Knowledge

Zinc-finger nuclease

Source 📝

418:
modifications. ZFNickases can induce targeted HR in cultured human and livestock cells, although at lower levels than corresponding ZFNs from which they were derived because nicks can be repaired without genetic alteration. A major limitation of ZFN-mediated gene modifications is the competition between NHEJ and HR repair pathways. Regardless of the presence of a DNA donor construct, both repair mechanisms can be activated following DSBs induced by ZFNs. Thus, ZFNickases is the first plausible attempt at engineering a method to favor the HR method of DNA repair as opposed to the error-prone NHEJ repair. By reducing NHEJ repairs, ZFNickases can thereby reduce the spectrum of unwanted off-target alterations. The ease by which ZFNickases can be derive from ZFNs provides a great platform for further studies regarding the optimization of ZFNickases and possibly increasing their levels of targeted HR while still maintain their reduced NHEJ frequency.
129: 359:
consequence, yield chromosomal rearrangements and/or cell death. Off-target cleavage events may also promote random integration of donor DNA. Two separate methods have been demonstrated to decrease off-target cleavage for 3-finger ZFNs that target two adjacent 9-basepair sites. Other groups use ZFNs with 4, 5 or 6 zinc fingers that target longer and presumably rarer sites and such ZFNs could theoretically yield less off-target activity. A comparison of a pair of 3-finger ZFNs and a pair of 4-finger ZFNs detected off-target cleavage in human cells at 31 loci for the 3-finger ZFNs and at 9 loci for the 4-finger ZFNs. Whole genome sequencing of
280:
results in a heteroduplex single-strand bubble that cleavage assays can easily detect. ZFNs have also been used to modify disease-causing alleles in triplet repeat disorders. Expanded CAG/CTG repeat tracts are the genetic basis for more than a dozen inherited neurological disorders including Huntington's disease, myotonic dystrophy, and several spinocerebellar ataxias. It has been demonstrated in human cells that ZFNs can direct double-strand breaks (DSBs) to CAG repeats and shrink the repeat from long pathological lengths to short, less toxic lengths.
300:(HR) machinery to repair the DSB using the supplied DNA fragment as a template. The HR machinery searches for homology between the damaged chromosome and the extra-chromosomal fragment and copies the sequence of the fragment between the two broken ends of the chromosome, regardless of whether the fragment contains the original sequence. If the subject is homozygous for the target allele, the efficiency of the technique is reduced since the undamaged copy of the allele may be used as a template for repair instead of the supplied fragment. 31: 288:
group of researchers in US. They suggested that the ZFN technique allows straightforward generation of a targeted allelic series of mutants; it does not rely on the existence of species-specific embryonic stem cell lines and is applicable to other vertebrates, especially those whose embryos are easily available; finally, it is also feasible to achieve targeted knock-ins in zebrafish, therefore it is possible to create human disease models that are heretofore inaccessible.
113:
utilizes a bacterial two-hybrid system and has been dubbed "OPEN" by its creators. This system combines pre-selected pools of individual zinc fingers that were each selected to bind a given triplet and then utilizes a second round of selection to obtain 3-finger arrays capable of binding a desired 9-bp sequence. This system was developed by the Zinc-Finger Consortium as an alternative to commercial sources of engineered zinc-finger arrays.
340:
plasmids could be used to transiently express ZFNs to target a DSB to a specific gene locus in human cells, they offer an excellent way for targeted delivery of the therapeutic genes to a pre-selected chromosomal site. The ZFN-encoding plasmid-based approach has the potential to circumvent all the problems associated with the viral delivery of therapeutic genes. The first therapeutic applications of ZFNs are likely to involve
404:. TAL effector nucleases (TALENs) are particularly interesting because TAL effectors appear to be very simple to engineer and TALENs can be used to target endogenous loci in human cells. But to date no one has reported the isolation of clonal cell lines or transgenic organisms using such reagents. One type of ZFN, known as SB-728-T, has been tested for potential application in the treatment of HIV. 400:
target the desired sequence with sufficient specificity. Improved methods of engineering zinc finger domains and the availability of ZFNs from a commercial supplier now put this technology in the hands of increasing numbers of researchers. Several groups are also developing other types of engineered nucleases including engineered homing endonucleases and nucleases based on engineered
105:
zinc-finger arrays with six or more individual zinc fingers. The main drawback with this procedure is the specificities of individual zinc fingers can overlap and can depend on the context of the surrounding zinc fingers and DNA. Without methods to account for this "context dependence", the standard modular assembly procedure often fails.
153:
domains dimerize and cleave DNA, the two individual ZFNs must bind opposite strands of DNA with their C-termini a certain distance apart. The most commonly used linker sequences between the zinc finger domain and the cleavage domain requires the 5′ edge of each binding site to be separated by 5 to 7 bp.
283:
Recently, a group of researchers have successfully applied the ZFN technology to genetically modify the gol pigment gene and the ntl gene in zebrafish embryo. Specific zinc-finger motifs were engineered to recognize distinct DNA sequences. The ZFN-encoding mRNA was injected into one-cell embryos and
164:
has been employed to generate a FokI variant with enhanced cleavage activity that the authors dubbed "Sharkey". Structure-based design has also been employed to improve the cleavage specificity of FokI by modifying the dimerization interface so that only the intended heterodimeric species are active.
1684:
Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ, Stadler S, Dewell S, Law M, Guo X, Li X, Wen D, Chapgier A, Dekelver RC, Miller JC, Lee YL, Boydston EA, Holmes MC, Gregory PD, Greally JM, Rafii S, Yang C, Scambler PJ, Garrick D, Gibbons RJ, Higgs DR, Cristea IM, Urnov FD, Zheng D, Allis
1139:
Cai CQ, Doyon Y, Ainley WM, Miller JC, Dekelver RC, Moehle EA, Rock JM, Lee YL, Garrison R, Schulenberg L, Blue R, Worden A, Baker L, Faraji F, Zhang L, Holmes MC, Rebar EJ, Collingwood TN, Rubin-Wilson B, Gregory PD, Urnov FD, Petolino JF (2008). "Targeted transgene integration in plant cells using
279:
and preventing the production of the harmful protein. Multiple pairs of ZFNs can also be used to completely remove entire large segments of genomic sequence. To monitor the editing activity, a PCR of the target area amplifies both alleles and, if one contains an insertion, deletion, or mutation, it
358:
If the zinc finger domains are not specific enough for their target site or they do not target a unique site within the genome of interest, off-target cleavage may occur. Such off-target cleavage may lead to the production of enough double-strand breaks to overwhelm the repair machinery and, as a
344:
therapy using a patient's own stem cells. After editing the stem cell genome, the cells could be expanded in culture and reinserted into the patient to produce differentiated cells with corrected functions. Initial targets likely include the causes of monogenic diseases, such as the IL2Rγ gene and
417:
and thus provide for highly specific single-strand breaks in DNA. These SSBs undergo the same cellular mechanisms for DNA that ZFNs exploit, but they show a significantly reduced frequency of mutagenic NHEJ repairs at their target nicking site. This reduction provides a bias for HR-mediated gene
399:
The ability to precisely manipulate the genomes of plants and animals has numerous applications in basic research, agriculture, and human therapeutics. Using ZFNs to modify endogenous genes has traditionally been a difficult task due mainly to the challenge of generating zinc finger domains that
287:
Similar research of using ZFNs to create specific mutations in zebrafish embryo has also been carried out by other research groups. The kdr gene in zebra fish encodes for the vascular endothelial growth factor-2 receptor. Mutagenic lesions at this target site was induced using ZFN technique by a
112:
to select proteins that bound a given DNA target from a large pool of partially randomized zinc-finger arrays. More recent efforts have utilized yeast one-hybrid systems, bacterial one-hybrid and two-hybrid systems, and mammalian cells. A promising new method to select novel zinc-finger arrays
339:
I endonuclease with zinc-finger proteins (ZFPs) offer a general way to deliver a site-specific DSB to the genome, and stimulate local homologous recombination by several orders of magnitude. This makes targeted gene correction or genome editing a viable option in human cells. Since ZFN-encoding
152:
is typically used as the cleavage domain in ZFNs. This cleavage domain must dimerize in order to cleave DNA and thus a pair of ZFNs are required to target non-palindromic DNA sites. Standard ZFNs fuse the cleavage domain to the C-terminus of each zinc finger domain. To let the two cleavage
104:
repeats and can each recognize between 9 and 18 basepairs. If the zinc finger domains perfectly recognize a 3 basepair DNA sequence, they can generate a 3-finger array that can recognize a 9 basepair target site. Other procedures can utilize either 1-finger or 2-finger modules to generate
284:
a high percentage of animals carried the desired mutations and phenotypes. Their research work demonstrated that ZFNs can specifically and efficiently create heritable mutant alleles at loci of interest in the germ line, and ZFN-induced alleles can be propagated in subsequent generations.
386:
As with many foreign proteins inserted into the human body, there is a risk of an immunological response against the therapeutic agent and the cells in which it is active. Since the protein must be expressed only transiently, however, the time over which a response may develop is short.
1734:
Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009).
2788:
Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2010). "A TALE nuclease architecture for efficient genome editing".
275:(NHEJ). NHEJ repairs DSBs by joining the two ends together and usually produces no mutations, provided that the cut is clean and uncomplicated. In some instances, however, the repair is imperfect, resulting in deletion or insertion of base-pairs, producing 132:
A pair of ZFNs, each with three zinc fingers binding to target DNA, are shown introducing a double-strand break, at the FokI domain, depicted in yellow. Subsequently, the double strand break is shown as being repaired through either
884:
Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ (2007). "An improved zinc-finger nuclease architecture for highly specific genome editing".
2058:
Tebas P, Stein D, Tang WV, Frank I, Wang S, Lee G, Spratt SK, Surosky RT, Giedlin M, Nichol G, Holmes MC, Gregory PD, Ando DG, Kalos M, Collman RG, Binder-Scholl G, Plesa G, Hwang WT, Levine B, June CH (6 March 2014).
412:
Zinc-finger nickases (ZFNickases) are created by inactivating the catalytic activity of one ZFN monomer in the ZFN dimer required for double-strand cleavage. ZFNickases demonstrate strand-specific nicking activity
2008:
Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, Malani N, Anguela XM, Sharma R, Ivanciu L, Murphy SL, Finn JD, Khazi FR, Zhou S, Paschon DE, Rebar EJ, Bushman FD, Gregory PD, Holmes MC, High KA (2011).
365:
modified with a pair of 5-finger ZFNs found only the intended modification and a deletion at a site "unrelated to the ZFN site" indicating this pair of ZFNs was capable of targeting a unique site in the
928:
Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF, Miller JC, Urnov FD, Gregory PD, Holmes MC (2010). "Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures".
390:
Liu et al. respectively target ZFNickases to the endogenous b-casein(CSN2) locus stimulates lysostaphin and human lysozyme gene addition by homology-directed repair and derive secrete lysostaphin cows.
1541:
Takasu Y, Kobayashi I, Beumer K, Uchino K, Sezutsu H, Sajwan S, Carroll D, Tamura T, Zurovec M (2010). "Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection".
1792:
Flisikowska T, Thorey IS, Offner S, Ros F, Lifke V, Zeitler B, Rottmann O, Vincent A, Zhang L, Jenkins S, Niersbach H, Kind AJ, Gregory PD, Schnieke AE, Platzer J (2011). Milstone DS (ed.).
2553:
Gao H, Smith J, Yang M, Jones S, Djukanovic V, Nicholson MG, West A, Bidney D, Falco SC, Jantz D, Lyznik LA (2010). "Heritable targeted mutagenesis in maize using a designed endonuclease".
1625:
Young JJ, Cherone JM, Doyon Y, Ankoudinova I, Faraji FM, Lee AH, Ngo C, Guschin DY, Paschon DE, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Harland RM, Zeitler B (2011).
2737:
Boch J, Scholze H, Schornack S, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (December 2009). "Breaking the code of DNA binding specificity of TAL-type III effectors".
1248:
Curtin SJ, Zhang F, Sander JD, Haun WJ, Starker C, Baltes NJ, Reyon D, Dahlborg EJ, Goodwin MJ, Coffman AP, Dobbs D, Joung JK, Voytas DF, Stupar RM (2011).
1394:
Wood AJ, Lo TW, Zeitler B, Pickle CS, Ralston EJ, Lee AH, Amora R, Miller JC, Leung E, Meng X, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Meyer BJ (2011).
108:
Numerous selection methods have been used to generate zinc-finger arrays capable of targeting desired sequences. Initial selection efforts utilized
68:. By taking advantage of endogenous DNA repair machinery, these reagents can be used to precisely alter the genomes of higher organisms. Alongside 1851:
Hauschild J, Petersen B, Santiago Y, Queisser AL, Carnwath JW, Lucas-Hahn A, Zhang L, Meng X, Gregory PD, Schwinzer R, Cost GJ, Niemann H (2011).
1297:
Shukla VK, Doyon Y, Miller JC, et al. (May 2009). "Precise genome modification in the crop species Zea mays using zinc-finger nucleases".
1021:
Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D, Peterson T, Joung JK, Voytas DF (2010).
3138: 1627:"Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases" 267:
ZFNs can be used to disable dominant mutations in heterozygous individuals by producing double-strand breaks (DSBs) in the DNA (see
2281: 457: 17: 2299:"Zinc finger protein-dependent and -independent contributions to the in vivo off-target activity of zinc finger nucleases" 2457:"Generation of mastitis resistance in cows by targeting human lysozyme gene to -casein locus using zinc-finger nucleases" 2861:
Ramirez CL, Certo MT, Mussolino C, Goodwin MJ, Cradick TJ, McCaffrey AP, Cathomen T, Scharenberg AM, Joung JK (2012).
3197: 3187: 1348:
Bibikova M, Beumer K, Trautman J, Carroll D (2003). "Enhancing Gene Targeting with Designed Zinc Finger Nucleases".
128: 2910:
Wang J, Friedman G, Doyon Y, Wang NS, Li CJ, Miller JC, Hua KL, Yan JE, Babiarz PD, Gregory PD, Holmes MC (2012).
160:
techniques have been employed to improve both the activity and specificity of the nuclease domain used in ZFNs.
3157: 2117:"Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells" 2215:"Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells" 1451:
Gühmann M, Jia H, Randel N, Verasztó C, Bezares-Calderón LA, Michiels NK, Yokoyama S, Jékely G (August 2015).
256: 208: 533:"Rapid "open-source" engineering of customized zinc-finger nucleases for highly efficient gene modification" 3172: 2400:"Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows" 1794:"Efficient Immunoglobulin Gene Disruption and Targeted Replacement in Rabbit Using Zinc Finger Nucleases" 335:
is simple and straightforward. Custom-designed ZFNs that combine the non-specific cleavage domain (N) of
243:, and various types of mammalian cells. Zinc finger nucleases have also been used in a mouse model of 790:"Directed Evolution of an Enhanced and Highly Efficient FokI Cleavage Domain for Zinc Finger Nucleases" 272: 138: 2833: 839:"Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases" 2912:"Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme" 2686:
Moscou MJ, Bogdanove AJ (December 2009). "A simple cipher governs DNA recognition by TAL effectors".
84: 1912:"Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle" 381: 297: 146: 134: 3192: 3182: 191: 2863:"Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects" 173:
Zinc finger nucleases are useful to manipulate the genomes of many plants and animals including
3202: 2639:"TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain" 368: 361: 197: 100:
The DNA-binding domains of individual ZFNs typically contain between three and six individual
3135: 2455:
Liu X, Wang Y, Tian Y, Yu Y, Gao M, Hu G, Su F, Pan S, Luo Y, Guo Z, Quan F, Zhang Y (2014).
268: 203: 2348:"Revealing Off-Target Cleavage Specificities of Zinc Finger Nucleases by in Vitro Selection" 271:) in the mutant allele, which will, in the absence of a homologous template, be repaired by 2746: 2695: 2411: 2226: 1864: 1805: 1748: 1638: 1464: 1407: 1306: 1204: 1093: 1034: 701: 642: 174: 64:
sequences and this enables zinc-finger nucleases to target unique sequences within complex
8: 1023:"High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases" 452: 447: 442: 157: 117: 46: 2750: 2699: 2415: 2230: 1868: 1809: 1752: 1687:"Distinct Factors Control Histone Variant H3.3 Localization at Specific Genomic Regions" 1642: 1468: 1411: 1310: 1208: 1097: 1038: 705: 646: 3112: 3087: 3069: 3044: 3031: 2989: 2965:"Zinc Finger Tools: custom DNA-binding domains for transcription factors and nucleases" 2964: 2936: 2911: 2887: 2862: 2814: 2770: 2719: 2663: 2638: 2614: 2589: 2530: 2505: 2481: 2456: 2432: 2399: 2372: 2347: 2323: 2298: 2249: 2214: 2213:
Mittelman D, Moye C, Morton J, Sykoudis K, Lin Y, Carroll D, Wilson JH (16 June 2009).
2190: 2165: 2141: 2116: 2085: 2060: 2035: 2010: 1985: 1960: 1936: 1911: 1887: 1852: 1828: 1793: 1769: 1736: 1711: 1686: 1661: 1626: 1602: 1577: 1428: 1395: 1373: 1330: 1274: 1249: 1225: 1192: 1173: 1116: 1081: 1057: 1022: 998: 973: 954: 910: 866: 814: 789: 606: 581: 557: 532: 508: 483: 161: 53: 3045:"Heritable Targeted Gene Disruption in Zebrafish Using Designed Zinc Finger Nucleases" 2506:"Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease" 1500:
Ochiai H, Fujita K, Suzuki KI, Nishikawa M, Shibata T, Sakamoto N, Yamamoto T (2010).
1082:"Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases" 3117: 3074: 3023: 2994: 2941: 2892: 2806: 2774: 2762: 2711: 2668: 2619: 2570: 2566: 2535: 2486: 2437: 2377: 2328: 2277: 2254: 2195: 2146: 2090: 2040: 1990: 1941: 1892: 1833: 1774: 1716: 1666: 1607: 1558: 1523: 1518: 1482: 1433: 1365: 1322: 1279: 1230: 1165: 1157: 1121: 1062: 1003: 946: 914: 902: 858: 819: 770: 729: 724: 689: 670: 665: 630: 611: 562: 513: 427: 345:
the β-globin gene for gene correction and CCR5 gene for mutagenesis and disablement.
3035: 2818: 1453:"Spectral Tuning of Phototaxis by a Go-Opsin in the Rhabdomeric Eyes of Platynereis" 1377: 958: 870: 3107: 3099: 3064: 3056: 3015: 3006:
Porteus MH, Carroll D (August 2005). "Gene targeting using zinc finger nucleases".
2984: 2976: 2931: 2923: 2882: 2874: 2798: 2754: 2723: 2703: 2658: 2650: 2609: 2601: 2562: 2525: 2517: 2476: 2468: 2427: 2419: 2367: 2359: 2318: 2310: 2244: 2234: 2185: 2177: 2136: 2128: 2080: 2072: 2030: 2022: 1980: 1972: 1931: 1923: 1882: 1872: 1823: 1813: 1764: 1756: 1706: 1698: 1656: 1646: 1597: 1589: 1550: 1513: 1472: 1423: 1415: 1357: 1334: 1314: 1269: 1261: 1220: 1212: 1193:"High-frequency modification of plant genes using engineered zinc-finger nucleases" 1177: 1149: 1111: 1101: 1052: 1042: 993: 985: 938: 894: 850: 809: 801: 760: 719: 709: 660: 650: 601: 593: 552: 544: 503: 495: 1853:"Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases" 3142: 1818: 1191:
Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009).
548: 325: 255:. ZFNs are also used to create a new generation of genetic disease models called 3088:"Targeted gene inactivation in zebrafish using engineered zinc finger nucleases" 2605: 1250:"Targeted Mutagenesis of Duplicated Genes in Soybean with Zinc-Finger Nucleases" 597: 251:
gene disrupted by zinc finger nucleases to be safe as a potential treatment for
30: 3177: 2219:
Proceedings of the National Academy of Sciences of the United States of America
1702: 1554: 838: 437: 432: 77: 1477: 1452: 1153: 989: 805: 308:
The success of gene therapy depends on the efficient insertion of therapeutic
3166: 2061:"Gene Editing of CCR5 in Autologous CD4 T Cells of Persons Infected with HIV" 2011:"In vivo genome editing restores haemostasis in a mouse model of haemophilia" 1161: 714: 109: 2758: 2707: 2239: 1877: 1760: 1651: 1419: 1361: 1106: 1047: 971: 3121: 3078: 3027: 2998: 2945: 2896: 2810: 2766: 2715: 2672: 2623: 2574: 2539: 2490: 2472: 2441: 2381: 2332: 2258: 2199: 2166:"Targeted chromosomal deletions in human cells using zinc finger nucleases" 2150: 2094: 2044: 1994: 1945: 1896: 1837: 1778: 1720: 1670: 1611: 1562: 1527: 1502:"Targeted mutagenesis in the sea urchin embryo using zinc-finger nucleases" 1501: 1486: 1437: 1369: 1326: 1283: 1234: 1169: 1125: 1066: 1007: 950: 906: 862: 823: 774: 655: 615: 566: 517: 401: 2927: 2398:
Liu X, Wang YS, Guo WJ, Chang BH, Liu J, Guo ZK, Quan FS, Zhang Y (2013).
2181: 2115:
Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005).
2076: 1593: 1265: 837:
Szczepek M, Brondani V, Büchel J, Serrano L, Segal DJ, Cathomen T (2007).
733: 674: 631:"Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain" 499: 484:"Unexpected failure rates for modular assembly of engineered zinc fingers" 2980: 2878: 2654: 2521: 2314: 2132: 332: 321: 276: 244: 101: 50: 2026: 1976: 1927: 1318: 1216: 765: 748: 296:
ZFNs are also used to rewrite the sequence of an allele by invoking the
2423: 2363: 942: 313: 2802: 216: 3103: 3060: 3019: 2272:
Kandavelou K, Chandrasegaran S (2008). "Plasmids for Gene Therapy".
898: 854: 60:. Zinc finger domains can be engineered to target specific desired 974:"Creating Designed Zinc-Finger Nucleases with Minimal Cytotoxicity" 972:
Ramalingam S, Kandavelou K, Rajenderan R, Chandrasegaran S (2011).
252: 212: 57: 1737:"Knockout Rats via Embryo Microinjection of Zinc-Finger Nucleases" 1850: 462: 329: 182: 178: 2590:"Targeting DNA Double-Strand Breaks with TAL Effector Nucleases" 2297:
Gupta A, Meng X, Zhu LJ, Lawson ND, Wolfe SA (September 2010).
317: 240: 232: 69: 65: 1396:"Targeted Genome Editing Across Species Using ZFNs and TALENs" 1020: 3152: 3147: 2504:
Grizot S, Smith J, Daboussi F, et al. (September 2009).
1347: 836: 186: 73: 2860: 1624: 3086:
Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (June 2008).
2212: 1683: 1540: 1499: 309: 248: 224: 220: 149: 3043:
Doyon Y, McCammon JM, Miller JC, et al. (June 2008).
2588:
Christian M, Cermak T, Doyle EL, et al. (July 2010).
1791: 2345: 1733: 688:
Bitinaite J, Wah, DA, Aggarwal AK, Schildkraut I (1998).
482:
Ramirez CL, Foley JE, Wright DA, et al. (May 2008).
236: 228: 61: 2736: 2271: 1578:"Zinc Finger–Based Knockout Punches for Zebrafish Genes" 1450: 2461:
Proceedings of the Royal Society B: Biological Sciences
1190: 883: 247:
and a clinical trial found CD4+ human T-cells with the
927: 687: 2909: 2114: 1247: 2834:"Zinc Fingers Could Be Key to Reviving Gene Therapy" 2637:
Li T, Huang S, Jiang WZ, et al. (August 2010).
2587: 1138: 749:"Zinc-finger nucleases: the next generation emerges" 628: 3042: 2787: 2503: 2346:Pattanayak V, Ramirez CL, Joung JK, Liu DR (2011). 2057: 1393: 145:The non-specific cleavage domain from the type IIs 120:for more info on zinc finger selection techniques) 3085: 2296: 1079: 481: 2552: 2007: 1910:Yu S, Luo J, Song Z, Ding F, Dai Y, Li N (2011). 1296: 3164: 690:"FokI dimerization is required for DNA cleavage" 573: 2685: 2397: 1857:Proceedings of the National Academy of Sciences 1785: 1631:Proceedings of the National Academy of Sciences 1086:Proceedings of the National Academy of Sciences 1027:Proceedings of the National Academy of Sciences 582:"Genome engineering with zinc-finger nucleases" 3005: 2339: 1961:"Zinc-finger Nucleases as Gene Therapy Agents" 965: 3153:Zinc Finger Consortium materials from Addgene 2962: 2454: 1909: 1844: 746: 2636: 2274:Plasmids: Current Research and Future Trends 1677: 1444: 1341: 1184: 787: 681: 2856: 2854: 1534: 1389: 1387: 1073: 830: 2781: 2265: 1727: 1241: 76:, ZFN is a prominent tool in the field of 3111: 3068: 2988: 2935: 2886: 2662: 2613: 2529: 2480: 2431: 2371: 2322: 2248: 2238: 2189: 2163: 2140: 2084: 2051: 2034: 1984: 1935: 1886: 1876: 1827: 1817: 1768: 1710: 1660: 1650: 1618: 1601: 1543:Insect Biochemistry and Molecular Biology 1517: 1476: 1427: 1273: 1224: 1115: 1105: 1056: 1046: 1014: 997: 921: 877: 813: 764: 723: 713: 664: 654: 605: 556: 531:Maeder ML, et al. (September 2008). 507: 2851: 2825: 2110: 2108: 2106: 2104: 1384: 629:Kim YG, Cha J, Chandrasegaran S (1996). 127: 29: 2164:Lee HJ, Kim E, Kim JS (December 2009). 1958: 1132: 579: 407: 83:It was initially created by researcher 14: 3165: 2393: 2391: 2001: 1903: 781: 622: 530: 353: 262: 123: 2448: 2101: 1575: 1080:Osakabe K, Osakabe Y, Toki S (2010). 458:Zinc finger nuclease treatment of HIV 348: 95: 2903: 2831: 2963:Mandell JG, Barbas CF (July 2006). 2388: 2276:. Norfolk: Caister Academic Press. 24: 2956: 747:Cathomen T, Joung JK (July 2008). 25: 3214: 3129: 1140:designed zinc finger nucleases". 375: 291: 2567:10.1111/j.1365-313X.2009.04041.x 1519:10.1111/j.1365-2443.2010.01425.x 788:Guo J, Gaj T, Barbas CF (2010). 2730: 2679: 2630: 2581: 2546: 2497: 2290: 2206: 2157: 2065:New England Journal of Medicine 1952: 1569: 1493: 1290: 320:, without causing cell injury, 303: 168: 3148:Zinc Finger Consortium website 740: 524: 475: 13: 1: 3158:A commercial supplier of ZFNs 2975:(Web Server issue): W516–23. 468: 316:target site within the human 257:isogenic human disease models 34:The schematic diagram of ZFNs 1819:10.1371/journal.pone.0021045 978:Journal of Molecular Biology 794:Journal of Molecular Biology 549:10.1016/j.molcel.2008.06.016 394: 7: 2832:Wade N (28 December 2009). 2606:10.1534/genetics.110.120717 598:10.1534/genetics.111.131433 421: 10: 3219: 1703:10.1016/j.cell.2010.01.003 1555:10.1016/j.ibmb.2010.07.012 379: 273:non-homologous end-joining 139:non-homologous end joining 90: 3141:17 September 2009 at the 1478:10.1016/j.cub.2015.07.017 1154:10.1007/s11103-008-9449-7 990:10.1016/j.jmb.2010.10.043 806:10.1016/j.jmb.2010.04.060 85:Srinivasan Chandrasegaran 3198:Repetitive DNA sequences 3188:History of biotechnology 715:10.1073/pnas.95.18.10570 382:Adaptive immune response 298:homologous recombination 147:restriction endonuclease 135:homology-directed repair 2759:10.1126/science.1178811 2708:10.1126/science.1178817 2240:10.1073/pnas.0902420106 1878:10.1073/pnas.1106422108 1761:10.1126/science.1172447 1652:10.1073/pnas.1102030108 1420:10.1126/science.1207773 1362:10.1126/science.1079512 1142:Plant Molecular Biology 1107:10.1073/pnas.1000234107 1048:10.1073/pnas.0914991107 192:Drosophila melanogaster 2867:Nucleic Acids Research 2473:10.1098/rspb.2013.3368 694:Proc Natl Acad Sci USA 656:10.1073/pnas.93.3.1156 635:Proc Natl Acad Sci USA 328:. The construction of 142: 49:generated by fusing a 35: 2928:10.1101/gr.122879.111 2404:Nature Communications 2182:10.1101/gr.099747.109 2077:10.1056/NEJMoa1300662 1594:10.1089/zeb.2008.9988 1266:10.1104/pp.111.172981 500:10.1038/nmeth0508-374 380:Further information: 269:Genetic recombination 204:Platynereis dumerilii 131: 39:Zinc-finger nucleases 33: 3136:Zinc finger selector 2791:Nature Biotechnology 887:Nature Biotechnology 843:Nature Biotechnology 408:Zinc-finger nickases 18:Zinc finger nuclease 3173:Engineered proteins 2751:2009Sci...326.1509B 2745:(5959): 1509–1512. 2700:2009Sci...326.1501M 2416:2013NatCo...4.2565L 2231:2009PNAS..106.9607M 2027:10.1038/nature10177 1977:10.1038/gt.2008.145 1928:10.1038/cr.2011.153 1869:2011PNAS..10812013H 1863:(29): 12013–12017. 1810:2011PLoSO...621045F 1753:2009Sci...325..433G 1643:2011PNAS..108.7052Y 1469:2015CBio...25.2265G 1412:2011Sci...333..307W 1319:10.1038/nature07992 1311:2009Natur.459..437S 1217:10.1038/nature07845 1209:2009Natur.459..442T 1098:2010PNAS..10712034O 1092:(26): 12034–12039. 1039:2010PNAS..10712028Z 1033:(26): 12028–12033. 766:10.1038/mt.2008.114 706:1998PNAS...9510570B 700:(18): 10570–10575. 647:1996PNAS...93.1156K 453:Protein engineering 448:Zinc finger chimera 443:Zinc finger protein 354:Off-target cleavage 263:Disabling an allele 158:protein engineering 124:DNA-cleavage domain 118:Zinc finger chimera 58:DNA-cleavage domain 47:restriction enzymes 2981:10.1093/nar/gkl209 2879:10.1093/nar/gks179 2838:The New York Times 2655:10.1093/nar/gkq704 2522:10.1093/nar/gkp548 2467:(1780): 20133368. 2424:10.1038/ncomms3565 2364:10.1038/nmeth.1670 2315:10.1093/nar/gkq787 2133:10.1093/nar/gki912 1959:Carroll D (2008). 943:10.1038/nmeth.1539 580:Carroll D (2011). 349:Potential problems 312:at an appropriate 162:Directed evolution 156:Several different 143: 96:DNA-binding domain 54:DNA-binding domain 36: 27:Artificial enzymes 2969:Nucleic Acids Res 2643:Nucleic Acids Res 2555:The Plant Journal 2516:(16): 5405–5419. 2510:Nucleic Acids Res 2303:Nucleic Acids Res 2283:978-1-904455-35-6 2225:(24): 9607–9612. 2127:(18): 5978–5990. 2121:Nucleic Acids Res 2021:(7355): 217–221. 1971:(22): 1463–1468. 1922:(11): 1638–1640. 1637:(17): 7052–7057. 1576:Ekker SC (2008). 1463:(17): 2265–2271. 1305:(7245): 437–441. 1203:(7245): 442–445. 428:Chimeric nuclease 324:mutations, or an 45:) are artificial 16:(Redirected from 3210: 3125: 3115: 3082: 3072: 3039: 3002: 2992: 2950: 2949: 2939: 2922:(4): 1316–1326. 2907: 2901: 2900: 2890: 2873:(7): 5560–5568. 2858: 2849: 2848: 2846: 2844: 2829: 2823: 2822: 2803:10.1038/nbt.1755 2785: 2779: 2778: 2734: 2728: 2727: 2683: 2677: 2676: 2666: 2634: 2628: 2627: 2617: 2585: 2579: 2578: 2550: 2544: 2543: 2533: 2501: 2495: 2494: 2484: 2452: 2446: 2445: 2435: 2395: 2386: 2385: 2375: 2343: 2337: 2336: 2326: 2294: 2288: 2287: 2269: 2263: 2262: 2252: 2242: 2210: 2204: 2203: 2193: 2161: 2155: 2154: 2144: 2112: 2099: 2098: 2088: 2055: 2049: 2048: 2038: 2005: 1999: 1998: 1988: 1956: 1950: 1949: 1939: 1907: 1901: 1900: 1890: 1880: 1848: 1842: 1841: 1831: 1821: 1789: 1783: 1782: 1772: 1731: 1725: 1724: 1714: 1681: 1675: 1674: 1664: 1654: 1622: 1616: 1615: 1605: 1588:(2): 1121–1123. 1573: 1567: 1566: 1538: 1532: 1531: 1521: 1497: 1491: 1490: 1480: 1448: 1442: 1441: 1431: 1391: 1382: 1381: 1345: 1339: 1338: 1294: 1288: 1287: 1277: 1254:Plant Physiology 1245: 1239: 1238: 1228: 1188: 1182: 1181: 1136: 1130: 1129: 1119: 1109: 1077: 1071: 1070: 1060: 1050: 1018: 1012: 1011: 1001: 969: 963: 962: 925: 919: 918: 881: 875: 874: 834: 828: 827: 817: 785: 779: 778: 768: 759:(7): 1200–1207. 744: 738: 737: 727: 717: 685: 679: 678: 668: 658: 641:(3): 1156–1160. 626: 620: 619: 609: 577: 571: 570: 560: 528: 522: 521: 511: 479: 21: 3218: 3217: 3213: 3212: 3211: 3209: 3208: 3207: 3163: 3162: 3143:Wayback Machine 3132: 3104:10.1038/nbt1398 3092:Nat. Biotechnol 3061:10.1038/nbt1409 3049:Nat. Biotechnol 3020:10.1038/nbt1125 3008:Nat. Biotechnol 2959: 2957:Further reading 2954: 2953: 2916:Genome Research 2908: 2904: 2859: 2852: 2842: 2840: 2830: 2826: 2786: 2782: 2735: 2731: 2684: 2680: 2635: 2631: 2586: 2582: 2551: 2547: 2502: 2498: 2453: 2449: 2396: 2389: 2344: 2340: 2295: 2291: 2284: 2270: 2266: 2211: 2207: 2162: 2158: 2113: 2102: 2071:(10): 901–910. 2056: 2052: 2006: 2002: 1957: 1953: 1908: 1904: 1849: 1845: 1790: 1786: 1732: 1728: 1682: 1678: 1623: 1619: 1574: 1570: 1549:(10): 759–765. 1539: 1535: 1498: 1494: 1457:Current Biology 1449: 1445: 1392: 1385: 1346: 1342: 1295: 1291: 1246: 1242: 1189: 1185: 1137: 1133: 1078: 1074: 1019: 1015: 970: 966: 926: 922: 899:10.1038/nbt1319 882: 878: 855:10.1038/nbt1317 835: 831: 786: 782: 745: 741: 686: 682: 627: 623: 578: 574: 529: 525: 480: 476: 471: 424: 410: 397: 384: 378: 356: 351: 326:immune response 306: 294: 265: 171: 126: 98: 93: 28: 23: 22: 15: 12: 11: 5: 3216: 3206: 3205: 3200: 3195: 3193:Non-coding RNA 3190: 3185: 3183:Genome editing 3180: 3175: 3161: 3160: 3155: 3150: 3145: 3131: 3130:External links 3128: 3127: 3126: 3098:(6): 695–701. 3083: 3055:(6): 702–708. 3040: 3014:(8): 967–973. 3003: 2958: 2955: 2952: 2951: 2902: 2850: 2824: 2797:(2): 143–148. 2780: 2729: 2694:(5959): 1501. 2678: 2649:(1): 359–372. 2629: 2600:(2): 757–761. 2580: 2561:(1): 176–187. 2545: 2496: 2447: 2387: 2358:(9): 765–770. 2352:Nature Methods 2338: 2309:(1): 381–392. 2289: 2282: 2264: 2205: 2156: 2100: 2050: 2000: 1951: 1902: 1843: 1784: 1726: 1697:(5): 678–691. 1676: 1617: 1568: 1533: 1512:(8): 875–885. 1506:Genes to Cells 1492: 1443: 1383: 1340: 1289: 1260:(2): 466–473. 1240: 1183: 1148:(6): 699–709. 1131: 1072: 1013: 984:(3): 630–641. 964: 931:Nature Methods 920: 893:(7): 778–785. 876: 849:(7): 786–793. 829: 780: 739: 680: 621: 592:(4): 773–782. 572: 543:(2): 294–301. 523: 494:(5): 374–375. 473: 472: 470: 467: 466: 465: 460: 455: 450: 445: 440: 438:Gene targeting 435: 433:Genome editing 430: 423: 420: 409: 406: 396: 393: 377: 376:Immunogenicity 374: 355: 352: 350: 347: 305: 302: 293: 292:Allele editing 290: 264: 261: 170: 167: 125: 122: 97: 94: 92: 89: 78:genome editing 26: 9: 6: 4: 3: 2: 3215: 3204: 3203:Zinc proteins 3201: 3199: 3196: 3194: 3191: 3189: 3186: 3184: 3181: 3179: 3176: 3174: 3171: 3170: 3168: 3159: 3156: 3154: 3151: 3149: 3146: 3144: 3140: 3137: 3134: 3133: 3123: 3119: 3114: 3109: 3105: 3101: 3097: 3093: 3089: 3084: 3080: 3076: 3071: 3066: 3062: 3058: 3054: 3050: 3046: 3041: 3037: 3033: 3029: 3025: 3021: 3017: 3013: 3009: 3004: 3000: 2996: 2991: 2986: 2982: 2978: 2974: 2970: 2966: 2961: 2960: 2947: 2943: 2938: 2933: 2929: 2925: 2921: 2917: 2913: 2906: 2898: 2894: 2889: 2884: 2880: 2876: 2872: 2868: 2864: 2857: 2855: 2839: 2835: 2828: 2820: 2816: 2812: 2808: 2804: 2800: 2796: 2792: 2784: 2776: 2772: 2768: 2764: 2760: 2756: 2752: 2748: 2744: 2740: 2733: 2725: 2721: 2717: 2713: 2709: 2705: 2701: 2697: 2693: 2689: 2682: 2674: 2670: 2665: 2660: 2656: 2652: 2648: 2644: 2640: 2633: 2625: 2621: 2616: 2611: 2607: 2603: 2599: 2595: 2591: 2584: 2576: 2572: 2568: 2564: 2560: 2556: 2549: 2541: 2537: 2532: 2527: 2523: 2519: 2515: 2511: 2507: 2500: 2492: 2488: 2483: 2478: 2474: 2470: 2466: 2462: 2458: 2451: 2443: 2439: 2434: 2429: 2425: 2421: 2417: 2413: 2409: 2405: 2401: 2394: 2392: 2383: 2379: 2374: 2369: 2365: 2361: 2357: 2353: 2349: 2342: 2334: 2330: 2325: 2320: 2316: 2312: 2308: 2304: 2300: 2293: 2285: 2279: 2275: 2268: 2260: 2256: 2251: 2246: 2241: 2236: 2232: 2228: 2224: 2220: 2216: 2209: 2201: 2197: 2192: 2187: 2183: 2179: 2175: 2171: 2167: 2160: 2152: 2148: 2143: 2138: 2134: 2130: 2126: 2122: 2118: 2111: 2109: 2107: 2105: 2096: 2092: 2087: 2082: 2078: 2074: 2070: 2066: 2062: 2054: 2046: 2042: 2037: 2032: 2028: 2024: 2020: 2016: 2012: 2004: 1996: 1992: 1987: 1982: 1978: 1974: 1970: 1966: 1962: 1955: 1947: 1943: 1938: 1933: 1929: 1925: 1921: 1917: 1916:Cell Research 1913: 1906: 1898: 1894: 1889: 1884: 1879: 1874: 1870: 1866: 1862: 1858: 1854: 1847: 1839: 1835: 1830: 1825: 1820: 1815: 1811: 1807: 1804:(6): e21045. 1803: 1799: 1795: 1788: 1780: 1776: 1771: 1766: 1762: 1758: 1754: 1750: 1747:(5939): 433. 1746: 1742: 1738: 1730: 1722: 1718: 1713: 1708: 1704: 1700: 1696: 1692: 1688: 1680: 1672: 1668: 1663: 1658: 1653: 1648: 1644: 1640: 1636: 1632: 1628: 1621: 1613: 1609: 1604: 1599: 1595: 1591: 1587: 1583: 1579: 1572: 1564: 1560: 1556: 1552: 1548: 1544: 1537: 1529: 1525: 1520: 1515: 1511: 1507: 1503: 1496: 1488: 1484: 1479: 1474: 1470: 1466: 1462: 1458: 1454: 1447: 1439: 1435: 1430: 1425: 1421: 1417: 1413: 1409: 1406:(6040): 307. 1405: 1401: 1397: 1390: 1388: 1379: 1375: 1371: 1367: 1363: 1359: 1356:(5620): 764. 1355: 1351: 1344: 1336: 1332: 1328: 1324: 1320: 1316: 1312: 1308: 1304: 1300: 1293: 1285: 1281: 1276: 1271: 1267: 1263: 1259: 1255: 1251: 1244: 1236: 1232: 1227: 1222: 1218: 1214: 1210: 1206: 1202: 1198: 1194: 1187: 1179: 1175: 1171: 1167: 1163: 1159: 1155: 1151: 1147: 1143: 1135: 1127: 1123: 1118: 1113: 1108: 1103: 1099: 1095: 1091: 1087: 1083: 1076: 1068: 1064: 1059: 1054: 1049: 1044: 1040: 1036: 1032: 1028: 1024: 1017: 1009: 1005: 1000: 995: 991: 987: 983: 979: 975: 968: 960: 956: 952: 948: 944: 940: 936: 932: 924: 916: 912: 908: 904: 900: 896: 892: 888: 880: 872: 868: 864: 860: 856: 852: 848: 844: 840: 833: 825: 821: 816: 811: 807: 803: 800:(1): 96–107. 799: 795: 791: 784: 776: 772: 767: 762: 758: 754: 750: 743: 735: 731: 726: 721: 716: 711: 707: 703: 699: 695: 691: 684: 676: 672: 667: 662: 657: 652: 648: 644: 640: 636: 632: 625: 617: 613: 608: 603: 599: 595: 591: 587: 583: 576: 568: 564: 559: 554: 550: 546: 542: 538: 534: 527: 519: 515: 510: 505: 501: 497: 493: 489: 485: 478: 474: 464: 461: 459: 456: 454: 451: 449: 446: 444: 441: 439: 436: 434: 431: 429: 426: 425: 419: 416: 405: 403: 402:TAL effectors 392: 388: 383: 373: 371: 370: 364: 363: 346: 343: 338: 334: 331: 327: 323: 319: 315: 311: 301: 299: 289: 285: 281: 278: 274: 270: 260: 258: 254: 250: 246: 242: 238: 234: 230: 226: 222: 218: 214: 210: 206: 205: 200: 199: 194: 193: 188: 184: 180: 176: 166: 163: 159: 154: 151: 148: 140: 136: 130: 121: 119: 114: 111: 110:phage display 106: 103: 88: 86: 81: 79: 75: 71: 67: 63: 59: 55: 52: 48: 44: 40: 32: 19: 3095: 3091: 3052: 3048: 3011: 3007: 2972: 2968: 2919: 2915: 2905: 2870: 2866: 2841:. Retrieved 2837: 2827: 2794: 2790: 2783: 2742: 2738: 2732: 2691: 2687: 2681: 2646: 2642: 2632: 2597: 2593: 2583: 2558: 2554: 2548: 2513: 2509: 2499: 2464: 2460: 2450: 2407: 2403: 2355: 2351: 2341: 2306: 2302: 2292: 2273: 2267: 2222: 2218: 2208: 2176:(1): 81–89. 2173: 2169: 2159: 2124: 2120: 2068: 2064: 2053: 2018: 2014: 2003: 1968: 1965:Gene Therapy 1964: 1954: 1919: 1915: 1905: 1860: 1856: 1846: 1801: 1797: 1787: 1744: 1740: 1729: 1694: 1690: 1679: 1634: 1630: 1620: 1585: 1581: 1571: 1546: 1542: 1536: 1509: 1505: 1495: 1460: 1456: 1446: 1403: 1399: 1353: 1349: 1343: 1302: 1298: 1292: 1257: 1253: 1243: 1200: 1196: 1186: 1145: 1141: 1134: 1089: 1085: 1075: 1030: 1026: 1016: 981: 977: 967: 937:(1): 74–79. 934: 930: 923: 890: 886: 879: 846: 842: 832: 797: 793: 783: 756: 752: 742: 697: 693: 683: 638: 634: 624: 589: 585: 575: 540: 536: 526: 491: 488:Nat. Methods 487: 477: 414: 411: 398: 389: 385: 367: 360: 357: 341: 336: 307: 304:Gene therapy 295: 286: 282: 266: 202: 196: 190: 172: 169:Applications 155: 144: 115: 107: 99: 82: 42: 38: 37: 1685:CD (2010). 314:chromosomal 277:frame-shift 245:haemophilia 175:arabidopsis 102:zinc finger 70:CRISPR/Cas9 51:zinc finger 3167:Categories 2170:Genome Res 469:References 369:C. elegans 362:C. elegans 209:sea urchin 198:C. elegans 2775:206522347 1582:Zebrafish 1162:0167-4412 915:205273515 753:Mol. Ther 537:Mol. Cell 395:Prospects 322:oncogenic 217:zebrafish 3139:Archived 3122:18500337 3079:18500334 3036:13221399 3028:16082368 2999:16845061 2946:22434427 2897:22373919 2819:53549397 2811:21179091 2767:19933107 2716:19933106 2673:20699274 2624:20660643 2594:Genetics 2575:19811621 2540:19584299 2491:24552841 2442:24121612 2410:: 2565. 2382:21822273 2333:20843781 2259:19482946 2200:19952142 2151:16251401 2095:24597865 2045:21706032 1995:18784746 1946:21912434 1897:21730124 1838:21695153 1798:PLOS ONE 1779:19628861 1721:20211137 1671:21471457 1612:18554175 1563:20692340 1528:20604805 1487:26255845 1438:21700836 1378:42087531 1370:12730594 1327:19404259 1284:21464476 1235:19404258 1170:19112554 1126:20508151 1067:20508152 1008:21094162 959:14334237 951:21131970 907:17603475 871:22079561 863:17603476 824:20447404 775:18545224 616:21828278 586:Genetics 567:18657511 518:18446154 422:See also 415:in vitro 372:genome. 253:HIV/AIDS 213:silkworm 3113:2502069 3070:2674762 2990:1538883 2937:3396372 2888:3384306 2747:Bibcode 2739:Science 2724:6648530 2696:Bibcode 2688:Science 2664:3017587 2615:2942870 2531:2760784 2482:4027401 2433:3826644 2412:Bibcode 2373:3164905 2324:3017618 2250:2701052 2227:Bibcode 2191:2798833 2142:1270952 2086:4084652 2036:3152293 1986:2747807 1937:3364726 1888:3141985 1865:Bibcode 1829:3113902 1806:Bibcode 1770:2831805 1749:Bibcode 1741:Science 1712:2885838 1662:3084115 1639:Bibcode 1603:2849655 1465:Bibcode 1429:3489282 1408:Bibcode 1400:Science 1350:Science 1335:4323298 1307:Bibcode 1275:3177250 1226:2743854 1205:Bibcode 1178:6826269 1117:2900650 1094:Bibcode 1058:2900673 1035:Bibcode 999:3017627 815:2885538 734:9724744 702:Bibcode 675:8577732 643:Bibcode 607:3176093 558:2535758 509:7880305 463:CompoZr 342:ex vivo 333:vectors 330:plasmid 233:rabbits 183:soybean 179:tobacco 91:Domains 66:genomes 3120:  3110:  3077:  3067:  3034:  3026:  2997:  2987:  2944:  2934:  2895:  2885:  2843:31 May 2817:  2809:  2773:  2765:  2722:  2714:  2671:  2661:  2622:  2612:  2573:  2538:  2528:  2489:  2479:  2440:  2430:  2380:  2370:  2331:  2321:  2280:  2257:  2247:  2198:  2188:  2149:  2139:  2093:  2083:  2043:  2033:  2015:Nature 1993:  1983:  1944:  1934:  1895:  1885:  1836:  1826:  1777:  1767:  1719:  1709:  1669:  1659:  1610:  1600:  1561:  1526:  1485:  1436:  1426:  1376:  1368:  1333:  1325:  1299:Nature 1282:  1272:  1233:  1223:  1197:Nature 1176:  1168:  1160:  1124:  1114:  1065:  1055:  1006:  996:  957:  949:  913:  905:  869:  861:  822:  812:  773:  732:  722:  673:  663:  614:  604:  565:  555:  516:  506:  318:genome 241:cattle 116:(see: 3178:Genes 3032:S2CID 2815:S2CID 2771:S2CID 2720:S2CID 1374:S2CID 1331:S2CID 1174:S2CID 955:S2CID 911:S2CID 867:S2CID 725:27935 666:40048 310:genes 221:frogs 74:TALEN 56:to a 3118:PMID 3075:PMID 3024:PMID 2995:PMID 2942:PMID 2893:PMID 2845:2016 2807:PMID 2763:PMID 2712:PMID 2669:PMID 2620:PMID 2571:PMID 2536:PMID 2487:PMID 2438:PMID 2378:PMID 2329:PMID 2278:ISBN 2255:PMID 2196:PMID 2147:PMID 2091:PMID 2041:PMID 1991:PMID 1942:PMID 1893:PMID 1834:PMID 1775:PMID 1717:PMID 1691:Cell 1667:PMID 1608:PMID 1559:PMID 1524:PMID 1483:PMID 1434:PMID 1366:PMID 1323:PMID 1280:PMID 1231:PMID 1166:PMID 1158:ISSN 1122:PMID 1063:PMID 1004:PMID 947:PMID 903:PMID 859:PMID 820:PMID 771:PMID 730:PMID 671:PMID 612:PMID 563:PMID 514:PMID 249:CCR5 237:pigs 229:rats 225:mice 211:, 187:corn 150:FokI 72:and 43:ZFNs 3108:PMC 3100:doi 3065:PMC 3057:doi 3016:doi 2985:PMC 2977:doi 2932:PMC 2924:doi 2883:PMC 2875:doi 2799:doi 2755:doi 2743:326 2704:doi 2692:326 2659:PMC 2651:doi 2610:PMC 2602:doi 2598:186 2563:doi 2526:PMC 2518:doi 2477:PMC 2469:doi 2465:281 2428:PMC 2420:doi 2368:PMC 2360:doi 2319:PMC 2311:doi 2245:PMC 2235:doi 2223:106 2186:PMC 2178:doi 2137:PMC 2129:doi 2081:PMC 2073:doi 2069:370 2031:PMC 2023:doi 2019:475 1981:PMC 1973:doi 1932:PMC 1924:doi 1883:PMC 1873:doi 1861:108 1824:PMC 1814:doi 1765:PMC 1757:doi 1745:325 1707:PMC 1699:doi 1695:140 1657:PMC 1647:doi 1635:108 1598:PMC 1590:doi 1551:doi 1514:doi 1473:doi 1424:PMC 1416:doi 1404:333 1358:doi 1354:300 1315:doi 1303:459 1270:PMC 1262:doi 1258:156 1221:PMC 1213:doi 1201:459 1150:doi 1112:PMC 1102:doi 1090:107 1053:PMC 1043:doi 1031:107 994:PMC 986:doi 982:405 939:doi 895:doi 851:doi 810:PMC 802:doi 798:400 761:doi 720:PMC 710:doi 661:PMC 651:doi 602:PMC 594:doi 590:188 553:PMC 545:doi 504:PMC 496:doi 337:Fok 215:, 137:or 62:DNA 3169:: 3116:. 3106:. 3096:26 3094:. 3090:. 3073:. 3063:. 3053:26 3051:. 3047:. 3030:. 3022:. 3012:23 3010:. 2993:. 2983:. 2973:34 2971:. 2967:. 2940:. 2930:. 2920:22 2918:. 2914:. 2891:. 2881:. 2871:40 2869:. 2865:. 2853:^ 2836:. 2813:. 2805:. 2795:29 2793:. 2769:. 2761:. 2753:. 2741:. 2718:. 2710:. 2702:. 2690:. 2667:. 2657:. 2647:39 2645:. 2641:. 2618:. 2608:. 2596:. 2592:. 2569:. 2559:61 2557:. 2534:. 2524:. 2514:37 2512:. 2508:. 2485:. 2475:. 2463:. 2459:. 2436:. 2426:. 2418:. 2406:. 2402:. 2390:^ 2376:. 2366:. 2354:. 2350:. 2327:. 2317:. 2307:39 2305:. 2301:. 2253:. 2243:. 2233:. 2221:. 2217:. 2194:. 2184:. 2174:20 2172:. 2168:. 2145:. 2135:. 2125:33 2123:. 2119:. 2103:^ 2089:. 2079:. 2067:. 2063:. 2039:. 2029:. 2017:. 2013:. 1989:. 1979:. 1969:15 1967:. 1963:. 1940:. 1930:. 1920:21 1918:. 1914:. 1891:. 1881:. 1871:. 1859:. 1855:. 1832:. 1822:. 1812:. 1800:. 1796:. 1773:. 1763:. 1755:. 1743:. 1739:. 1715:. 1705:. 1693:. 1689:. 1665:. 1655:. 1645:. 1633:. 1629:. 1606:. 1596:. 1584:. 1580:. 1557:. 1547:40 1545:. 1522:. 1510:15 1508:. 1504:. 1481:. 1471:. 1461:25 1459:. 1455:. 1432:. 1422:. 1414:. 1402:. 1398:. 1386:^ 1372:. 1364:. 1352:. 1329:. 1321:. 1313:. 1301:. 1278:. 1268:. 1256:. 1252:. 1229:. 1219:. 1211:. 1199:. 1195:. 1172:. 1164:. 1156:. 1146:69 1144:. 1120:. 1110:. 1100:. 1088:. 1084:. 1061:. 1051:. 1041:. 1029:. 1025:. 1002:. 992:. 980:. 976:. 953:. 945:. 933:. 909:. 901:. 891:25 889:. 865:. 857:. 847:25 845:. 841:. 818:. 808:. 796:. 792:. 769:. 757:16 755:. 751:. 728:. 718:. 708:. 698:95 696:. 692:. 669:. 659:. 649:. 639:93 637:. 633:. 610:. 600:. 588:. 584:. 561:. 551:. 541:31 539:. 535:. 512:. 502:. 490:. 486:. 259:. 239:, 235:, 231:, 227:, 223:, 219:, 207:, 201:, 195:, 189:, 185:, 181:, 177:, 87:. 80:. 3124:. 3102:: 3081:. 3059:: 3038:. 3018:: 3001:. 2979:: 2948:. 2926:: 2899:. 2877:: 2847:. 2821:. 2801:: 2777:. 2757:: 2749:: 2726:. 2706:: 2698:: 2675:. 2653:: 2626:. 2604:: 2577:. 2565:: 2542:. 2520:: 2493:. 2471:: 2444:. 2422:: 2414:: 2408:4 2384:. 2362:: 2356:8 2335:. 2313:: 2286:. 2261:. 2237:: 2229:: 2202:. 2180:: 2153:. 2131:: 2097:. 2075:: 2047:. 2025:: 1997:. 1975:: 1948:. 1926:: 1899:. 1875:: 1867:: 1840:. 1816:: 1808:: 1802:6 1781:. 1759:: 1751:: 1723:. 1701:: 1673:. 1649:: 1641:: 1614:. 1592:: 1586:5 1565:. 1553:: 1530:. 1516:: 1489:. 1475:: 1467:: 1440:. 1418:: 1410:: 1380:. 1360:: 1337:. 1317:: 1309:: 1286:. 1264:: 1237:. 1215:: 1207:: 1180:. 1152:: 1128:. 1104:: 1096:: 1069:. 1045:: 1037:: 1010:. 988:: 961:. 941:: 935:8 917:. 897:: 873:. 853:: 826:. 804:: 777:. 763:: 736:. 712:: 704:: 677:. 653:: 645:: 618:. 596:: 569:. 547:: 520:. 498:: 492:5 141:. 41:( 20:)

Index

Zinc finger nuclease

restriction enzymes
zinc finger
DNA-binding domain
DNA-cleavage domain
DNA
genomes
CRISPR/Cas9
TALEN
genome editing
Srinivasan Chandrasegaran
zinc finger
phage display
Zinc finger chimera

homology-directed repair
non-homologous end joining
restriction endonuclease
FokI
protein engineering
Directed evolution
arabidopsis
tobacco
soybean
corn
Drosophila melanogaster
C. elegans
Platynereis dumerilii
sea urchin

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.