Knowledge

Zirconium alloys

Source πŸ“

864:
deformation studies of Zr, γ€ˆπ‘Žγ€‰ basal slip is sometimes ignored and has been shown not to affect macroscopic stress-strain response at room temperature. However, single crystal room temperature microcantilever tests in commercial purity Zr show that γ€ˆπ‘Žγ€‰ basal slip has only 1.3 times higher CRSS than γ€ˆπ‘Žγ€‰ prismatic slip, which would imply significant activation in polycrystal deformation given a favourable stress state. 1st order γ€ˆπ‘ + π‘Žγ€‰ pyramidal slip has a 3.5 times higher CRSS than γ€ˆπ‘Žγ€‰ prismatic slip. Slip on 2nd-order pyramidal planes are rarely seen in Zr alloys, but γ€ˆπ‘ + π‘Žγ€‰ 1st-order pyramidal slip is commonly observed. Jensen and Backofen observed localised shear bands with γ€ˆπ‘ + π‘Žγ€‰ dislocations on {112Μ… 4} planes during γ€ˆπ‘γ€‰ axis loading, which led to ductile fracture at room temperature, but this is not the slip plane as γ€ˆπ‘ + π‘Žγ€‰ vectors do not lie in {112Μ… 4} planes.
957:. In macroscopic samples, this is typically influenced strongly by the crystallographic texture, grain size, and competing deformation modes (i.e., dislocation slip), combined with the loading axis and direction. The T1 twin type dominates at room temperature and quasi-static strain rates. Twin types present at liquid nitrogen temperature are {112Μ…2}γ€ˆ112Μ…3̅〉(C1 twinning) and {101Μ…2}γ€ˆ101Μ…1〉 (T1 twinning). Secondary twins of another type may form inside the primary twins as the crystal is reoriented with respect to the loading axis. The C2 compressive twin system {101Μ…1}γ€ˆ1Μ…012〉 is only active at high temperatures, and is activated in preference to basal slip during deformation at 550 Β°C. 739: 1002:
found that although the majority of twins occur in grains favourably oriented for twinning according to the global Schmid factor, around 30% of grains which were unfavourably oriented for twinning still contained twins. Likewise, the twins present were not always of the highest global Schmid factor variant, with only 60% twinning on the highest Schmid factor variant. This can be attributed to a strong dependence on the local stress conditions in grains or grain boundaries, which is difficult to measure experimentally, particularly at high strain rates. Knezevic
469: 1708: 1006:. fitted experimental data of high-purity polycrystalline Zr to a self-consistent viscoplastic model to study slip and twinning systems' rate and temperature sensitivity. They found that T1 twinning was the dominant slip system at room temperature for strain rates between 10 and 10 s. The basal slip did not contribute to deformation below 400Β°C. Twinning was found to be rate insensitive, and the rate sensitivity of slip could explain changes in twinning behaviour as a function of strain rate. 814: 873: 31: 1010:
thicken with incoherent boundary traces in preference to lengthening along the twinning plane, and in some cases, nearly consume the entire parent grain. Several variants of T1 twins can nucleate in the same grain, and the twin tips are pinched at grain interiors. On the other hand, T2 twins preferentially lengthen instead of thicken, and tend to nucleate in parallel rows of the same variant extending from boundary to boundary.
1018:
basal slip systems are more prevalent than currently reported in the literature, though this may be because γ€ˆconventional analysis routes do not easily identify γ€ˆπ‘Žγ€‰ pyramidal slip. Basal slip systems are promoted, and γ€ˆπ‘Žγ€‰ prismatic slip is suppressed at a high strain rate (HR) compared to quasi-static strain rate (QS) loading. This is independent of loading axis texture (ND/TD).
863:
in high purity single crystal Zr deformed at a low strain rate of 10 s was only seen at temperatures above 550 Β°C. At room temperature, basal slip is seen to occur in small amounts as a secondary slip system to γ€ˆπ‘Žγ€‰ prismatic slip, and is promoted during high strain rate loading. In-room temperature
969:
increase with increasing strain rate in the range of 0.001 s and 3500 s, and that the strain rate sensitivity in the yield stress is higher when uniaxially compressing along texture components with predominantly prismatic planes than basal planes. They conclude that the rate sensitivity of the flow
945:
Due to symmetry in the HCP crystal structure, six crystallographically equivalent twin variants exist for each type. Different twin variants of the same type in grain cannot be distinguished by their axis-angle disorientation to the parent, which are the same for all variants of a twin type. Still,
492:
Zircaloy 1 was developed after Zirconium was selected by Admiral H.G. Rickover as the structural material for high flux zone reactor components and cladding for fuel pellet tube bundles in prototype submarine reactors in the late 1940s. The choice was owing to a combination of strength, low neutron
1054:
resistance. Zr702 is a commercially pure grade, widely used for its high corrosion resistance and low neutron absorption, particularly in nuclear and chemical industries. Zr705, alloyed with 2-3% niobium, shows enhanced strength and crack resistance and is used for high-stress applications such as
1027: 1017:
compression along the normal direction (ND) at both quasi-static and high strain rate loading, which is not seen in high purity polycrystalline and single crystal Zr. In γ€ˆπ‘Žγ€‰ axis transverse direction (TD) deformation, γ€ˆπ‘Žγ€‰ prismatic and γ€ˆπ‘Žγ€‰ pyramidal slip systems are dominant. γ€ˆπ‘Žγ€‰ pyramidal and
1001:
studied twinning as a function of grain orientation within a sample. They calculated a global Schmid factor using the macroscopic applied stress direction. They found the resolved shear stress on any grain without considering local intergranular interactions, which may alter the stress state. They
985:
study of room temperature deformed zirconium, McCabe et al. observed only <π‘Ž> dislocations in samples with prismatic texture, which were presumed to lie on prismatic planes. Both <π‘Ž> (prismatic) and <112Μ…3Μ…> <𝑐 + π‘Ž> ({101Μ…1} pyramidal) slip were observed in samples with
532:
Whereas there is no consensus on whether zirconium and zirconium alloy have the same oxidation rate, Zircaloys 2 and 4 do behave very similarly in this respect. Oxidation occurs at the same rate in air or in water and proceeds in ambient condition or in high vacuum. A sub-micrometer thin layer of
1046:
alloy material provides the beneficial surface properties of a ceramic (reduced friction and increased abrasion resistance), while retaining the beneficial bulk properties of the underlying metal (manufacturability, fracture toughness, and ductility), providing a good solution for these medical
1009:
T1 twinning occurs during both quasi-static and high-rate loading. T2 twinning occurs only at high rate loading. Similar area fractions of T1 and T2 twinning are activated at a high strain rate, but T2 twinning carries more plastic deformation due to its higher twinning shear. T1 twins tend to
858:
The known deformation systems in Zr are shown in Figure 1. The preferred room temperature slip system with the lowest critical resolved shear stress (CRSS) in dilute Zr alloys is γ€ˆπ‘Žγ€‰ prismatic slip. The CRSS of γ€ˆπ‘Žγ€‰prismatic slip increases with interstitial content, notably oxygen, carbon and
993:
only observed T1 twinning in samples compressed along a plate direction with a prismatic texture component along the loading axis. They did not observe T1 twinning in samples compressed along basal textures to 25% strain. Kaschner and Gray observe that deformation at high strain rates (3000s)
817:
Slip systems in zirconium alloys. 𝒃 and 𝒏 are the slip direction and plane, respectively, and 𝝎 is the rotation axis calculated in the present work, orthogonal to both the slip plane normal and slip direction. The crystal direction of the rotation axis vectors is labelled on the IPF colour
849:
and γ€ˆπ‘ + π‘Žγ€‰slip on either 1st order or 2nd order pyramidal planes play an important role in Zr polycrystal deformation. Therefore, the relative activity of deformation slip and twinning modes as a function of texture and strain rate is critical in understanding deformation behaviour.
172:
for zirconium, which is much lower than that for such common metals as iron (2.4 barn) and nickel (4.5 barn). The composition and the main applications of common reactor-grade alloys are summarized below. These alloys contain less than 0.3% of iron and chromium and 0.1–0.14% oxygen.
854:
deformation during processing affects the texture of the final Zr part; understanding the relative predominance of deformation twinning and slip is important for texture control in processing and predicting likely failure modes in-service.
1626:
Motta, Arthur T.; Capolungo, Laurent; Chen, Long-Qing; Cinbiz, Mahmut Nedim; Daymond, Mark R.; Koss, Donald A.; Lacroix, Evrard; Pastore, Giovanni; Simon, Pierre-ClΓ©ment A.; Tonks, Michael R.; Wirth, Brian D.; Zikry, Mohammed A. (2019).
914:
The twin plane, shear direction, and shear plane form the basis vectors of an orthogonal set. The axis-angle misorientation relationship between the parent and twin is a rotation of angle πœ‰ about the shear plane's normal direction 𝑷.
970:
stress is consistent with Peierls forces inhibiting dislocation motion in low-symmetry metals during slip-dominated deformation. This is valid in the early stages of room temperature deformation, which in Zr is usually slip-dominated.
584:
10 g m s at 300 Β°C, 5.4 mg m s at 700 Β°C and 300 mg m s at 1000 Β°C. Whereas there is no clear threshold of oxidation, it becomes noticeable at macroscopic scales at temperatures of several hundred Β°C.
493:
cross section and corrosion resistance. Zircaloy-2 was inadvertently developed, by melting Zircaloy-1 in a crucible previously used for stainless steel. Newer alloys are Ni-free, including Zircaloy-4, ZIRLO and M5 (with 1%
533:
zirconium dioxide is rapidly formed in the surface and stops the further diffusion of oxygen to the bulk and the subsequent oxidation. The dependence of oxidation rate R on temperature and pressure can be expressed as
845:γ€ˆπ‘γ€‰ axis and, therefore, cannot accommodate deformation alongγ€ˆπ‘γ€‰. To make up the five independent slip modes and allow arbitrary deformation in a polycrystal, secondary deformation systems such as twinning along 1540: 890:
transformation in a crystalline material. Twin types can be classed as either contraction (C1, C2) or extension (T1, T2) twins, which accommodate strain either to contract or extend the <𝑐> axis of the
1042:. In one particular application, a Zr-2.5Nb alloy is formed into a knee or hip implant and then oxidized to produce a hard ceramic surface for use in bearing against a polyethylene component. This 981:
than texture components with predominantly basal planes, consistent with the higher critical resolved shear stress for <𝑐 + π‘Ž> pyramidal slip compared to <π‘Ž> prismatic slip. In a
2669:"Multi-scale modeling and experimental study of twin inception and propagation in hexagonal close-packed materials using a crystal plasticity finite element approach; part II: Local behavior" 2820: 1248: 946:
they can be distinguished apart using their absolute orientations with respect to the loading axis, and in some cases (depending on the sectioning plane), the twin boundary trace.
2834:
Stith, Tai. Science, Submarines & Secrets: The Incredible Early Years of the Albany Research Center. United States, Owl Room Press ISBN 9781735136646.
1537: 777:) in a damaged nuclear reactor, hydrogen embrittlement accelerates the degradation of the zirconium alloy cladding of the fuel rods exposed to high temperature steam. 141:. The hydrides are less dense and are weaker mechanically than the alloy; their formation results in blistering and cracking of the cladding – a phenomenon known as 1693:
Tong, Vivian; Wielewski, Euan; Britton, Ben (2018). "Characterisation of slip and twinning in high rate deformed zirconium with electron backscatter diffraction".
860: 2112:"Evolution of dislocation density in a hot rolled Zr–2.5Nb alloy with plastic deformation studied by neutron diffraction and transmission electron microscopy" 954: 942:= <101Μ…1> (T1) twinning, and for this {101Μ…2}<101Μ…1> twin, there is no distinction between the four transformations, as they are equivalent. 797:
accident. In this context, the relationship between strain rate-dependent mechanical properties, crystallographic texture and deformation modes, such as
1832:"Direct measurement of critical resolved shear stress of prismatic and basal slip in polycrystalline Ti using high energy X-ray diffraction microscopy" 846: 1333:"Microstructure and mechanical properties of Zircaloy-4 cladding hydrogenated at temperatures typical for loss-of-coolant accident (LOCA) conditions" 1180: 830: 758:
process also mechanically weakens the rods cladding because the hydrides have lower ductility and density than zirconium or its alloys, and thus
161:
is 600 times that of zirconium. Hafnium must therefore be almost entirely removed (reduced to < 0.02% of the alloy) for reactor applications.
1191: 521:) are present. Corrosion resistance of zirconium alloys is enhanced by intentional development of thicker passivation layer of black lustrous 718:
detonated. The explosions severely damaged external buildings and at least one containment building. The reaction also occurred during the
695: 1257: 770:. It has been reported that the concentration of hydrogen within hydrides is also dependent on the nucleation site of the precipitates. 986:
basal texture at room temperature, but only <π‘Ž> dislocations were observed in the same sample at liquid nitrogen temperature.
34:
Medal minted in zirconium, with the metal produced from 1947 by the Albany Metallurgical Research Center for the manufacture of the
484:. Upon annealing below the phase transition temperature (Ξ±-Zr to Ξ²-Zr) the grains are equiaxed with sizes varying from 3 to 5 ΞΌm. 2497: 1525: 1224: 1105: 730:
units installed to rapidly convert hydrogen and oxygen into water at room temperature before the explosive limit is reached.
703: 164:
Nuclear-grade zirconium alloys contain more than 95% Zr, and therefore most of their properties are similar to those of pure
707: 1556: 789:
as fuel rod cladding due to zirconium's high strength and low neutron absorption cross-section. It can be subject to high
1675:
Nuclear Fuel Behaviour in Loss-of-coolant Accident (LOCA) Conditions. State-of-the-art Report. OECD 2009, NEA No. 6846.
2831: 1013:
For commercially pure zirconium (CP-Zr) of 97.0%, basal, γ€ˆπ‘Žγ€‰ pyramidal, and γ€ˆπ‘ + π‘Žγ€‰ pyramidal slip systems dominate
903:
which is the twinning shear direction. Deformation twins in Zr are generally lenticular in shape, lengthening in the 𝜼
711: 609:
are no longer completely covered by liquid water and insufficiently cooled. Metallic zirconium is then oxidized by the
513:
layer. The corrosion resistance of the alloys may degrade significantly when some impurities (e.g. more than 40 ppm of
714:. Hydrogen gas was vented into the reactor maintenance halls and the resulting explosive mixture of hydrogen with air 1801:"Distribution of normal stress at grain boundaries in multicrystals: application to an intergranular damage modeling" 1931:
Gong, Jicheng; Benjamin Britton, T.; Cuddihy, Mitchell A.; Dunne, Fionn P.E.; Wilkinson, Angus J. (September 2015).
1401: 1128:
Carpenter, G.J.C.; Watters, J.F. (1978). "An in-situ study of the dissolution of Ξ³-zirconium hydride in zirconium".
694:
This reaction was responsible for a small hydrogen explosion accident first observed inside the reactor building of
675:
This exothermic reaction, although only occurring at high temperature, is similar to that of alkali metals (such as
2234:"Strain rate and temperature effects on the selection of primary and secondary slip and twinning systems in HCP Zr" 1423: 982: 750:
In the above oxidation scenario, 5–20% of the released hydrogen diffuses into the zirconium alloy cladding forming
743: 727: 649: 1559:, DOE Fundamentals Handbook, Material Science, Volume 2 of 2, U.S. Department of Energy, January 2003, pp. 12, 24. 1066:
resulted in the exotic production of household zirconium items such as the vodka shot glass shown in the picture.
656:
designed nuclear reactors use would express the same oxidation on exposure to deuterium oxide steam as follows:
2740: 2715: 2520:"The influence of crystallographic texture and interstitial impurities on the mechanical behavior of zirconium" 834: 1731:"Mechanical response of zirconiumβ€”I. Derivation of a polycrystal constitutive law and finite element analysis" 1456:, Engineered Materials Department and Nanoscale Science and Technology Department Sandia National Laboratories 1770:"Review of Deformation Mechanisms, Texture, and Mechanical Anisotropy in Zirconium and Zirconium Base Alloys" 316: 272: 129:
The water cooling of reactor zirconium alloys elevates requirement for their resistance to oxidation-related
1830:
Wang, L.; Zheng, Z.; Phukan, H.; Kenesei, P.; Park, J.-S.; Lind, J.; Suter, R.M.; Bieler, T.R. (June 2017).
2306:"Dislocation mechanisms in a zirconium alloy in the high-temperature regime: An in situ TEM investigation" 2232:
Knezevic, Marko; Zecevic, Milovan; Beyerlein, Irene J.; Bingert, John F.; McCabe, Rodney J. (April 2015).
1490: 1177: 994:
produces more twins than at quasi-static strain rates, but the twin types activated were not identified.
738: 722:, when the steam from the reactor began to escape. Many water cooled reactor containment buildings have 2852: 1282: 1933:"γ€ˆa〉 Prismatic, γ€ˆa〉 basal, and γ€ˆc+a〉 slip strengths of commercially pure Zr by micro-cantilever tests" 2847: 2781:
Mehjabeen, Afrin; Song, Tingting (2018). "Zirconium Alloys for Orthopaedic and Dental Applications".
2111: 1188: 440: 252: 103: 1453: 2756: 798: 774: 594: 477: 17: 2826: 481: 2668: 2629: 2448: 2336: 2305: 1932: 1800: 1730: 794: 601:
above 1,500 K (1,230 Β°C). Oxidation of zirconium by water is accompanied by release of
510: 87: 2417: 2274: 2072: 2041: 1165: 2367: 2175: 1880: 1214: 1095: 892: 826: 767: 142: 39: 480:(HCP). Its microstructure, revealed by chemical attack, shows needle-like grains typical of a 2335:
Kaschner, G.C.; TomΓ©, C.N.; McCabe, R.J.; Misra, A.; Vogel, S.C.; Brown, D.W. (August 2007).
1676: 1062:
Reduction of zirconium demand in Russia due to nuclear demilitarization after the end of the
699: 324: 300: 248: 222: 158: 126:
and other metals, which are added to improve mechanical properties and corrosion resistance.
67: 1982:"On the mechanistic basis of deformation at the microscale in hexagonal close-packed metals" 1281:
Tunes, M. A.; Harrison, R. W.; Greaves, G.; Hinks, J. A.; Donnelly, S. E. (September 2017).
2680: 2641: 2586: 2531: 2379: 2245: 2187: 2123: 2084: 1993: 1944: 1892: 1843: 1742: 1640: 1297: 1137: 883: 876: 802: 605:
gas. This oxidation is accelerated at high temperatures, e.g. inside a reactor core if the
570: 79: 2628:
Capolungo, L.; Marshall, P.E.; McCabe, R.J.; Beyerlein, I.J.; TomΓ©, C.N. (December 2009).
1712: 1707: 8: 1492:
Perspectives on Reactor Safety (NUREG/CR-6042) (Reactor Safety Course R-800), 1st Edition
1283:"Effect of He implantation on the microstructure of zircaloy-4 studied using in situ TEM" 755: 99: 2684: 2645: 2590: 2535: 2383: 2249: 2191: 2127: 2088: 1997: 1948: 1896: 1847: 1746: 1711: This article incorporates text from this source, which is available under the 1644: 1301: 1141: 2610: 2555: 2211: 2147: 2019: 1694: 1608: 1440: 1313: 1039: 978: 719: 562: 83: 2519: 1816: 1754: 2803: 2736: 2711: 2614: 2602: 2547: 2493: 2433: 2395: 2290: 2215: 2203: 2174:
McCabe, R. J.; Cerreta, E. K.; Misra, A.; Kaschner, G. C.; TomΓ©, C. N. (2006-08-11).
2151: 2139: 2096: 2057: 2023: 2011: 1908: 1861: 1658: 1612: 1600: 1592: 1587: 1570: 1471: 1380: 1332: 1317: 1220: 1149: 1101: 974: 751: 698:
in 1979 that did not damage the containment building. This same reaction occurred in
688: 550: 546: 138: 130: 2559: 1348: 2798: 2790: 2688: 2649: 2594: 2539: 2485: 2460: 2429: 2387: 2348: 2317: 2286: 2253: 2195: 2131: 2092: 2053: 2001: 1986:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
1960: 1952: 1900: 1851: 1812: 1781: 1750: 1648: 1582: 1370: 1344: 1305: 1145: 1056: 1035: 1014: 813: 786: 2653: 2464: 2321: 2258: 2233: 2176:"Effects of texture, temperature and strain on the deformation modes of zirconium" 2135: 1956: 1856: 1831: 1653: 1628: 1309: 1544: 1195: 1184: 949:
The primary twin type formed in any sample depends on the strain state and rate,
645: 545:
The oxidation rate R is here expressed in gram/(cmΒ·second); P is the pressure in
522: 95: 71: 1246: 2692: 2352: 746:(BF-TEM) micrograph of a zirconium hydride in the microstructure of Zircaloy-4. 51: 2575:"Influence of temperature and strain rate on slip and twinning behavior of zr" 2574: 2543: 2199: 1212: 1168:, Final report of a coordinated research project 1998–2002, IAEA, October 2004 1166:
Delayed hydride cracking in zirconium alloys in pressure tube nuclear reactors
918:
More generally, twinning can be described as a 180° rotation about an axis (𝜼
895:(HCP) unit cell. Twinning is crystallographically defined by its twin plane 𝑲 2841: 2606: 2551: 2399: 2391: 2207: 2143: 2015: 1912: 1904: 1662: 1596: 1571:"Site specific dependencies of hydrogen concentrations in zirconium hydrides" 1569:
Tunes, Matheus A.; Silva, Chinthaka M.; Edmondson, Philip D. (January 2019).
838: 350: 256: 226: 2479: 468: 2794: 2006: 1981: 1965: 1769: 1516:(1979). Le nuclΓ©aire en question, Gembloux Duculot, French edition, 240 pp. 966: 887: 606: 554: 1799:
Diard, O.; Leclercq, S.; Rousselier, G.; Cailletaud, G. (September 2002).
1367:
History of the development of zirconium alloys for use in nuclear reactors
102:. A typical composition of nuclear-grade zirconium alloys is more than 95 2481:
Deformation Mechanisms, Texture, and Anisotropy in Zirconium and Zircaloy
950: 790: 580:
Thus the oxidation rate R is 10 g per 1 m area per second at 0 Β°C, 6
169: 35: 2598: 1513: 960: 872: 851: 2823:
for the dedicated conference named "Zirconium in the nuclear industry"
2489: 1865: 1604: 1475: 1385: 472:
Scanning electron micrograph showing the microstructure of Zircaloy-4.
1785: 1051: 842: 822: 680: 341: 165: 75: 55: 2304:
Caillard, Daniel; Rautenberg, Martin; Feaugas, Xavier (April 2015).
1375: 1026: 2733:
Industrial Applications of Titanium and Zirconium: Third Conference
2708:
Industrial Applications of Titanium and Zirconium: Third Conference
1699: 1495:. Beltsville, MD: U.S. Nuclear Regulatory Commission. p. 3.1–5 1256:. Sweden: Advanced Nuclear Technology International. Archived from 1213:
George S. Brady; Henry R. Clauser; John A. Vaccari (24 July 2002).
1063: 763: 733: 723: 683:) with water. It also closely resembles the anaerobic oxidation of 618: 602: 597:
in a nuclear reactor. Zirconium cladding rapidly reacts with water
518: 134: 133:. Furthermore, oxidative reaction of zirconium with water releases 119: 91: 30: 1331:
Pshenichnikov, Anton; Stuckert, Juri; Walter, Mario (2015-03-01).
153:
Commercial non-nuclear grade zirconium typically contains 1–5% of
1798: 1043: 759: 526: 494: 188: 154: 111: 2627: 1930: 2231: 1980:
Britton, T. B.; Dunne, F. P. E.; Wilkinson, A. J. (June 2015).
766:
form upon hydrogen accumulation. This process is also known as
715: 676: 610: 574: 514: 506: 123: 2449:"Texture development and anisotropic deformation of zircaloys" 977:
components with predominantly prismatic planes yield at lower
1365:
Rickover, H. G.; Geiger, L. D.; Lustman, B. (21 March 1975).
1247:
Peter Rudling; Alfred Strasser; Friedrich Garzarolli (2007).
710:
events during the disaster of March 11, 2011, leading to the
653: 614: 598: 476:
At temperatures below 1100 K, zirconium alloys belong to the
432: 59: 168:. The absorption cross section for thermal neutrons is 0.18 2630:"Nucleation and growth of twins in Zr: A statistical study" 1330: 1219:(15th ed.). McGraw-Hill Professional. pp. 1063–. 934:
normal plane). The predominant twin type in zirconium is 𝑲
684: 593:
One disadvantage of metallic zirconium is in the case of a
416: 394: 372: 115: 2337:"Exploring the dislocation/twin interactions in zirconium" 2275:"Compression of zirconium single crystals parallel to the" 2173: 1677:
https://www.oecd-nea.org/nsd/reports/2009/nea6846_LOCA.pdf
1050:
Zr702 and Zr705 are zirconium alloys known for their high
899:, the mirror plane in the twin and parent material, and 𝜼 2303: 1526:
Japanese engineers work to contain nuclear reactor damage
1465: 1452:
Rion A. Causey, Don F. Cowgill, and Bob H. Nilson (2005)
1441:
Corrosion of Zircaloy Spent Fuel Cladding in a Repository
1280: 859:
nitrogen, and decreases with increasing temperature. γ€ˆπ‘Žγ€‰
706:(Japan) after reactor cooling was interrupted by related 648:
frequently used as the moderator and coolant in next gen
182: 107: 1625: 926:
normal direction), or a mirror reflection in a plane (𝑲
2411: 2409: 2334: 829:
crystal structure (HCP) at room temperature, where γ€ˆπ‘Žγ€‰
793:
loading conditions during forming and in the case of a
1829: 1488: 2667:
Abdolvand, Hamidreza; Daymond, Mark R. (March 2013).
2513: 2511: 2509: 1979: 1364: 1030:
This Russian shot "glass" is made of zirconium alloy.
2406: 2368:"Deformation and fracture of alpha zirconium alloys" 1881:"Deformation and fracture of alpha zirconium alloys" 1692: 961:
Influence of loading conditions on deformation modes
549:, that is the factor P = 1 at ambient pressure; the 137:
gas, which partly diffuses into the alloy and forms
2169: 2167: 2165: 2163: 2161: 2110:Long, F.; Balogh, L.; Daymond, M. R. (2017-11-02). 1568: 2827:Construction of the Fukushima nuclear power plants 2506: 1081:Alloys' constituents are usually measured by mass. 588: 2446: 2109: 1724: 1722: 1538:Chernobyl Accident Appendix 1: Sequence of Events 82:. One of the main uses of zirconium alloys is in 2839: 2666: 2415: 2158: 1454:Review of the Oxidation Rate of Zirconium Alloys 1127: 1055:demanding chemical processing environments, and 734:Formation of hydrides and hydrogen embrittlement 2227: 2225: 1926: 1924: 1922: 687:by water (reaction used at high temperature by 621:gas according to the following redox reaction: 500: 2673:Journal of the Mechanics and Physics of Solids 2477: 2447:Linga Murty, K.; Charit, Indrajit (May 2006). 2365: 2035: 2033: 1878: 1719: 2780: 2366:Jensen, J.A.; Backofen, W.A. (January 1972). 2071:Dickson, J.I.; Craig, G.B. (September 1971). 1093: 1034:Zirconium alloys are corrosion resistant and 2518:Kaschner, G. C.; Gray, G. T. (August 2000). 2517: 2222: 2070: 1919: 1482: 1399: 1393: 696:Three Mile Island Nuclear Generating Station 148: 2030: 1879:Jensen, J.A.; Backofen, W.A. (1972-01-01). 2579:Metallurgical and Materials Transactions A 2524:Metallurgical and Materials Transactions A 2073:"Room-temperature basal slip in zirconium" 1619: 1547:, World Nuclear Association, November 2009 1468:Managing water addition to a degraded core 1466:Kuan, P.; Hanson, D. J.; Odar, F. (1991). 691:to produce hydrogen for his experiments). 62:, a common subgroup having the trade mark 2802: 2573:Song, S. G.; Gray, G. T. (October 1995). 2257: 2005: 1964: 1855: 1767: 1698: 1652: 1586: 1400:Garner, G.L.; Mardon, J.P. (9 May 2011). 1384: 1374: 2572: 2484:. Philadelphia, PA: ASTM International. 1629:"Hydrogen in zirconium alloys: A review" 1360: 1358: 1025: 871: 812: 737: 467: 29: 2730: 2705: 867: 640:Zirconium cladding in the presence of D 14: 2840: 2272: 2039: 1402:"Alloy M5 cladding performance update" 340:Fabrica de Aleaciones Especiales(FAE)( 2416:Christian, J.W.; Mahajan, S. (1995). 1688: 1686: 1684: 1355: 1198:World Nuclear Association, March 2010 1100:. Walter de Gruyter. pp. 1199–. 1038:, and therefore can be used for body 989:At quasi-static strain rates, McCabe 907:direction and thickening along the 𝑲 773:In case of loss-of-coolant accident ( 704:Fukushima Daiichi Nuclear Power Plant 2341:Materials Science and Engineering: A 1728: 1550: 1443:National Research Council, July 1989 1240: 1208: 1206: 1204: 1161: 1159: 1089: 1087: 505:Zirconium alloys readily react with 66:. Zirconium has very low absorption 1528:, Los Angeles Times, March 14, 2011 1404:. Nuclear Engineering International 24: 2757:"Zirconium Alloys: Zr702 VS Zr705" 2478:Erich Tenckoff, ed. (1988-01-01). 1681: 712:Fukushima Daiichi nuclear disaster 25: 2864: 1489:Haskin, F.E.; Camp, A.L. (1994). 1201: 1156: 1084: 785:Zirconium alloys are used in the 463: 2372:Canadian Metallurgical Quarterly 1885:Canadian Metallurgical Quarterly 1706: 1588:10.1016/j.scriptamat.2018.08.044 1557:DOE-HDBK-1017/2-93, January 1993 983:Transmission electron microscopy 744:Transmission Electron Microscopy 728:passive autocatalytic recombiner 650:pressurized heavy water reactors 159:neutron absorption cross-section 2774: 2749: 2724: 2699: 2660: 2621: 2566: 2471: 2440: 2359: 2328: 2297: 2266: 2103: 2064: 1973: 1872: 1823: 1805:Computational Materials Science 1792: 1761: 1669: 1562: 1531: 1519: 1507: 1459: 1446: 1434: 1425:Atom-Probe analysis of Zircaloy 1416: 1349:10.1016/j.nucengdes.2014.06.022 1021: 965:Kaschner and Gray observe that 589:Oxidation of zirconium by steam 437:Cladding, structural components 245:Cladding, structural components 219:Cladding, structural components 2783:Advanced Engineering Materials 1337:Nuclear Engineering and Design 1324: 1274: 1171: 1121: 1097:Concise encyclopedia chemistry 1075: 835:critical resolved shear stress 780: 487: 106:zirconium and less than 2% of 13: 1: 2654:10.1016/j.actamat.2009.08.030 2465:10.1016/j.pnucene.2005.09.011 2422:Progress in Materials Science 2322:10.1016/j.actamat.2015.01.016 2259:10.1016/j.actamat.2015.01.037 2136:10.1080/14786435.2017.1356940 1957:10.1016/j.actamat.2015.06.020 1857:10.1016/j.actamat.2017.05.015 1817:10.1016/S0927-0256(02)00251-3 1774:Journal of ASTM International 1755:10.1016/S1359-6454(01)00190-2 1654:10.1016/j.jnucmat.2019.02.042 1310:10.1016/j.jnucmat.2017.06.012 1069: 529:coatings might also be used. 2434:10.1016/0079-6425(94)00007-7 2291:10.1016/0022-3115(73)90189-X 2279:Journal of Nuclear Materials 2097:10.1016/0022-3115(71)90103-6 2077:Journal of Nuclear Materials 2058:10.1016/0001-6160(73)90213-7 1633:Journal of Nuclear Materials 1290:Journal of Nuclear Materials 1150:10.1016/0022-3115(78)90559-7 1130:Journal of Nuclear Materials 501:Oxidation of zirconium alloy 7: 2832:Google books search results 2821:Google books search results 2814: 2040:Akhtar, A. (January 1973). 1250:Welding of Zirconium Alloys 509:, forming a nanometer-thin 10: 2869: 2761:Advanced Refractory Metals 2693:10.1016/j.jmps.2012.10.017 2453:Progress in Nuclear Energy 2353:10.1016/j.msea.2006.09.115 2544:10.1007/s11661-000-0227-7 2200:10.1080/14786430600684500 2042:"Basal slip in zirconium" 973:Samples compressed along 149:Production and properties 2392:10.1179/cmq.1972.11.1.39 1905:10.1179/cmq.1972.11.1.39 1178:Nuclear Fuel Fabrication 595:loss-of-coolant accident 517:or more than 300 ppm of 478:hexagonal crystal family 2273:Akhtar, A. (May 1973). 886:produces a coordinated 879:crystallographic planes 808: 2795:10.1002/adem.201800207 2418:"Deformation twinning" 2180:Philosophical Magazine 2116:Philosophical Magazine 2007:10.1098/rspa.2014.0881 1729:TomΓ©, C (2001-09-03). 1194:July 26, 2011, at the 1183:July 26, 2011, at the 1094:Mary Eagleson (1994). 1047:implant applications. 1031: 893:hexagonal close-packed 880: 827:hexagonal close-packed 819: 768:hydrogen embrittlement 747: 708:earthquake and tsunami 700:boiling water reactors 569:10 eV/K) and T is the 537:R = 13.9Β·PΒ·exp(βˆ’1.47/k 473: 143:hydrogen embrittlement 44: 2804:10536/DRO/DU:30131381 2735:. ASTM. p. 204. 2731:Webster, R T (1984). 2710:. ASTM. p. 209. 2706:Webster, R T (1984). 1768:Tenckhoff, E (2005). 1296:. Elsevier: 230–238. 1029: 875: 816: 741: 482:WidmanstΓ€tten pattern 471: 413:Structural components 33: 1369:(Technical report). 884:Deformation twinning 877:Deformation twinning 868:Deformation twinning 803:deformation twinning 571:absolute temperature 80:corrosion resistance 2685:2013JMPSo..61..803A 2646:2009AcMat..57.6047C 2591:1995MMTA...26.2665S 2536:2000MMTA...31.1997K 2384:1972CaMQ...11...39J 2250:2015AcMat..88...55K 2192:2006PMag...86.3595M 2128:2017PMag...97.2888L 2089:1971JNuM...40..346D 1998:2015RSPSA.47140881B 1949:2015AcMat..96..249G 1897:1972CaMQ...11...39J 1848:2017AcMat.132..598W 1747:2001AcMat..49.3085T 1645:2019JNuM..518..440M 1302:2017JNuM..493..230T 1142:1978JNuM...73..190C 955:crystal orientation 756:hydrogen production 2599:10.1007/BF02669423 1992:(2178): 20140881. 1575:Scripta Materialia 1543:2016-01-14 at the 1216:Materials Handbook 1044:oxidized zirconium 1032: 881: 820: 752:zirconium hydrides 748: 720:Chernobyl Accident 702:1, 2 and 3 of the 563:Boltzmann constant 474: 139:zirconium hydrides 84:nuclear technology 45: 2853:Nuclear materials 2640:(20): 6047–6056. 2585:(10): 2665–2675. 2499:978-0-8031-0958-2 2490:10.1520/stp966-eb 2186:(23): 3595–3611. 2122:(31): 2888–2914. 2046:Acta Metallurgica 1741:(15): 3085–3096. 1226:978-0-07-136076-0 1107:978-3-11-011451-5 689:Antoine Lavoisier 551:activation energy 448:ZIRLO stands for 446: 445: 131:nodular corrosion 74:, high hardness, 38:of the submarine 16:(Redirected from 2860: 2848:Zirconium alloys 2809: 2808: 2806: 2778: 2772: 2771: 2769: 2767: 2753: 2747: 2746: 2728: 2722: 2721: 2703: 2697: 2696: 2664: 2658: 2657: 2625: 2619: 2618: 2570: 2564: 2563: 2530:(8): 1997–2003. 2515: 2504: 2503: 2475: 2469: 2468: 2444: 2438: 2437: 2413: 2404: 2403: 2363: 2357: 2356: 2347:(1–2): 122–127. 2332: 2326: 2325: 2301: 2295: 2294: 2270: 2264: 2263: 2261: 2229: 2220: 2219: 2171: 2156: 2155: 2107: 2101: 2100: 2068: 2062: 2061: 2037: 2028: 2027: 2009: 1977: 1971: 1970: 1968: 1928: 1917: 1916: 1876: 1870: 1869: 1859: 1827: 1821: 1820: 1796: 1790: 1789: 1786:10.1520/JAI12945 1765: 1759: 1758: 1726: 1717: 1710: 1704: 1702: 1690: 1679: 1673: 1667: 1666: 1656: 1623: 1617: 1616: 1590: 1566: 1560: 1554: 1548: 1535: 1529: 1523: 1517: 1511: 1505: 1504: 1502: 1500: 1486: 1480: 1479: 1463: 1457: 1450: 1444: 1438: 1432: 1431: 1430: 1420: 1414: 1413: 1411: 1409: 1397: 1391: 1390: 1388: 1378: 1362: 1353: 1352: 1339:. SI:NENE 2013. 1328: 1322: 1321: 1287: 1278: 1272: 1271: 1269: 1268: 1262: 1255: 1244: 1238: 1237: 1235: 1233: 1210: 1199: 1189:Fuel Fabrication 1175: 1169: 1163: 1154: 1153: 1125: 1119: 1118: 1116: 1114: 1091: 1082: 1079: 1057:medical implants 1015:room temperature 847:pyramidal planes 787:nuclear industry 583: 568: 294:Japan and Russia 176: 175: 96:nuclear reactors 72:thermal neutrons 48:Zirconium alloys 21: 2868: 2867: 2863: 2862: 2861: 2859: 2858: 2857: 2838: 2837: 2817: 2812: 2779: 2775: 2765: 2763: 2755: 2754: 2750: 2743: 2729: 2725: 2718: 2704: 2700: 2665: 2661: 2634:Acta Materialia 2626: 2622: 2571: 2567: 2516: 2507: 2500: 2476: 2472: 2445: 2441: 2414: 2407: 2364: 2360: 2333: 2329: 2310:Acta Materialia 2302: 2298: 2271: 2267: 2238:Acta Materialia 2230: 2223: 2172: 2159: 2108: 2104: 2069: 2065: 2038: 2031: 1978: 1974: 1937:Acta Materialia 1929: 1920: 1877: 1873: 1836:Acta Materialia 1828: 1824: 1797: 1793: 1766: 1762: 1735:Acta Materialia 1727: 1720: 1691: 1682: 1674: 1670: 1624: 1620: 1567: 1563: 1555: 1551: 1545:Wayback Machine 1536: 1532: 1524: 1520: 1512: 1508: 1498: 1496: 1487: 1483: 1464: 1460: 1451: 1447: 1439: 1435: 1428: 1422: 1421: 1417: 1407: 1405: 1398: 1394: 1376:10.2172/4240391 1363: 1356: 1329: 1325: 1285: 1279: 1275: 1266: 1264: 1260: 1253: 1245: 1241: 1231: 1229: 1227: 1211: 1202: 1196:Wayback Machine 1185:Wayback Machine 1176: 1172: 1164: 1157: 1126: 1122: 1112: 1110: 1108: 1092: 1085: 1080: 1076: 1072: 1024: 963: 941: 937: 933: 929: 925: 921: 910: 906: 902: 898: 870: 837:. γ€ˆπ‘Žγ€‰ slip is 833:has the lowest 811: 783: 736: 671: 667: 663: 646:deuterium oxide 643: 636: 632: 628: 607:fuel assemblies 591: 581: 566: 560: 540: 523:zirconium oxide 503: 490: 466: 195: 151: 52:solid solutions 36:nuclear reactor 28: 27:Zircaloy family 23: 22: 15: 12: 11: 5: 2866: 2856: 2855: 2850: 2836: 2835: 2829: 2824: 2816: 2813: 2811: 2810: 2773: 2748: 2741: 2723: 2716: 2698: 2679:(3): 803–818. 2659: 2620: 2565: 2505: 2498: 2470: 2459:(4): 325–359. 2439: 2428:(1–2): 1–157. 2405: 2358: 2327: 2296: 2265: 2221: 2157: 2102: 2083:(3): 346–348. 2063: 2029: 1972: 1918: 1871: 1822: 1811:(1–2): 73–84. 1791: 1760: 1718: 1680: 1668: 1618: 1561: 1549: 1530: 1518: 1506: 1481: 1458: 1445: 1433: 1415: 1392: 1354: 1323: 1273: 1239: 1225: 1200: 1170: 1155: 1136:(2): 190–197. 1120: 1106: 1083: 1073: 1071: 1068: 1023: 1020: 962: 959: 939: 935: 931: 927: 923: 919: 911:plane normal. 908: 904: 900: 896: 869: 866: 831:prismatic slip 810: 807: 782: 779: 735: 732: 673: 672: 669: 665: 661: 641: 638: 637: 634: 630: 626: 590: 587: 558: 543: 542: 538: 502: 499: 489: 486: 465: 464:Microstructure 462: 444: 443: 438: 435: 430: 427: 424: 420: 419: 414: 411: 408: 405: 402: 398: 397: 392: 389: 386: 383: 380: 376: 375: 370: 367: 364: 361: 358: 354: 353: 348: 345: 338: 335: 332: 328: 327: 322: 319: 314: 311: 308: 304: 303: 298: 295: 292: 289: 286: 282: 281: 278: 275: 270: 267: 264: 260: 259: 246: 243: 240: 237: 234: 230: 229: 220: 217: 214: 211: 208: 204: 203: 200: 197: 192: 186: 180: 150: 147: 104:weight percent 100:water reactors 26: 9: 6: 4: 3: 2: 2865: 2854: 2851: 2849: 2846: 2845: 2843: 2833: 2830: 2828: 2825: 2822: 2819: 2818: 2805: 2800: 2796: 2792: 2788: 2784: 2777: 2762: 2758: 2752: 2744: 2738: 2734: 2727: 2719: 2713: 2709: 2702: 2694: 2690: 2686: 2682: 2678: 2674: 2670: 2663: 2655: 2651: 2647: 2643: 2639: 2635: 2631: 2624: 2616: 2612: 2608: 2604: 2600: 2596: 2592: 2588: 2584: 2580: 2576: 2569: 2561: 2557: 2553: 2549: 2545: 2541: 2537: 2533: 2529: 2525: 2521: 2514: 2512: 2510: 2501: 2495: 2491: 2487: 2483: 2482: 2474: 2466: 2462: 2458: 2454: 2450: 2443: 2435: 2431: 2427: 2423: 2419: 2412: 2410: 2401: 2397: 2393: 2389: 2385: 2381: 2377: 2373: 2369: 2362: 2354: 2350: 2346: 2342: 2338: 2331: 2323: 2319: 2315: 2311: 2307: 2300: 2292: 2288: 2284: 2280: 2276: 2269: 2260: 2255: 2251: 2247: 2243: 2239: 2235: 2228: 2226: 2217: 2213: 2209: 2205: 2201: 2197: 2193: 2189: 2185: 2181: 2177: 2170: 2168: 2166: 2164: 2162: 2153: 2149: 2145: 2141: 2137: 2133: 2129: 2125: 2121: 2117: 2113: 2106: 2098: 2094: 2090: 2086: 2082: 2078: 2074: 2067: 2059: 2055: 2051: 2047: 2043: 2036: 2034: 2025: 2021: 2017: 2013: 2008: 2003: 1999: 1995: 1991: 1987: 1983: 1976: 1967: 1966:10044/1/31552 1962: 1958: 1954: 1950: 1946: 1942: 1938: 1934: 1927: 1925: 1923: 1914: 1910: 1906: 1902: 1898: 1894: 1890: 1886: 1882: 1875: 1867: 1863: 1858: 1853: 1849: 1845: 1841: 1837: 1833: 1826: 1818: 1814: 1810: 1806: 1802: 1795: 1787: 1783: 1779: 1775: 1771: 1764: 1756: 1752: 1748: 1744: 1740: 1736: 1732: 1725: 1723: 1716: 1714: 1709: 1701: 1696: 1689: 1687: 1685: 1678: 1672: 1664: 1660: 1655: 1650: 1646: 1642: 1638: 1634: 1630: 1622: 1614: 1610: 1606: 1602: 1598: 1594: 1589: 1584: 1580: 1576: 1572: 1565: 1558: 1553: 1546: 1542: 1539: 1534: 1527: 1522: 1515: 1510: 1494: 1493: 1485: 1477: 1473: 1469: 1462: 1455: 1449: 1442: 1437: 1427: 1426: 1419: 1403: 1396: 1387: 1382: 1377: 1372: 1368: 1361: 1359: 1350: 1346: 1342: 1338: 1334: 1327: 1319: 1315: 1311: 1307: 1303: 1299: 1295: 1291: 1284: 1277: 1263:on 2012-01-18 1259: 1252: 1251: 1243: 1228: 1222: 1218: 1217: 1209: 1207: 1205: 1197: 1193: 1190: 1186: 1182: 1179: 1174: 1167: 1162: 1160: 1151: 1147: 1143: 1139: 1135: 1131: 1124: 1109: 1103: 1099: 1098: 1090: 1088: 1078: 1074: 1067: 1065: 1060: 1058: 1053: 1048: 1045: 1041: 1037: 1036:biocompatible 1028: 1019: 1016: 1011: 1007: 1005: 1000: 995: 992: 987: 984: 980: 976: 971: 968: 958: 956: 952: 947: 943: 916: 912: 894: 889: 885: 878: 874: 865: 862: 856: 853: 848: 844: 840: 836: 832: 828: 824: 815: 806: 804: 800: 796: 792: 788: 778: 776: 771: 769: 765: 761: 757: 753: 745: 742:Bright-Field 740: 731: 729: 725: 721: 717: 713: 709: 705: 701: 697: 692: 690: 686: 682: 678: 659: 658: 657: 655: 651: 647: 624: 623: 622: 620: 616: 612: 608: 604: 600: 596: 586: 578: 576: 572: 564: 556: 552: 548: 536: 535: 534: 530: 528: 524: 520: 516: 512: 508: 498: 496: 485: 483: 479: 470: 461: 459: 455: 451: 442: 439: 436: 434: 431: 428: 425: 422: 421: 418: 415: 412: 409: 406: 403: 400: 399: 396: 393: 391:Pressure tube 390: 387: 384: 381: 378: 377: 374: 371: 368: 365: 362: 359: 356: 355: 352: 349: 347:Pressure tube 346: 343: 339: 336: 333: 330: 329: 326: 323: 320: 318: 315: 312: 309: 306: 305: 302: 299: 296: 293: 290: 287: 284: 283: 279: 276: 274: 271: 268: 265: 262: 261: 258: 254: 250: 247: 244: 241: 238: 235: 232: 231: 228: 224: 221: 218: 215: 212: 209: 206: 205: 202:Reactor type 201: 198: 193: 190: 187: 184: 181: 178: 177: 174: 171: 167: 162: 160: 156: 146: 144: 140: 136: 132: 127: 125: 121: 117: 113: 109: 105: 101: 98:, especially 97: 93: 89: 85: 81: 77: 73: 69: 68:cross-section 65: 61: 57: 53: 49: 43: 42: 37: 32: 19: 2786: 2782: 2776: 2764:. Retrieved 2760: 2751: 2732: 2726: 2707: 2701: 2676: 2672: 2662: 2637: 2633: 2623: 2582: 2578: 2568: 2527: 2523: 2480: 2473: 2456: 2452: 2442: 2425: 2421: 2378:(1): 39–51. 2375: 2371: 2361: 2344: 2340: 2330: 2313: 2309: 2299: 2285:(1): 79–86. 2282: 2278: 2268: 2241: 2237: 2183: 2179: 2119: 2115: 2105: 2080: 2076: 2066: 2049: 2045: 1989: 1985: 1975: 1940: 1936: 1891:(1): 39–51. 1888: 1884: 1874: 1839: 1835: 1825: 1808: 1804: 1794: 1780:(4): 12945. 1777: 1773: 1763: 1738: 1734: 1705: 1671: 1636: 1632: 1621: 1578: 1574: 1564: 1552: 1533: 1521: 1509: 1497:. Retrieved 1491: 1484: 1467: 1461: 1448: 1436: 1424: 1418: 1406:. Retrieved 1395: 1366: 1340: 1336: 1326: 1293: 1289: 1276: 1265:. Retrieved 1258:the original 1249: 1242: 1230:. Retrieved 1215: 1173: 1133: 1129: 1123: 1111:. Retrieved 1096: 1077: 1061: 1049: 1033: 1022:Applications 1012: 1008: 1003: 998: 996: 990: 988: 972: 967:yield stress 964: 948: 944: 938:= {101Μ…2} 𝜼 917: 913: 882: 857: 821: 784: 772: 749: 693: 674: 639: 592: 579: 544: 531: 504: 491: 475: 457: 453: 449: 447: 317:Westinghouse 273:Westinghouse 163: 152: 128: 63: 47: 46: 40: 2316:: 283–292. 2052:(1): 1–11. 1943:: 249–257. 1842:: 598–610. 1639:: 440–460. 1581:: 136–140. 1499:23 November 951:temperature 852:Anisotropic 791:strain rate 781:Deformation 511:passivation 488:Development 242:All vendors 216:All vendors 2842:Categories 2742:9994058185 2717:9994058185 1700:1803.00236 1514:Luc Gillon 1267:2011-03-18 1070:References 997:Capolungo 861:basal slip 839:orthogonal 629:O β†’ ZrO 547:atmosphere 460:xidation. 233:Zircaloy 4 207:Zircaloy 2 2615:137638664 2607:1073-5623 2552:1073-5623 2400:0008-4433 2244:: 55–73. 2216:137662799 2208:1478-6435 2152:136620892 2144:1478-6435 2024:138085929 2016:1364-5021 1913:0008-4433 1713:CC BY 4.0 1663:0022-3115 1613:139389338 1597:1359-6462 1343:: 33–39. 1318:102695615 1052:corrosion 843:unit cell 823:Zirconium 681:potassium 664:O β†’ ZrO 625:Zr + 2 H 342:Argentina 285:Zr Sponge 280:BWR, PWR 199:Component 196:(country) 166:zirconium 92:fuel rods 76:ductility 58:or other 56:zirconium 2815:See also 2560:85548938 1715:license. 1541:Archived 1232:18 March 1192:Archived 1181:Archived 1113:18 March 1064:cold war 1040:implants 979:stresses 760:blisters 724:catalyst 660:Zr + 2 D 619:hydrogen 617:to form 603:hydrogen 553:is 1.47 519:nitrogen 369:Cladding 321:Cladding 297:Cladding 277:Cladding 191:, % 185:, % 157:, whose 135:hydrogen 120:chromium 88:cladding 64:Zircaloy 41:Nautilus 18:Zircaloy 2766:Aug 25, 2681:Bibcode 2642:Bibcode 2587:Bibcode 2532:Bibcode 2380:Bibcode 2246:Bibcode 2188:Bibcode 2124:Bibcode 2085:Bibcode 1994:Bibcode 1945:Bibcode 1893:Bibcode 1866:1373591 1844:Bibcode 1743:Bibcode 1641:Bibcode 1605:1481703 1476:5642843 1408:16 June 1386:4240391 1298:Bibcode 1138:Bibcode 975:texture 841:to the 795:reactor 726:-based 611:protons 575:kelvins 561:is the 527:Nitride 495:niobium 452:conium 429:0.8–1.2 404:0.8–1.3 363:0.9–1.1 337:2.4–2.8 331:Zr2.5Nb 236:1.2–1.7 210:1.2–1.7 155:hafnium 112:niobium 2739:  2714:  2613:  2605:  2558:  2550:  2496:  2398:  2214:  2206:  2150:  2142:  2022:  2014:  1911:  1864:  1661:  1611:  1603:  1595:  1474:  1383:  1316:  1223:  1104:  999:et al. 991:et al. 825:has a 764:cracks 754:. The 716:oxygen 677:sodium 565:(8.617 515:carbon 507:oxygen 410:Russia 388:Russia 366:Russia 194:Vendor 124:nickel 60:metals 2789:(9). 2611:S2CID 2556:S2CID 2212:S2CID 2148:S2CID 2020:S2CID 1695:arXiv 1609:S2CID 1429:(PDF) 1314:S2CID 1286:(PDF) 1261:(PDF) 1254:(PDF) 1004:et al 930:or 𝜼 922:or 𝑲 888:shear 668:+ 2 D 654:CANDU 652:that 633:+ 2 H 615:water 599:steam 433:Areva 407:0.8–1 351:CANDU 266:0.7–1 263:ZIRLO 257:CANDU 227:CANDU 179:Alloy 86:, as 2768:2024 2737:ISBN 2712:ISBN 2603:ISSN 2548:ISSN 2494:ISBN 2396:ISSN 2204:ISSN 2140:ISSN 2012:ISSN 1909:ISSN 1862:OSTI 1659:ISSN 1601:OSTI 1593:ISSN 1501:2010 1472:OSTI 1410:2021 1381:OSTI 1234:2011 1221:ISBN 1115:2011 1102:ISBN 953:and 818:key. 809:Slip 801:and 799:slip 775:LOCA 762:and 685:iron 417:VVER 401:E635 395:RBMK 379:E125 373:VVER 357:E110 310:0.25 307:ZrSn 170:barn 116:iron 78:and 50:are 2799:hdl 2791:doi 2689:doi 2650:doi 2595:doi 2540:doi 2486:doi 2461:doi 2430:doi 2388:doi 2349:doi 2345:463 2318:doi 2287:doi 2254:doi 2196:doi 2132:doi 2093:doi 2054:doi 2002:doi 1990:471 1961:hdl 1953:doi 1901:doi 1852:doi 1840:132 1813:doi 1782:doi 1751:doi 1649:doi 1637:518 1583:doi 1579:158 1371:doi 1345:doi 1341:283 1306:doi 1294:493 1146:doi 901:𝟏, 679:or 613:of 573:in 557:; k 497:). 456:ow 450:zir 441:PWR 385:2.5 325:BWR 301:BWR 253:PWR 249:BWR 223:BWR 108:tin 94:in 90:of 70:of 54:of 2844:: 2797:. 2787:20 2785:. 2759:. 2687:. 2677:61 2675:. 2671:. 2648:. 2638:57 2636:. 2632:. 2609:. 2601:. 2593:. 2583:26 2581:. 2577:. 2554:. 2546:. 2538:. 2528:31 2526:. 2522:. 2508:^ 2492:. 2457:48 2455:. 2451:. 2426:39 2424:. 2420:. 2408:^ 2394:. 2386:. 2376:11 2374:. 2370:. 2343:. 2339:. 2314:87 2312:. 2308:. 2283:47 2281:. 2277:. 2252:. 2242:88 2240:. 2236:. 2224:^ 2210:. 2202:. 2194:. 2184:86 2182:. 2178:. 2160:^ 2146:. 2138:. 2130:. 2120:97 2118:. 2114:. 2091:. 2081:40 2079:. 2075:. 2050:21 2048:. 2044:. 2032:^ 2018:. 2010:. 2000:. 1988:. 1984:. 1959:. 1951:. 1941:96 1939:. 1935:. 1921:^ 1907:. 1899:. 1889:11 1887:. 1883:. 1860:. 1850:. 1838:. 1834:. 1809:25 1807:. 1803:. 1776:. 1772:. 1749:. 1739:49 1737:. 1733:. 1721:^ 1683:^ 1657:. 1647:. 1635:. 1631:. 1607:. 1599:. 1591:. 1577:. 1573:. 1470:. 1379:. 1357:^ 1335:. 1312:. 1304:. 1292:. 1288:. 1203:^ 1187:, 1158:^ 1144:. 1134:73 1132:. 1086:^ 1059:. 940:𝟏 936:𝟏 932:𝟏 928:𝟏 924:𝟏 920:𝟏 909:𝟏 905:𝟏 897:𝟏 805:. 644:O 577:. 555:eV 541:T) 525:. 423:M5 255:, 251:, 225:, 189:Nb 183:Sn 145:. 122:, 118:, 114:, 110:, 2807:. 2801:: 2793:: 2770:. 2745:. 2720:. 2695:. 2691:: 2683:: 2656:. 2652:: 2644:: 2617:. 2597:: 2589:: 2562:. 2542:: 2534:: 2502:. 2488:: 2467:. 2463:: 2436:. 2432:: 2402:. 2390:: 2382:: 2355:. 2351:: 2324:. 2320:: 2293:. 2289:: 2262:. 2256:: 2248:: 2218:. 2198:: 2190:: 2154:. 2134:: 2126:: 2099:. 2095:: 2087:: 2060:. 2056:: 2026:. 2004:: 1996:: 1969:. 1963:: 1955:: 1947:: 1915:. 1903:: 1895:: 1868:. 1854:: 1846:: 1819:. 1815:: 1788:. 1784:: 1778:2 1757:. 1753:: 1745:: 1703:. 1697:: 1665:. 1651:: 1643:: 1615:. 1585:: 1503:. 1478:. 1412:. 1389:. 1373:: 1351:. 1347:: 1320:. 1308:: 1300:: 1270:. 1236:. 1152:. 1148:: 1140:: 1117:. 670:2 666:2 662:2 642:2 635:2 631:2 627:2 582:Γ— 567:Γ— 559:B 539:B 458:o 454:l 426:– 382:– 360:– 344:) 334:– 313:– 291:– 288:– 269:1 239:– 213:– 20:)

Index

Zircaloy

nuclear reactor
Nautilus
solid solutions
zirconium
metals
cross-section
thermal neutrons
ductility
corrosion resistance
nuclear technology
cladding
fuel rods
nuclear reactors
water reactors
weight percent
tin
niobium
iron
chromium
nickel
nodular corrosion
hydrogen
zirconium hydrides
hydrogen embrittlement
hafnium
neutron absorption cross-section
zirconium
barn

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑