: 467: 464: 443: 388: 385: 382: 379: 371: 368: 365: 362: 359: 356: 353: 348: 343: 338: 335: 332: 329: 326: 323: 320: 317: 297: 292: 287: 265:formed by the 254: 249: 244: 227: 224: 176: 173: 157:maximal ideals 26: 9: 6: 4: 3: 2: 2765: 2754: 2751: 2749: 2748:Scheme theory 2746: 2744: 2741: 2740: 2738: 2725: 2724: 2719: 2713: 2709: 2705: 2701: 2695: 2691: 2687: 2683: 2679: 2675: 2671: 2667: 2661: 2657: 2653: 2652: 2647: 2643: 2640: 2636: 2632: 2628: 2624: 2618: 2614: 2610: 2609: 2604: 2600: 2596: 2594:9780471433347 2590: 2586: 2581: 2580: 2567: 2562: 2555: 2550: 2543: 2538: 2536: 2531: 2521: 2518: 2517: 2511: 2509: 2505: 2501: 2495: 2493: 2489: 2485: 2481: 2477: 2473: 2469: 2465: 2461: 2453: 2449: 2445: 2432: 2428: 2424: 2420: 2416: 2412: 2409: 2383: 2379: 2375: 2371: 2367: 2341: 2337: 2333: 2314: 2298: 2294: 2290: 2286: 2282: 2278: 2274: 2271: 2267: 2263: 2259: 2255: 2251: 2247: 2243: 2239: 2235: 2231: 2227: 2223: 2219: 2215: 2211: 2208: 2204: 2200: 2196: 2171: 2170:generic point 2150: 2144: 2134: 2133:maximal ideal 2130: 2127: 2123: 2097: 2094: 2091: 2087: 2083: 2082: 2077: 2068: 2065: 2060: 2058: 2054: 2050: 2046: 2042: 2038: 2034: 2030: 2026: 2022: 2018: 1996: 1990: 1987: 1984: 1978: 1975: 1969: 1961: 1957: 1949: 1948: 1947: 1945: 1941: 1921: 1914: 1910: 1906: 1900: 1897: 1894: 1889: 1883: 1874: 1867: 1853: 1850: 1847: 1844: 1841: 1831: 1826: 1822: 1814: 1813: 1812: 1810: 1806: 1802: 1798: 1794: 1790: 1786: 1782: 1778: 1777:residue field 1774: 1770: 1766: 1762: 1757: 1755: 1751: 1747: 1743: 1739: 1732: 1722: 1715: 1711: 1701: 1697: 1693: 1689: 1685: 1680: 1679:is an ideal. 1678: 1656: 1653: 1650: 1647: 1644: 1641: 1638: 1635: 1632: 1626: 1620: 1614: 1607: 1606: 1605: 1603: 1599: 1594: 1588: 1585: 1581: 1577: 1573: 1570:, which is a 1569: 1559: 1546: 1541: 1525: 1521: 1516: 1514: 1506: 1499: 1492: 1485: 1478: 1471: 1464: 1459: 1457: 1453: 1449: 1445: 1441: 1436: 1434: 1433:affine scheme 1430: 1426: 1425:distinguished 1420: 1413: 1406: 1402: 1397: 1387: 1383: 1381: 1377: 1370: 1366: 1350: 1345: 1330: 1326: 1322: 1318: 1299: 1293: 1290: 1287: 1281: 1278: 1275: 1269: 1263: 1260: 1255: 1245: 1242: 1236: 1230: 1224: 1217: 1216: 1215: 1213: 1209: 1191: 1159: 1155: 1151: 1148: 1145: 1140: 1136: 1129: 1121: 1103: 1100: 1097: 1068: 1054: 1051:-dimensional 1050: 1040: 1024: 1005: 1001: 982: 979: 976: 970: 967: 964: 958: 952: 949: 946: 943: 940: 934: 928: 921: 918: 910: 906: 902: 898: 894: 890: 887: 883: 879: 861: 829: 825: 821: 818: 815: 810: 806: 799: 791: 772: 766: 762: 753: 749: 745: 742: 739: 734: 730: 723: 719: 712: 706: 699: 695: 694: 693: 679: 674: 659: 655: 650: 637: 632: 617: 614:) and called 613: 609: 605: 601: 580: 574: 571: 568: 562: 558: 551: 545: 542: 536: 530: 523: 509: 503: 500: 494: 490: 483: 477: 474: 468: 462: 455: 454: 452: 448: 444: 441: 437: 433: 429: 425: 421: 417: 414: 413: 412: 410: 406: 402: 383: 380: 377: 369: 366: 360: 354: 351: 346: 336: 333: 327: 321: 315: 295: 290: 271: 252: 247: 233: 223: 221: 217: 213: 210: 206: 202: 198: 194: 190: 186: 182: 172: 170: 166: 162: 158: 154: 150: 145: 143: 139: 135: 130: 128: 127:affine spaces 124: 120: 116: 112: 111:scheme theory 108: 104: 100: 96: 91: 89: 85: 81: 77: 76:Oscar Zariski 73: 69: 65: 61: 57: 53: 49: 45: 37: 32: 19: 2721: 2677: 2650: 2646:Hulek, Klaus 2606: 2584: 2561: 2554:Mumford 1999 2549: 2496: 2491: 2487: 2483: 2479: 2475: 2471: 2467: 2463: 2451: 2441: 2422: 2418: 2414: 2410: 2408:discriminant 2381: 2377: 2373: 2369: 2365: 2339: 2335: 2331: 2289:real numbers 2284: 2280: 2276: 2272: 2266:homeomorphic 2261: 2257: 2253: 2249: 2245: 2241: 2229: 2225: 2209: 2198: 2128: 2126:prime number 2092: 2085: 2061: 2056: 2052: 2048: 2044: 2040: 2036: 2032: 2028: 2024: 2020: 2016: 2014: 1943: 1939: 1937: 1808: 1804: 1800: 1796: 1792: 1788: 1784: 1772: 1768: 1764: 1760: 1758: 1753: 1749: 1745: 1741: 1734: 1727: 1720: 1713: 1706: 1699: 1695: 1691: 1683: 1681: 1676: 1674: 1601: 1597: 1592: 1586: 1583: 1565: 1517: 1501: 1494: 1487: 1480: 1473: 1466: 1460: 1437: 1428: 1424: 1418: 1411: 1404: 1400: 1393: 1384: 1379: 1372: 1368: 1364: 1328: 1327:), for sets 1324: 1320: 1314: 1211: 1119: 1048: 1047:Recall that 1046: 1009: 1003: 999: 908: 904: 900: 896: 892: 885: 881: 877: 789: 653: 651: 615: 611: 607: 603: 599: 597: 450: 446: 439: 431: 427: 423: 419: 415: 408: 404: 400: 232:affine space 229: 215: 211: 185:Grothendieck 178: 168: 165:Grothendieck 146: 131: 92: 86:(called the 80:prime ideals 51: 41: 36:affine plane 2486:) contains 2277:affine line 2270:affine line 1520:regular map 430:)), where ( 193:closed sets 134:closed sets 2737:Categories 2576:References 2542:Hulek 2003 2504:properness 1589:, denoted 1524:continuous 1390:Properties 453:, we have 2723:MathWorld 2676:(1999) . 2526:Citations 2268:with the 2151:⊆ 1988:∈ 1982:⇔ 1901:⁡ 1895:∈ 1864:↦ 1851:⁡ 1845:∈ 1832:: 1740:contains 1654:⊇ 1648:∣ 1642:⁡ 1636:∈ 1448:quotients 1291:∈ 1285:∀ 1261:∣ 1246:∈ 1149:… 980:∈ 974:∀ 950:∣ 944:∈ 819:… 743:… 543:∩ 475:∪ 434:) is the 381:∈ 352:∣ 337:∈ 105:is not a 72:Hausdorff 60:varieties 2648:(2003). 2639:13348052 2605:(1977), 2514:See also 2376:) where 2244:− 2220:are the 2216:and the 2122:integers 2071:Examples 922:′ 876:; here, 195:are the 155:and the 136:are the 119:manifold 95:topology 88:spectrum 56:topology 2708:1748380 2631:0463157 2384:are in 2338:), for 2205:over a 1726:, ..., 1705:, ..., 1582:. The 1578:to the 1493:, ..., 1472:, ..., 1456:compact 270:-tuples 181:schemes 2706:  2696:  2662:  2637:  2629:  2619:  2591:  2508:scheme 2460:spaces 1675:where 1568:scheme 1518:Every 895:, let 399:where 201:affine 169:points 123:charts 50:, the 2506:of a 2425:is a 2297:monic 2283:. If 2228:. If 2207:field 2197:Spec 2098:Spec 2090:field 2084:Spec 1591:Spec 1513:axiom 1429:basic 436:ideal 103:field 82:of a 54:is a 2694:ISBN 2660:ISBN 2635:OCLC 2617:ISBN 2589:ISBN 1898:Frac 1848:Spec 1639:Spec 1396:base 1004:V(S) 422:) = 203:and 64:real 46:and 2686:doi 2656:AMS 2413:− 4 2342:in 2260:of 2252:of 2232:is 2224:of 1880:mod 1807:of 1438:By 1427:or 1382:). 1002:of 652:If 222:). 66:or 42:In 2739:: 2720:. 2704:MR 2702:. 2692:. 2684:. 2658:. 2654:. 2633:, 2627:MR 2625:, 2615:, 2534:^ 2494:. 2466:, 2380:, 2372:+ 2370:px 2368:+ 2334:− 1811:: 1733:− 1719:− 1515:. 1500:- 1486:- 1458:. 1435:. 449:, 426:(( 129:. 2726:. 2710:. 2688:: 2668:. 2597:. 2568:. 2556:. 2492:Q 2488:P 2484:Q 2482:( 2480:D 2476:P 2472:A 2468:Q 2464:P 2458:0 2456:T 2452:A 2423:k 2419:k 2415:q 2411:p 2393:R 2382:q 2378:p 2374:q 2366:x 2351:R 2340:a 2336:a 2332:x 2318:] 2315:t 2312:[ 2308:R 2285:k 2281:k 2273:k 2262:k 2258:a 2254:k 2250:a 2246:a 2242:t 2230:k 2226:k 2210:k 2199:k 2181:Z 2155:Z 2148:) 2145:p 2142:( 2129:p 2107:Z 2093:k 2086:k 2057:n 2053:k 2049:k 2045:n 2041:A 2037:k 2033:A 2029:I 2025:I 2021:I 2019:( 2017:V 2000:) 1997:a 1994:( 1991:V 1985:P 1979:0 1976:= 1973:) 1970:P 1967:( 1962:a 1958:e 1944:A 1940:a 1922:) 1918:) 1915:P 1911:/ 1907:A 1904:( 1890:1 1884:P 1875:a 1868:( 1859:) 1854:A 1842:P 1837:( 1827:a 1823:e 1809:A 1805:a 1801:P 1797:P 1793:A 1789:P 1787:/ 1785:A 1773:P 1769:A 1765:A 1761:A 1754:S 1750:S 1748:( 1746:V 1742:S 1737:n 1735:a 1730:n 1728:x 1724:1 1721:a 1717:1 1714:x 1709:n 1707:a 1703:1 1700:a 1696:S 1694:( 1692:V 1684:S 1677:I 1660:} 1657:I 1651:P 1645:A 1633:P 1630:{ 1627:= 1624:) 1621:I 1618:( 1615:V 1598:A 1593:A 1587:A 1547:. 1542:1 1537:A 1511:1 1509:T 1504:n 1502:a 1497:n 1495:x 1490:1 1488:a 1483:1 1481:x 1476:n 1474:a 1469:1 1467:a 1421:) 1419:S 1417:( 1412:f 1407:) 1405:f 1403:( 1401:D 1380:S 1378:( 1375:′ 1373:D 1369:S 1367:( 1365:D 1351:. 1346:n 1341:P 1329:S 1325:S 1323:( 1321:V 1300:. 1297:} 1294:S 1288:f 1282:, 1279:0 1276:= 1273:) 1270:x 1267:( 1264:f 1256:n 1251:P 1243:x 1240:{ 1237:= 1234:) 1231:S 1228:( 1225:V 1212:S 1192:n 1187:P 1165:] 1160:n 1156:x 1152:, 1146:, 1141:0 1137:x 1133:[ 1130:k 1120:k 1104:1 1101:+ 1098:n 1093:A 1069:n 1064:P 1049:n 1025:n 1020:A 1006:. 1000:X 986:} 983:T 977:f 971:, 968:0 965:= 962:) 959:x 956:( 953:f 947:X 941:x 938:{ 935:= 932:) 929:T 926:( 919:V 909:X 905:X 903:( 901:A 897:T 893:S 888:. 886:X 882:X 880:( 878:I 862:n 857:A 835:] 830:n 826:x 822:, 816:, 811:1 807:x 803:[ 800:k 790:X 776:) 773:X 770:( 767:I 763:/ 759:] 754:n 750:x 746:, 740:, 735:1 731:x 727:[ 724:k 720:= 716:) 713:X 710:( 707:A 680:. 675:n 670:A 654:X 638:. 633:n 628:A 612:S 610:( 608:D 604:S 602:( 600:V 581:. 578:) 575:J 572:+ 569:I 566:( 563:V 559:= 555:) 552:J 549:( 546:V 540:) 537:I 534:( 531:V 510:; 507:) 504:J 501:I 498:( 495:V 491:= 487:) 484:J 481:( 478:V 472:) 469:I 466:( 463:V 451:J 447:I 442:; 440:S 432:S 428:S 424:V 420:S 418:( 416:V 409:k 405:n 401:S 387:} 384:S 378:f 370:0 367:= 364:) 361:x 358:( 355:f 347:n 342:A 334:x 331:{ 328:= 325:) 322:S 319:( 316:V 296:. 291:n 286:A 274:k 268:n 253:, 248:n 243:A 216:k 212:k 20:)

Index

Zariski closure

affine plane
algebraic geometry
commutative algebra
topology
varieties
real
complex analysis
Hausdorff
Oscar Zariski
prime ideals
commutative ring
spectrum
topology
algebraic varieties
field
topological field
scheme theory
affine varieties
manifold
charts
affine spaces
closed sets
algebraic subsets
complex numbers
Hilbert's Nullstellensatz
algebraically closed field
maximal ideals
regular functions

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.