Knowledge

Intrinsic metric

Source 📝

50:
in the space. If two points are at a given distance from each other, it is natural to expect that one should be able to get from the first point to the second along a path whose arclength is equal to (or very close to) that distance. The distance between two points of a metric space relative to the
1407:
can be turned into a path metric space by defining the distance of two points as the infimum of the lengths of continuously differentiable curves connecting the two points. (The Riemannian structure allows one to define the length of such curves.) Analogously, other manifolds in which a length is
729: 1285: 1204: 457: 586: 798: 1476: 666: 978: 316: 1573: 1347: 1244: 1600: 1507: 530: 495: 250: 1730: 223: 1148: 1113: 187: 1646: 1378: 1318: 893: 128: 1698: 1670: 1531: 1078: 1058: 1038: 1018: 998: 948: 921: 861: 841: 821: 626: 606: 407: 387: 360: 340: 270: 152: 678: 1719:
Herbert Busemann, Selected Works, (Athanase Papadopoulos, ed.) Volume II, 842 p., Springer International Publishing, 2018.
1249: 1714:
Herbert Busemann, Selected Works, (Athanase Papadopoulos, ed.) Volume I, 908 p., Springer International Publishing, 2018.
1764: 1739: 1156: 418: 1725: 543: 740: 66:
If the space has the stronger property that there always exists a path that achieves the infimum of length (a
1448: 957: 638: 279: 1539: 1323: 1220: 24: 154:
is a collection of points (such as all of the points in the plane, or all points on the circle) and
1782: 1578: 1485: 1435:. However, the converse does not hold, i.e. there exist length metric spaces that are not convex. 500: 465: 228: 1413: 28: 1613: 196: 1420: 1397: 20: 1118: 1083: 157: 1748: 1619: 1356: 1296: 866: 101: 87: 8: 1752: 1424: 1404: 1683: 1655: 1516: 1063: 1043: 1023: 1003: 983: 933: 906: 846: 826: 806: 611: 591: 392: 372: 345: 325: 255: 137: 1760: 1735: 1479: 1389: 537: 59:
of the lengths of all paths from the first point to the second. A metric space is a
1409: 19:"Geodesic distance" redirects here. For distances on the surface of a sphere, see 1649: 1215: 79: 47: 1606: 1510: 410: 1776: 131: 83: 39: 1605:
The metric of a length space has approximate midpoints. Conversely, every
1701: 1575:
is always a path metric space (with the caveat, as mentioned above, that
1432: 1291: 628:(this is consistent with the infimum definition since the infimum of the 35: 1677: 669: 63:
if the intrinsic metric agrees with the original metric of the space.
629: 43: 1673: 1396:
is not intrinsic, and the induced intrinsic metric is given by the
67: 319: 56: 1393: 1385: 1353:) is not a path metric space. The induced intrinsic metric on 1381: 90:
removed is not geodesic, but is still a length metric space.
1246:
with the ordinary Euclidean metric is a path metric space.
1731:
Metric Structures for Riemannian and Non-Riemannian Spaces
1609:
metric space with approximate midpoints is a length space.
27:. For the edge-count of a shortest path in a graph, see 1757:
An Introduction to Metric Spaces and Fixed Point Theory
1320:
with the metric inherited from the Euclidean metric of
724:{\displaystyle (d_{\text{I}})_{\text{I}}=d_{\text{I}}.} 1388:, and the resulting length metric space is called the 641: 1686: 1658: 1622: 1581: 1542: 1519: 1488: 1451: 1359: 1326: 1299: 1252: 1223: 1159: 1121: 1086: 1066: 1046: 1026: 1006: 986: 960: 936: 909: 869: 849: 829: 809: 743: 681: 614: 594: 546: 503: 468: 421: 395: 375: 348: 328: 282: 258: 231: 199: 160: 140: 104: 1280:{\displaystyle \mathbb {R} ^{n}\smallsetminus \{0\}} 1692: 1664: 1640: 1594: 1567: 1525: 1501: 1470: 1372: 1341: 1312: 1279: 1238: 1198: 1142: 1107: 1072: 1052: 1032: 1012: 992: 972: 942: 915: 887: 855: 835: 815: 792: 723: 660: 620: 600: 580: 524: 489: 451: 401: 381: 354: 334: 310: 264: 244: 217: 181: 146: 122: 23:. For distances on the surface of the Earth, see 1774: 1734:, Progress in Math., vol. 152, Birkhäuser, 1392:. In two dimensions, the chordal metric on the 86:as its geodesics. The Euclidean plane with the 1199:{\displaystyle {d(x,y) \over 2}+\varepsilon .} 1274: 1268: 536:of such a path is defined as explained for 452:{\displaystyle \gamma \colon \rightarrow M} 1747: 1428: 588:if there is no path of finite length from 1329: 1255: 1226: 632:within the closed interval is +∞). 581:{\displaystyle d_{\text{I}}(x,y)=\infty } 793:{\displaystyle d_{\text{I}}(x,y)=d(x,y)} 189:is a function that provides us with the 1775: 1724: 1513:than or equal to the one defined by 13: 1471:{\displaystyle d\leq d_{\text{I}}} 661:{\textstyle d\mapsto d_{\text{I}}} 575: 14: 1794: 973:{\displaystyle \varepsilon >0} 322:of the lengths of all paths from 311:{\displaystyle d_{\text{I}}(x,y)} 1568:{\displaystyle (M,d_{\text{I}})} 1342:{\displaystyle \mathbb {R} ^{2}} 1239:{\displaystyle \mathbb {R} ^{n}} 1635: 1623: 1616:states that if a length space 1562: 1543: 1178: 1166: 1137: 1125: 1102: 1090: 882: 870: 787: 775: 766: 754: 696: 682: 645: 569: 557: 513: 507: 478: 472: 443: 440: 428: 305: 293: 176: 164: 117: 105: 93: 1: 1708: 1439: 1431:, Theorem 2.16), a result of 1595:{\displaystyle d_{\text{I}}} 1502:{\displaystyle d_{\text{I}}} 525:{\displaystyle \gamma (1)=y} 490:{\displaystyle \gamma (0)=x} 245:{\displaystyle d_{\text{I}}} 16:Concept in geometry/topology 7: 1209: 10: 1799: 1427:is a length metric space ( 82:is a geodesic space, with 18: 225:. We define a new metric 25:Geodesics on an ellipsoid 1414:sub-Riemannian manifolds 980:and any pair of points 274:induced intrinsic metric 218:{\displaystyle x,y\in M} 1652:then any two points in 1150:are both smaller than 930:We say that the metric 42:, one can consider the 29:Distance (graph theory) 1694: 1672:can be connected by a 1666: 1642: 1596: 1569: 1527: 1503: 1472: 1429:Khamsi & Kirk 2001 1380:measures distances as 1374: 1343: 1314: 1281: 1240: 1200: 1144: 1143:{\displaystyle d(c,y)} 1109: 1108:{\displaystyle d(x,c)} 1074: 1054: 1034: 1014: 994: 974: 944: 917: 889: 857: 837: 817: 794: 725: 662: 622: 602: 582: 526: 491: 453: 403: 383: 356: 336: 312: 266: 246: 219: 183: 182:{\displaystyle d(x,y)} 148: 124: 70:) then it is called a 1695: 1667: 1643: 1641:{\displaystyle (M,d)} 1597: 1570: 1528: 1504: 1473: 1398:great-circle distance 1375: 1373:{\displaystyle S^{1}} 1344: 1315: 1313:{\displaystyle S^{1}} 1282: 1241: 1201: 1145: 1110: 1075: 1055: 1035: 1015: 995: 975: 952:approximate midpoints 945: 918: 890: 888:{\displaystyle (M,d)} 858: 838: 818: 795: 726: 663: 623: 603: 583: 527: 492: 454: 404: 384: 357: 337: 313: 267: 247: 220: 184: 149: 125: 123:{\displaystyle (M,d)} 72:geodesic metric space 21:Great-circle distance 1684: 1656: 1620: 1579: 1540: 1517: 1509:is therefore always 1486: 1449: 1445:In general, we have 1357: 1324: 1297: 1250: 1221: 1157: 1119: 1084: 1064: 1044: 1024: 1004: 984: 958: 934: 907: 867: 847: 827: 807: 741: 679: 639: 612: 592: 544: 501: 466: 419: 393: 373: 346: 326: 280: 256: 229: 197: 158: 138: 102: 78:. For instance, the 1674:minimizing geodesic 1425:convex metric space 1405:Riemannian manifold 61:length metric space 1749:Khamsi, Mohamed A. 1690: 1662: 1638: 1614:Hopf–Rinow theorem 1592: 1565: 1523: 1499: 1468: 1370: 1339: 1310: 1277: 1236: 1196: 1140: 1105: 1070: 1050: 1030: 1010: 990: 970: 940: 913: 885: 853: 833: 813: 790: 721: 658: 618: 598: 578: 538:rectifiable curves 522: 487: 449: 399: 379: 352: 332: 308: 262: 242: 215: 179: 144: 120: 55:is defined as the 1693:{\displaystyle M} 1665:{\displaystyle M} 1602:can be infinite). 1589: 1559: 1526:{\displaystyle d} 1496: 1465: 1410:Finsler manifolds 1408:defined included 1390:Riemannian circle 1185: 1073:{\displaystyle M} 1053:{\displaystyle c} 1033:{\displaystyle M} 1013:{\displaystyle y} 993:{\displaystyle x} 943:{\displaystyle d} 916:{\displaystyle d} 901:path metric space 856:{\displaystyle M} 836:{\displaystyle y} 816:{\displaystyle x} 751: 715: 702: 692: 655: 621:{\displaystyle y} 601:{\displaystyle x} 554: 402:{\displaystyle y} 382:{\displaystyle x} 355:{\displaystyle y} 335:{\displaystyle x} 290: 265:{\displaystyle M} 239: 147:{\displaystyle M} 1790: 1769: 1753:Kirk, William A. 1744: 1699: 1697: 1696: 1691: 1676:and all bounded 1671: 1669: 1668: 1663: 1648:is complete and 1647: 1645: 1644: 1639: 1601: 1599: 1598: 1593: 1591: 1590: 1587: 1574: 1572: 1571: 1566: 1561: 1560: 1557: 1532: 1530: 1529: 1524: 1508: 1506: 1505: 1500: 1498: 1497: 1494: 1477: 1475: 1474: 1469: 1467: 1466: 1463: 1403:Every connected 1379: 1377: 1376: 1371: 1369: 1368: 1348: 1346: 1345: 1340: 1338: 1337: 1332: 1319: 1317: 1316: 1311: 1309: 1308: 1286: 1284: 1283: 1278: 1264: 1263: 1258: 1245: 1243: 1242: 1237: 1235: 1234: 1229: 1205: 1203: 1202: 1197: 1186: 1181: 1161: 1149: 1147: 1146: 1141: 1114: 1112: 1111: 1106: 1079: 1077: 1076: 1071: 1059: 1057: 1056: 1051: 1039: 1037: 1036: 1031: 1019: 1017: 1016: 1011: 999: 997: 996: 991: 979: 977: 976: 971: 949: 947: 946: 941: 922: 920: 919: 914: 894: 892: 891: 886: 862: 860: 859: 854: 842: 840: 839: 834: 822: 820: 819: 814: 799: 797: 796: 791: 753: 752: 749: 730: 728: 727: 722: 717: 716: 713: 704: 703: 700: 694: 693: 690: 667: 665: 664: 659: 657: 656: 653: 627: 625: 624: 619: 607: 605: 604: 599: 587: 585: 584: 579: 556: 555: 552: 531: 529: 528: 523: 496: 494: 493: 488: 458: 456: 455: 450: 408: 406: 405: 400: 388: 386: 385: 380: 361: 359: 358: 353: 341: 339: 338: 333: 317: 315: 314: 309: 292: 291: 288: 271: 269: 268: 263: 251: 249: 248: 243: 241: 240: 237: 224: 222: 221: 216: 188: 186: 185: 180: 153: 151: 150: 145: 129: 127: 126: 121: 53:intrinsic metric 1798: 1797: 1793: 1792: 1791: 1789: 1788: 1787: 1783:Metric geometry 1773: 1772: 1767: 1742: 1726:Gromov, Mikhail 1711: 1685: 1682: 1681: 1657: 1654: 1653: 1650:locally compact 1621: 1618: 1617: 1586: 1582: 1580: 1577: 1576: 1556: 1552: 1541: 1538: 1537: 1518: 1515: 1514: 1493: 1489: 1487: 1484: 1483: 1462: 1458: 1450: 1447: 1446: 1442: 1364: 1360: 1358: 1355: 1354: 1333: 1328: 1327: 1325: 1322: 1321: 1304: 1300: 1298: 1295: 1294: 1259: 1254: 1253: 1251: 1248: 1247: 1230: 1225: 1224: 1222: 1219: 1218: 1216:Euclidean space 1212: 1162: 1160: 1158: 1155: 1154: 1120: 1117: 1116: 1085: 1082: 1081: 1065: 1062: 1061: 1045: 1042: 1041: 1025: 1022: 1021: 1005: 1002: 1001: 985: 982: 981: 959: 956: 955: 935: 932: 931: 908: 905: 904: 903:and the metric 868: 865: 864: 848: 845: 844: 828: 825: 824: 808: 805: 804: 803:for all points 748: 744: 742: 739: 738: 712: 708: 699: 695: 689: 685: 680: 677: 676: 652: 648: 640: 637: 636: 613: 610: 609: 593: 590: 589: 551: 547: 545: 542: 541: 502: 499: 498: 467: 464: 463: 420: 417: 416: 394: 391: 390: 374: 371: 370: 347: 344: 343: 327: 324: 323: 287: 283: 281: 278: 277: 272:, known as the 257: 254: 253: 236: 232: 230: 227: 226: 198: 195: 194: 193:between points 159: 156: 155: 139: 136: 135: 103: 100: 99: 96: 80:Euclidean plane 32: 17: 12: 11: 5: 1796: 1786: 1785: 1771: 1770: 1765: 1759:, Wiley-IEEE, 1745: 1740: 1721: 1720: 1716: 1715: 1710: 1707: 1706: 1705: 1689: 1661: 1637: 1634: 1631: 1628: 1625: 1610: 1603: 1585: 1564: 1555: 1551: 1548: 1545: 1534: 1522: 1492: 1461: 1457: 1454: 1441: 1438: 1437: 1436: 1417: 1401: 1367: 1363: 1351:chordal metric 1336: 1331: 1307: 1303: 1288: 1276: 1273: 1270: 1267: 1262: 1257: 1233: 1228: 1211: 1208: 1207: 1206: 1195: 1192: 1189: 1184: 1180: 1177: 1174: 1171: 1168: 1165: 1139: 1136: 1133: 1130: 1127: 1124: 1104: 1101: 1098: 1095: 1092: 1089: 1069: 1049: 1029: 1009: 989: 969: 966: 963: 939: 912: 884: 881: 878: 875: 872: 863:, we say that 852: 832: 812: 801: 800: 789: 786: 783: 780: 777: 774: 771: 768: 765: 762: 759: 756: 747: 732: 731: 720: 711: 707: 698: 688: 684: 651: 647: 644: 617: 597: 577: 574: 571: 568: 565: 562: 559: 550: 521: 518: 515: 512: 509: 506: 486: 483: 480: 477: 474: 471: 460: 459: 448: 445: 442: 439: 436: 433: 430: 427: 424: 411:continuous map 398: 378: 351: 331: 307: 304: 301: 298: 295: 286: 276:, as follows: 261: 235: 214: 211: 208: 205: 202: 178: 175: 172: 169: 166: 163: 143: 119: 116: 113: 110: 107: 95: 92: 76:geodesic space 15: 9: 6: 4: 3: 2: 1795: 1784: 1781: 1780: 1778: 1768: 1766:0-471-41825-0 1762: 1758: 1754: 1750: 1746: 1743: 1741:0-8176-3898-9 1737: 1733: 1732: 1727: 1723: 1722: 1718: 1717: 1713: 1712: 1703: 1687: 1679: 1675: 1659: 1651: 1632: 1629: 1626: 1615: 1611: 1608: 1604: 1583: 1553: 1549: 1546: 1535: 1520: 1512: 1490: 1481: 1459: 1455: 1452: 1444: 1443: 1434: 1430: 1426: 1422: 1418: 1415: 1411: 1406: 1402: 1399: 1395: 1391: 1387: 1383: 1365: 1361: 1352: 1334: 1305: 1301: 1293: 1289: 1271: 1265: 1260: 1231: 1217: 1214: 1213: 1193: 1190: 1187: 1182: 1175: 1172: 1169: 1163: 1153: 1152: 1151: 1134: 1131: 1128: 1122: 1099: 1096: 1093: 1087: 1067: 1047: 1040:there exists 1027: 1007: 987: 967: 964: 961: 953: 937: 928: 926: 910: 902: 898: 879: 876: 873: 850: 830: 810: 784: 781: 778: 772: 769: 763: 760: 757: 745: 737: 736: 735: 718: 709: 705: 686: 675: 674: 673: 671: 649: 642: 633: 631: 615: 595: 572: 566: 563: 560: 548: 539: 535: 519: 516: 510: 504: 484: 481: 475: 469: 446: 437: 434: 431: 425: 422: 415: 414: 413: 412: 396: 376: 368: 363: 349: 329: 321: 302: 299: 296: 284: 275: 259: 233: 212: 209: 206: 203: 200: 192: 173: 170: 167: 161: 141: 133: 114: 111: 108: 91: 89: 85: 84:line segments 81: 77: 73: 69: 64: 62: 58: 54: 49: 45: 41: 40:metric spaces 37: 30: 26: 22: 1756: 1729: 1350: 951: 929: 924: 900: 897:length space 896: 802: 733: 635:The mapping 634: 533: 461: 366: 364: 273: 190: 132:metric space 97: 75: 71: 65: 60: 52: 36:mathematical 33: 1678:closed sets 1482:defined by 1433:Karl Menger 1292:unit circle 1287:is as well. 954:if for any 94:Definitions 1709:References 1536:The space 1440:Properties 1080:such that 670:idempotent 1456:≤ 1266:∖ 1191:ε 962:ε 925:intrinsic 646:↦ 630:empty set 576:∞ 540:. We set 505:γ 470:γ 444:→ 426:: 423:γ 210:∈ 44:arclength 38:study of 1777:Category 1755:(2001), 1728:(1999), 1607:complete 1480:topology 1478:and the 1421:complete 1210:Examples 365:Here, a 191:distance 134:, i.e., 68:geodesic 1702:compact 1386:radians 672:, i.e. 320:infimum 318:is the 57:infimum 34:In the 1763:  1738:  1394:sphere 1382:angles 534:length 532:. The 88:origin 1511:finer 1349:(the 899:or a 895:is a 462:with 409:is a 369:from 130:be a 48:paths 1761:ISBN 1736:ISBN 1700:are 1612:The 1423:and 1419:Any 1412:and 1290:The 1115:and 1000:and 965:> 950:has 823:and 497:and 367:path 98:Let 1680:in 1384:in 1060:in 1020:in 923:is 843:in 734:If 668:is 608:to 389:to 342:to 252:on 74:or 46:of 1779:: 1751:; 927:. 362:. 1704:. 1688:M 1660:M 1636:) 1633:d 1630:, 1627:M 1624:( 1588:I 1584:d 1563:) 1558:I 1554:d 1550:, 1547:M 1544:( 1533:. 1521:d 1495:I 1491:d 1464:I 1460:d 1453:d 1416:. 1400:. 1366:1 1362:S 1335:2 1330:R 1306:1 1302:S 1275:} 1272:0 1269:{ 1261:n 1256:R 1232:n 1227:R 1194:. 1188:+ 1183:2 1179:) 1176:y 1173:, 1170:x 1167:( 1164:d 1138:) 1135:y 1132:, 1129:c 1126:( 1123:d 1103:) 1100:c 1097:, 1094:x 1091:( 1088:d 1068:M 1048:c 1028:M 1008:y 988:x 968:0 938:d 911:d 883:) 880:d 877:, 874:M 871:( 851:M 831:y 811:x 788:) 785:y 782:, 779:x 776:( 773:d 770:= 767:) 764:y 761:, 758:x 755:( 750:I 746:d 719:. 714:I 710:d 706:= 701:I 697:) 691:I 687:d 683:( 654:I 650:d 643:d 616:y 596:x 573:= 570:) 567:y 564:, 561:x 558:( 553:I 549:d 520:y 517:= 514:) 511:1 508:( 485:x 482:= 479:) 476:0 473:( 447:M 441:] 438:1 435:, 432:0 429:[ 397:y 377:x 350:y 330:x 306:) 303:y 300:, 297:x 294:( 289:I 285:d 260:M 238:I 234:d 213:M 207:y 204:, 201:x 177:) 174:y 171:, 168:x 165:( 162:d 142:M 118:) 115:d 112:, 109:M 106:( 31:.

Index

Great-circle distance
Geodesics on an ellipsoid
Distance (graph theory)
mathematical
metric spaces
arclength
paths
infimum
geodesic
Euclidean plane
line segments
origin
metric space
infimum
continuous map
rectifiable curves
empty set
idempotent
Euclidean space
unit circle
angles
radians
Riemannian circle
sphere
great-circle distance
Riemannian manifold
Finsler manifolds
sub-Riemannian manifolds
complete
convex metric space

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.