Knowledge

Line code

Source 📝

61: 691: 1696: 110: 72: 50: 83: 38: 792:. Each code word in a paired disparity code that averages to a negative level is paired with another code word that averages to a positive level. The transmitter keeps track of the running DC buildup, and picks the code word that pushes the DC level back towards zero. The receiver is designed so that either code word of the pair decodes to the same data bits. Examples of paired disparity codes include 1570: 898:
may be imposed on the generated channel sequence, i.e., the maximum number of consecutive ones or zeros is bounded to a reasonable number. A clock period is recovered by observing transitions in the received sequence, so that a maximum run length guarantees sufficient transitions to assure clock
832:
Bipolar line codes have two polarities, are generally implemented as RZ, and have a radix of three since there are three distinct output levels (negative, positive and zero). One of the principle advantages of this type of code is that it can eliminate any DC component. This is important if the
945:
Specifically, RLL bounds the length of stretches (runs) of repeated bits during which the signal does not change. If the runs are too long, clock recovery is difficult; if they are too short, the high frequencies might be attenuated by the communications channel. By
22: 1371: 954:, RLL reduces the timing uncertainty in decoding the stored data, which would lead to the possible erroneous insertion or removal of bits when reading the data back. This mechanism ensures that the boundaries between bits can always be accurately found (preventing 776:
in a constant-weight code is designed such that every code word that contains some positive or negative levels also contains enough of the opposite levels, such that the average level over each code word is zero. Examples of constant-weight codes include
836:
Unfortunately, several long-distance communication channels have polarity ambiguity. Polarity-insensitive line codes compensate in these channels. There are three ways of providing unambiguous reception of 0 and 1 bits over such channels:
429:
in data storage systems. Some signals are more prone to error than others as the physics of the communication channel or storage medium constrains the repertoire of signals that can be used reliably.
1015:
of the received signal. If the clock recovery is not ideal, then the signal to be decoded will not be sampled at the optimal times. This will increase the probability of error in the received data.
1574: 1018:
Biphase line codes require at least one transition per bit time. This makes it easier to synchronize the transceivers and detect errors, however, the baud rate is greater than that of NRZ codes.
1434:
When PSK data modulation is used, the potential exists for an ambiguity in the polarity of the received channel symbols. This problem can be solved in one of two ways. First ... a so-called
1399: 841:
Pair each code word with the polarity-inverse of that code word. The receiver is designed so that either code word of the pair decodes to the same data bits. Examples include
1302: 1034:. These requirements are unique for each medium, because each one has different behavior related to interference, distortion, capacitance and attenuation. 1468:
Another benefit of differential encoding is its insensitivity to polarity of the signal. ... If the leads of a twisted pair are accidentally reversed...
1386: 392: 961:
Early disk drives used very simple encoding schemes, such as RLL (0,1) FM code, followed by RLL (1,3) MFM code which were widely used in
1609: 1329:
Line codes ... facilitates the transmission of data over telecommunication and computer networks and its storage in multimedia systems.
356: 990: 1349: 1646: 1579: 1299: 385: 301: 698:
Each line code has advantages and disadvantages. Line codes are chosen to meet one or more of the following criteria:
650:
Differential Manchester used in Token Ring. There is always a transition halfway between the conditioned transitions.
1939: 1840: 1553: 1461: 1427: 1193: 414: 280: 879: 1738: 1723: 1620:
CodSim 2.0: Open source simulator for Digital Data Communications Model at the University of Malaga written in HTML
1123: 846: 504: 174: 65: 1614: 1585: 361: 275: 247: 214: 189: 141: 1728: 1718: 1320: 1845: 1369:, Peter E. K. Chow., "Code converter for polarity-insensitive transmission systems", published 1983 1187: 378: 636:
Variant of Differential Manchester. There is always a transition halfway between the conditioned transitions.
1144: 745:. The disparity of a bit pattern is the difference in the number of one bits vs the number of zero bits. The 1774: 1814: 1156: 1100: 986: 179: 1896: 1639: 622:
Manchester. Two consecutive bits of the same type force a transition at the beginning of a bit period.
331: 151: 26: 1162: 773: 204: 958:), while efficiently using the media to reliably store the maximal amount of data in a given space. 1079: 842: 793: 341: 224: 160: 1886: 1217: 238: 117: 1891: 1944: 1517: 1480: 1266: 1238: 473: 351: 346: 184: 169: 1624: 1543: 1505:
A detailed description is furnished of the limiting properties of runlength limited sequences.
1026:
A line code will typically reflect technical requirements of the transmission medium, such as
60: 1902: 1632: 1031: 789: 418: 336: 270: 1908: 1881: 1784: 1085: 850: 769: 194: 131: 126: 8: 1934: 1913: 1794: 1754: 1395: 1114: 860: 461: 457: 219: 54: 456:
After line coding, the signal is put through a physical communication channel, either a
1342: 1150: 1074: 935: 895: 782: 563: 406: 252: 229: 209: 30: 753:
of the disparity of all previously transmitted bits. The simplest possible line code,
1779: 1695: 1670: 1549: 1457: 1423: 1242: 1199: 1138: 994: 754: 690: 469: 433: 199: 76: 1809: 1675: 1589: 1521: 1496: 1484: 1270: 1069: 820: 812: 760:
Most line codes eliminate the DC component – such codes are called
757:, gives too many errors on such systems, because it has an unbounded DC component. 712: 566:
level. This is the standard positive logic signal format used in digital circuits.
441: 326: 321: 146: 136: 42: 1011:
Line coding should make it possible for the receiver to synchronize itself to the
1804: 1733: 1451: 1417: 1306: 1119: 1064: 962: 854: 778: 445: 261: 1318: 816: 1876: 1819: 1799: 1789: 1713: 1685: 1343:"Data Transmission at High Rates via Kapton Flexprints for the Mu3e Experiment" 1212: 1168: 1133: 1128: 1059: 1006: 939: 891: 864: 742: 508: 437: 422: 87: 1366: 1928: 1680: 1027: 1012: 926:, refer to the rate of the code, while the remaining two specify the minimal 764:, zero-DC, or DC-free. There are three ways of eliminating the DC component: 750: 487: 413:
is a pattern of voltage, current, or photons used to represent digital data
109: 1619: 1109: 1104: 730: 718: 533: 366: 306: 285: 1655: 1595: 761: 965:
until the mid-1980s and are still used in digital optical discs such as
947: 526: 522: 503:
the line-coded signal can be used to turn on and off a light source in
491: 101: 729:
Most long-distance communication channels cannot reliably transport a
808: 670:
is represented by a transition at the beginning of the clock period.
496: 16:
Pattern used within a communications system to represent digital data
1500: 1325:
IEEE International Conference on Signal Processing and Communication
833:
signal must pass through a transformer or a long transmission line.
664:
Need a Clock, always a transition in the middle of the clock period
71: 1871: 1861: 974: 955: 875: 515: 481: 472:, in the form of variations of the voltage or current (often using 98: 49: 1091: 982: 934:
number of zeroes between consecutive ones. This is used in both
521:
the line-coded signal can be converted to magnetized spots on a
1824: 1654: 1415: 1174: 993:
codes. Higher density RLL (2,7) and RLL (1,7) codes became the
797: 82: 37: 863:
each symbol relative to the previous symbol. Examples include
1319:
Abdullatif Glass; Nidhal Abdulaziz; and Eesa Bastaki (2007),
978: 316: 694:
An arbitrary bit pattern in various binary line code formats
681:
forces a positive or negative pulse for half the bit period
1866: 1769: 1764: 1759: 1522:"EFMPlus: The Coding Format of the MultiMedia Compact Disc" 1054: 1049: 1044: 951: 868: 801: 514:
the line-coded signal can be printed on paper to create a
21: 1095: 970: 966: 25:
An example of coding a binary signal using rectangular
1516: 1479: 1422:. Springer Science & Business Media. p. 255. 1388:
Fieldbus Application Guide ... Wiring and Installation
628:
forces a positive transition in the middle of the bit
625:
forces a negative transition in the middle of the bit
611:
goes high for half the bit period and returns to low
532:
the line-coded signal can be converted to pits on an
1265: 1237: 938:
and storage systems that move a medium past a fixed
540:Some of the more common binary line codes include: 1419:Error-Correction Coding for Digital Communications 1321:"Slope line coding for telecommunication networks" 1365: 425:. This repertoire of signals is usually called a 1926: 1449: 1275:IEEE Journal on Selected Areas in Communications 597:does nothing (keeps sending the previous level) 586:does nothing (keeps sending the previous level) 490:(to reduce its frequency bandwidth) and then is 1530:A high-density alternative to EFM is described. 902:RLL codes are defined by four main parameters: 468:the line-coded signal can directly be put on a 1271:"A Survey of Codes for Optical Disk Recording" 1640: 386: 1384: 678:The positive and negative pulses alternate. 1340: 885: 451: 1647: 1633: 1416:George C. Clark Jr.; J. Bibb Cain (2013). 811:. For example, the scrambler specified in 393: 379: 1526:IEEE Transactions on Consumer Electronics 1453:Data Communications and Computer Networks 464:. The most common physical channels are: 1548:. Javvin Technologies Inc. p. 284. 689: 81: 70: 59: 48: 36: 20: 1021: 1927: 1739:Differential Manchester/biphase (Bi-φ) 1292: 874:Invert the whole stream when inverted 733:. The DC component is also called the 494:(to shift its frequency) to create an 1719:Non-return-to-zero, level (NRZ/NRZ-L) 1628: 1456:. PHI Learning Pvt. Ltd. p. 13. 1300:"Coding for Magnetic Storage Mediums" 1259: 1181: 684:keeps a zero level during bit period 661:Differential Manchester (Alternative) 1724:Non-return-to-zero, inverted (NRZ-I) 1615:Line Coding in Digital Communication 1541: 1147:, Miller encoding and delay encoding 1037: 507:, most commonly used in an infrared 500:that can be sent through free space. 997:for hard disks by the early 1990s. 708:Ease error detection and correction 13: 1385:David A. Glanzer, "4.7 Polarity", 1000: 14: 1956: 1841:Carrier-suppressed return-to-zero 1729:Non-return-to-zero, space (NRZ-S) 1603: 1243:"Innovation in Constrained Codes" 1194:Carrier-Suppressed Return-to-Zero 667:is represented by no transition. 1694: 1573: This article incorporates 1568: 1355:from the original on 2022-10-09. 847:Differential Manchester encoding 614:stays low for the entire period 505:free-space optical communication 108: 66:differential Manchester encoding 1658:(digital baseband transmission) 1586:General Services Administration 1535: 1510: 1473: 1405:from the original on 2022-10-09 1846:Alternate-phase return-to-zero 1443: 1409: 1378: 1359: 1334: 1312: 1231: 1188:Alternate-Phase Return-to-Zero 702:Minimize transmission hardware 1: 1485:"Runlength-Limited Sequences" 1224: 1145:Modified frequency modulation 1815:Eight-to-fourteen modulation 1247:IEEE Communications Magazine 1157:Non-return-to-zero, inverted 1101:Eight-to-fourteen modulation 878:are detected, perhaps using 724: 7: 1206: 1200:Three of Six, Fiber Optical 827: 479:the line-coded signal (the 53:Encoding of 11011000100 in 10: 1961: 1897:Pulse-amplitude modulation 1004: 705:Facilitate synchronization 432:Common line encodings are 302:Capacity-approaching codes 27:pulse-amplitude modulation 1854: 1833: 1747: 1703: 1692: 1663: 1610:Line Coding Lecture No. 9 1450:Prakash C. Gupta (2013). 1163:Pulse-position modulation 594:Non-return-to-zero space 1940:Physical layer protocols 1892:Pulse modulation methods 1775:Alternate mark inversion 1141:: B8ZS, B6ZS, B3ZS, HDB3 1080:Alternate mark inversion 886:Run-length limited codes 843:alternate mark inversion 794:alternate mark inversion 580:Non-return-to-zero mark 452:Transmission and storage 1887:Ethernet physical layer 1489:Proceedings of the IEEE 1220:and bit synchronization 1218:Self-synchronizing code 1124:differential Manchester 239:Hierarchical modulation 1581:Federal Standard 1037C 1575:public domain material 1518:Kees Schouhamer Immink 1481:Kees Schouhamer Immink 695: 474:differential signaling 90: 79: 68: 57: 46: 34: 1903:Pulse-code modulation 1820:Delay/Miller encoding 1594: (in support of 1542:Dong, Jielin (2007). 1327:, Dubai: IEEE: 1537, 1032:shielded twisted pair 896:run-length limitation 790:paired disparity code 693: 653:keeps level constant 642:keeps level constant 419:communication channel 85: 74: 63: 52: 40: 24: 1909:Serial communication 1882:Digital transmission 1785:Coded mark inversion 1341:Jens Kröger (2014). 1267:K. Schouhamer Immink 1239:K. Schouhamer Immink 1086:Coded mark inversion 1022:Other considerations 851:coded mark inversion 770:constant-weight code 656:forces a transition 639:forces a transition 600:forces a transition 583:forces a transition 569:forces a high level 486:) undergoes further 1914:Category:Line codes 1795:Hybrid ternary code 1755:Conditioned diphase 1748:Extended line codes 1714:Return to zero (RZ) 1396:Fieldbus Foundation 1115:Hybrid ternary code 894:at the receiver, a 880:polarity switching 861:differential coding 772:. Each transmitted 572:forces a low level 462:data storage medium 458:transmission medium 55:Manchester encoding 1834:Optical line codes 1545:Network Dictionary 1528:. CE-41: 491–497. 1305:2014-05-21 at the 1182:Optical line codes 1151:Non-return-to-zero 1139:Modified AMI codes 1075:128b/130b encoding 995:de facto standards 936:telecommunications 899:recovery quality. 783:Interleaved 2 of 5 696: 564:Non-return-to-zero 407:telecommunications 161:Digital modulation 91: 80: 69: 58: 47: 35: 31:non-return-to-zero 1922: 1921: 1780:Modified AMI code 1671:Unipolar encoding 1495:(11): 1745–1759. 1483:(December 1990). 1038:Common line codes 918:. The first two, 747:running disparity 711:Achieve a target 688: 687: 470:transmission line 403: 402: 118:Analog modulation 77:biphase mark code 1952: 1810:64b/66b encoding 1698: 1676:Bipolar encoding 1649: 1642: 1635: 1626: 1625: 1599: 1593: 1588:. Archived from 1572: 1571: 1560: 1559: 1539: 1533: 1532: 1514: 1508: 1507: 1477: 1471: 1470: 1447: 1441: 1440: 1413: 1407: 1406: 1404: 1393: 1382: 1376: 1375: 1374: 1370: 1363: 1357: 1356: 1354: 1347: 1338: 1332: 1331: 1316: 1310: 1296: 1290: 1289: 1287: 1286: 1263: 1257: 1256: 1254: 1253: 1235: 1070:64b/66b encoding 963:hard disk drives 821:64b/66b encoding 713:spectral density 543: 542: 427:constrained code 421:or written to a 395: 388: 381: 112: 95: 94: 43:bipolar encoding 1960: 1959: 1955: 1954: 1953: 1951: 1950: 1949: 1925: 1924: 1923: 1918: 1850: 1829: 1805:8b/10b encoding 1743: 1699: 1690: 1659: 1653: 1606: 1578: 1569: 1567: 1564: 1563: 1556: 1540: 1536: 1515: 1511: 1501:10.1109/5.63306 1478: 1474: 1464: 1448: 1444: 1430: 1414: 1410: 1402: 1391: 1383: 1379: 1372: 1364: 1360: 1352: 1345: 1339: 1335: 1317: 1313: 1307:Wayback Machine 1297: 1293: 1284: 1282: 1264: 1260: 1251: 1249: 1236: 1232: 1227: 1209: 1184: 1179: 1120:Manchester code 1103:(EFM), used in 1065:8b/10b encoding 1040: 1024: 1009: 1003: 1001:Synchronization 888: 855:Miller encoding 830: 779:Manchester code 727: 608:Return to zero 454: 446:Manchester code 399: 262:Spread spectrum 93: 92: 17: 12: 11: 5: 1958: 1948: 1947: 1942: 1937: 1920: 1919: 1917: 1916: 1911: 1906: 1900: 1894: 1889: 1884: 1879: 1877:Digital signal 1874: 1869: 1864: 1855: 1852: 1851: 1849: 1848: 1843: 1837: 1835: 1831: 1830: 1828: 1827: 1822: 1817: 1812: 1807: 1802: 1800:6b/8b encoding 1797: 1792: 1790:MLT-3 encoding 1787: 1782: 1777: 1772: 1767: 1762: 1757: 1751: 1749: 1745: 1744: 1742: 1741: 1736: 1731: 1726: 1721: 1716: 1710: 1708: 1701: 1700: 1693: 1691: 1689: 1688: 1686:Mark and space 1683: 1678: 1673: 1667: 1665: 1661: 1660: 1652: 1651: 1644: 1637: 1629: 1623: 1622: 1617: 1612: 1605: 1604:External links 1602: 1601: 1600: 1592:on 2022-01-22. 1562: 1561: 1554: 1534: 1509: 1472: 1462: 1442: 1428: 1408: 1398:, p. 10, 1377: 1358: 1348:. p. 16. 1333: 1311: 1298:Karl Paulsen. 1291: 1258: 1229: 1228: 1226: 1223: 1222: 1221: 1215: 1213:Physical layer 1208: 1205: 1204: 1203: 1197: 1191: 1183: 1180: 1178: 1177: 1172: 1169:Return-to-zero 1166: 1160: 1154: 1148: 1142: 1136: 1134:MLT-3 encoding 1131: 1129:Mark and space 1126: 1117: 1112: 1107: 1098: 1089: 1083: 1077: 1072: 1067: 1062: 1060:6b/8b encoding 1057: 1052: 1047: 1041: 1039: 1036: 1023: 1020: 1007:Clock recovery 1005:Main article: 1002: 999: 940:recording head 892:clock recovery 887: 884: 883: 882: 872: 865:MLT-3 encoding 858: 829: 826: 825: 824: 805: 786: 743:DC coefficient 726: 723: 722: 721: 715: 709: 706: 703: 686: 685: 682: 679: 676: 672: 671: 668: 665: 662: 658: 657: 654: 651: 648: 644: 643: 640: 637: 634: 630: 629: 626: 623: 620: 616: 615: 612: 609: 606: 602: 601: 598: 595: 592: 588: 587: 584: 581: 578: 574: 573: 570: 567: 561: 557: 556: 553: 550: 547: 538: 537: 530: 519: 512: 509:remote control 501: 477: 453: 450: 423:storage medium 401: 400: 398: 397: 390: 383: 375: 372: 371: 370: 369: 364: 359: 354: 349: 344: 339: 334: 329: 324: 319: 314: 309: 304: 296: 295: 291: 290: 289: 288: 283: 278: 273: 265: 264: 258: 257: 256: 255: 250: 242: 241: 235: 234: 233: 232: 227: 222: 217: 212: 207: 202: 197: 192: 187: 182: 177: 172: 164: 163: 157: 156: 155: 154: 149: 144: 139: 134: 129: 121: 120: 114: 113: 105: 104: 88:MLT-3 encoding 86:An example of 75:An example of 64:An example of 41:An example of 19: 18: 15: 9: 6: 4: 3: 2: 1957: 1946: 1945:Coding theory 1943: 1941: 1938: 1936: 1933: 1932: 1930: 1915: 1912: 1910: 1907: 1904: 1901: 1898: 1895: 1893: 1890: 1888: 1885: 1883: 1880: 1878: 1875: 1873: 1870: 1868: 1865: 1863: 1860: 1857: 1856: 1853: 1847: 1844: 1842: 1839: 1838: 1836: 1832: 1826: 1823: 1821: 1818: 1816: 1813: 1811: 1808: 1806: 1803: 1801: 1798: 1796: 1793: 1791: 1788: 1786: 1783: 1781: 1778: 1776: 1773: 1771: 1768: 1766: 1763: 1761: 1758: 1756: 1753: 1752: 1750: 1746: 1740: 1737: 1735: 1732: 1730: 1727: 1725: 1722: 1720: 1717: 1715: 1712: 1711: 1709: 1707: 1702: 1697: 1687: 1684: 1682: 1681:On-off keying 1679: 1677: 1674: 1672: 1669: 1668: 1666: 1664:Main articles 1662: 1657: 1650: 1645: 1643: 1638: 1636: 1631: 1630: 1627: 1621: 1618: 1616: 1613: 1611: 1608: 1607: 1597: 1591: 1587: 1583: 1582: 1576: 1566: 1565: 1557: 1555:9781602670006 1551: 1547: 1546: 1538: 1531: 1527: 1523: 1519: 1513: 1506: 1502: 1498: 1494: 1490: 1486: 1482: 1476: 1469: 1465: 1463:9788120348646 1459: 1455: 1454: 1446: 1439: 1437: 1431: 1429:9781489921741 1425: 1421: 1420: 1412: 1401: 1397: 1390: 1389: 1381: 1368: 1362: 1351: 1344: 1337: 1330: 1326: 1322: 1315: 1308: 1304: 1301: 1295: 1280: 1276: 1272: 1268: 1262: 1248: 1244: 1240: 1234: 1230: 1219: 1216: 1214: 1211: 1210: 1201: 1198: 1195: 1192: 1189: 1186: 1185: 1176: 1173: 1170: 1167: 1164: 1161: 1158: 1155: 1152: 1149: 1146: 1143: 1140: 1137: 1135: 1132: 1130: 1127: 1125: 1121: 1118: 1116: 1113: 1111: 1108: 1106: 1105:compact discs 1102: 1099: 1097: 1093: 1090: 1087: 1084: 1081: 1078: 1076: 1073: 1071: 1068: 1066: 1063: 1061: 1058: 1056: 1053: 1051: 1048: 1046: 1043: 1042: 1035: 1033: 1029: 1028:optical fiber 1019: 1016: 1014: 1008: 998: 996: 992: 988: 984: 980: 976: 972: 968: 964: 959: 957: 953: 949: 943: 941: 937: 933: 929: 925: 921: 917: 913: 909: 905: 900: 897: 893: 890:For reliable 881: 877: 873: 870: 866: 862: 859: 856: 852: 848: 844: 840: 839: 838: 834: 822: 818: 814: 810: 806: 803: 799: 795: 791: 787: 784: 780: 775: 771: 767: 766: 765: 763: 758: 756: 752: 751:running total 748: 744: 740: 736: 732: 720: 716: 714: 710: 707: 704: 701: 700: 699: 692: 683: 680: 677: 674: 673: 669: 666: 663: 660: 659: 655: 652: 649: 646: 645: 641: 638: 635: 632: 631: 627: 624: 621: 618: 617: 613: 610: 607: 604: 603: 599: 596: 593: 590: 589: 585: 582: 579: 576: 575: 571: 568: 565: 562: 559: 558: 554: 551: 548: 545: 544: 541: 535: 531: 528: 524: 520: 517: 513: 510: 506: 502: 499: 498: 493: 489: 488:pulse shaping 485: 483: 478: 475: 471: 467: 466: 465: 463: 459: 449: 447: 443: 439: 435: 430: 428: 424: 420: 416: 412: 408: 396: 391: 389: 384: 382: 377: 376: 374: 373: 368: 365: 363: 360: 358: 355: 353: 350: 348: 345: 343: 340: 338: 335: 333: 330: 328: 325: 323: 320: 318: 315: 313: 310: 308: 305: 303: 300: 299: 298: 297: 293: 292: 287: 284: 282: 279: 277: 274: 272: 269: 268: 267: 266: 263: 260: 259: 254: 251: 249: 246: 245: 244: 243: 240: 237: 236: 231: 228: 226: 223: 221: 218: 216: 213: 211: 208: 206: 203: 201: 198: 196: 193: 191: 188: 186: 183: 181: 178: 176: 173: 171: 168: 167: 166: 165: 162: 159: 158: 153: 150: 148: 145: 143: 140: 138: 135: 133: 130: 128: 125: 124: 123: 122: 119: 116: 115: 111: 107: 106: 103: 100: 97: 96: 89: 84: 78: 73: 67: 62: 56: 51: 44: 39: 32: 28: 23: 1858: 1705: 1590:the original 1580: 1544: 1537: 1529: 1525: 1512: 1504: 1492: 1488: 1475: 1467: 1452: 1445: 1435: 1433: 1418: 1411: 1387: 1380: 1361: 1336: 1328: 1324: 1314: 1294: 1283:. Retrieved 1278: 1274: 1261: 1250:. Retrieved 1246: 1233: 1110:Hamming code 1025: 1017: 1010: 960: 944: 931: 930:and maximal 927: 923: 919: 915: 911: 907: 903: 901: 889: 835: 831: 759: 746: 738: 734: 731:DC component 728: 719:DC component 717:Eliminate a 697: 539: 534:optical disc 495: 480: 455: 431: 426: 410: 404: 367:Multiplexing 311: 307:Demodulation 1656:Line coding 1596:MIL-STD-188 1436:transparent 762:DC-balanced 415:transmitted 312:Line coding 29:with polar 1935:Line codes 1929:Categories 1734:Manchester 1706:line codes 1367:US 4387366 1285:2018-02-05 1252:2022-10-05 1225:References 1094:, used in 948:modulating 527:tape drive 523:hard drive 102:modulation 1859:See also: 1438:code. ... 1281:: 751–764 876:syncwords 809:scrambler 774:code word 741:, or the 735:disparity 725:Disparity 647:Biphase–S 633:Biphase–M 619:Biphase–L 497:RF signal 492:modulated 411:line code 45:, or AMI. 1872:Bit rate 1862:Baseband 1520:(1995). 1400:archived 1350:Archived 1303:Archived 1269:(2001). 1241:(2022). 1207:See also 956:bit slip 828:Polarity 755:unipolar 555:0 state 549:Comments 516:bar code 482:baseband 434:unipolar 294:See also 99:Passband 1202:(TS-FO) 1092:EFMPlus 991:EFMPLus 983:Blu-ray 749:is the 675:Bipolar 552:1 state 442:bipolar 417:down a 1825:TC-PAM 1704:Basic 1552:  1460:  1426:  1373:  1309:.2007. 1196:(CSRZ) 1190:(APRZ) 1175:TC-PAM 1159:(NRZI) 985:using 815:  807:Use a 798:8b/10b 788:Use a 768:Use a 737:, the 546:Signal 484:signal 444:, and 220:SC-FDE 1905:(PCM) 1899:(PAM) 1577:from 1403:(PDF) 1392:(PDF) 1353:(PDF) 1346:(PDF) 1165:(PPM) 1153:(NRZ) 1088:(CMI) 1082:(AMI) 1013:phase 979:Hi-MD 591:NRZ–S 577:NRZ–M 560:NRZ–L 438:polar 317:Modem 1867:Baud 1770:2B1Q 1765:4B5B 1760:4B3T 1550:ISBN 1458:ISBN 1424:ISBN 1171:(RZ) 1122:and 1096:DVDs 1055:4B5B 1050:4B3T 1045:2B1Q 989:and 981:and 952:data 950:the 869:NRZI 867:and 853:and 819:for 817:2615 802:4B3T 800:and 781:and 739:bias 409:, a 357:OFDM 286:THSS 281:FHSS 276:DSSS 190:MFSK 175:APSK 33:code 1497:doi 1030:or 987:EFM 971:DVD 813:RFC 525:or 460:or 405:In 362:FDM 352:ΔΣM 347:PWM 342:PDM 337:PCM 332:PAM 327:PoM 322:AnM 271:CSS 253:WDM 248:QAM 230:WDM 225:TCM 215:QAM 210:PSK 205:PPM 200:OOK 195:MSK 185:FSK 180:CPM 170:ASK 152:SSB 142:QAM 1931:: 1598:). 1584:. 1524:. 1503:. 1493:78 1491:. 1487:. 1466:. 1432:. 1394:, 1323:, 1279:19 1277:. 1273:. 1245:. 977:, 975:MD 973:, 969:, 967:CD 942:. 914:, 910:, 906:, 849:, 845:, 796:, 605:RZ 476:). 448:. 440:, 436:, 147:SM 137:PM 132:FM 127:AM 1648:e 1641:t 1634:v 1558:. 1499:: 1288:. 1255:. 932:k 928:d 924:n 922:/ 920:m 916:k 912:d 908:n 904:m 871:. 857:. 823:. 804:. 785:. 536:. 529:. 518:. 511:. 394:e 387:t 380:v

Index


pulse-amplitude modulation
non-return-to-zero

bipolar encoding

Manchester encoding

differential Manchester encoding

biphase mark code

MLT-3 encoding
Passband
modulation

Analog modulation
AM
FM
PM
QAM
SM
SSB
Digital modulation
ASK
APSK
CPM
FSK
MFSK
MSK

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.