Knowledge

Schwinger limit

Source đź“ť

1587: 20: 370:– that the sum of any two solutions to Maxwell's equations is another solution to Maxwell's equations. For example, two intersecting beams of light should simply add together their electric fields and pass right through each other. Thus Maxwell's equations predict the impossibility of any but trivial 400:
where its energy must be at minimal value. However, two waves or two photons not traveling in the same direction always have a minimum combined energy in their center-of-momentum frame, and it is this energy and the electric field strengths associated with it, which determine particle–antiparticle
195: 447:, the search of which is the primary goal of PVLAS and several similar experiments. ATLAS observed more events than expected, potentially evidence that the cross section is larger than predicted by the Standard Model, but the excess is not yet statistically significant. 300: 458:(SEL) is another laser facility under construction which should be powerful enough to observe the effect. Such an experiment, in which ultra-intense light causes pair production, has been described in the popular media as creating a " 454:–Ultra High Field Facility, which will study light at the intensity frontier, is likely to remain well below the Schwinger limit although it may still be possible to observe some nonlinear optical effects. The 89: 201: 392:
A single plane wave is insufficient to cause nonlinear effects, even in QED. The basic reason for this is that a single plane wave of a given energy may always be viewed in a different
408:
in vacuum is an active area of experimental research, with current or planned technology beginning to approach the Schwinger limit. It has already been observed through
1326: 443:, well in excess of the Schwinger limit. Observation of a cross section larger or smaller than that predicted by the Standard Model could signify new physics such as 947:
G. ZAVATTINI; U. GASTALDI; R. PENGO; G. RUOSO; F. DELLA VALLE; E. MILOTTI (20 June 2012). "Measuring the magnetic birefringence of vacuum: the PVLAS experiment".
764:
Stepan S Bulanov; Timur Esirkepov; Alexander G. Thomas; James K Koga; Sergei V Bulanov (2010). "On the Schwinger limit attainability with extreme power lasers".
343:. These are enormous field strengths. Such an electric field is capable of accelerating a proton from rest to the maximum energy attained by protons at the 416:
Experiment 144. However, the direct effects in elastic scattering have not been observed. As of 2012, the best constraint on the elastic photon–photon
896:
C. Bamber; S. J. Boege; T. Koffas; et al. (1999). "Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses".
1362: 439:
at the LHC announced the first definitive observation of photon–photon scattering, observed in lead ion collisions that produced fields as large as
1100:
G. Aad; et al. (31 July 2019). "Observation of Light-by-Light Scattering in Ultraperipheral Pb+Pb Collisions with the ATLAS Detector".
431:
Proposals were made to measure elastic light-by-light scattering using the strong electromagnetic fields of the hadrons collided at the
190:{\displaystyle E_{\text{c}}={\frac {m_{\text{e}}^{2}c^{3}}{q_{\text{e}}\hbar }}\simeq 1.32\times 10^{18}\,\mathrm {V} /\mathrm {m} } 1301: 1223:
Gagik Yu Kryuchkyan; Karen Z. Hatsagortsyan (2011). "Bragg Scattering of Light in Vacuum Structured by Strong Periodic Fields".
506:
F. Sauter (1931). "Ăśber das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs".
1355: 377:. In QED, however, non-elastic photon–photon scattering becomes possible when the combined energy is large enough to create 1330: 295:{\displaystyle B_{\text{c}}={\frac {m_{\text{e}}^{2}c^{2}}{q_{\text{e}}\hbar }}\simeq 4.41\times 10^{9}\,\mathrm {T} ,} 1590: 1008:
David d'Enterria; Gustavo G da Silveira (2013). "Observing Light-by-Light Scattering at the Large Hadron Collider".
1617: 1462: 1348: 385:
in the adjacent figure. This creates nonlinear effects that are approximately described by Euler and Heisenberg's
1385: 386: 396:, where it has less energy (the same is the case for a single photon). A single wave or photon does not have a 1086: 451: 374: 363: 1512: 1395: 1612: 1533: 1472: 1400: 481: 455: 417: 397: 1622: 1426: 1371: 1102: 367: 40: 359: 1548: 763: 344: 48: 1164: 1242: 1189: 1121: 1027: 905: 846: 714: 650: 581: 515: 1558: 986: 742: 8: 1502: 569: 486: 71:, who derived the leading nonlinear corrections to the fields and calculated the rate of 64: 32: 1246: 1193: 1125: 1031: 909: 850: 718: 654: 585: 519: 1568: 1543: 1467: 1274: 1232: 1205: 1179: 1145: 1111: 1059: 1017: 956: 807: 773: 676: 605: 539: 393: 371: 1528: 1497: 1266: 1258: 1209: 1149: 1137: 1051: 1043: 974: 921: 870: 862: 799: 791: 730: 680: 668: 609: 597: 565: 543: 531: 332: 60: 1278: 1063: 811: 1563: 1446: 1282: 1254: 1250: 1197: 1133: 1129: 1067: 1039: 1035: 990: 982: 966: 929: 913: 878: 854: 815: 787: 783: 746: 738: 722: 684: 658: 613: 589: 547: 523: 476: 471: 436: 405: 72: 68: 52: 1507: 1390: 382: 378: 340: 55:. The limit was first derived in one of QED's earliest theoretical successes by 24: 858: 1538: 917: 425: 321: 80: 76: 1201: 970: 1606: 1262: 1047: 978: 925: 866: 795: 734: 672: 634: 601: 535: 348: 347:
in only approximately 5 micrometers. The magnetic field is associated with
1270: 1141: 1055: 895: 874: 803: 726: 56: 19: 1340: 1286: 1071: 994: 933: 882: 832: 819: 750: 688: 617: 551: 75:
in a strong electric field. The limit is typically reported as a maximum
1487: 1477: 1441: 1416: 1222: 1007: 622: 1553: 1482: 946: 593: 527: 31:) for photon–photon scattering; one photon scatters from the transient 663: 638: 424:, which reported an upper limit far above the level predicted by the 834: 705:
J. Schwinger (1951). "On Gauge Invariance and Vacuum Polarization".
564: 1436: 1421: 1116: 352: 313: 1237: 1184: 1022: 961: 778: 572:(1936). "Folgerungen aus der Diracschen Theorie des Positrons". 1431: 459: 67:. The limit, however, is commonly named in the literature for 444: 421: 772:(22) (105th ed.) (published 24 November 2010): 220407. 580:(11–12) (98th ed.) (published November 1936): 714–732. 514:(11–12) (82nd ed.) (published November 1931): 742–764. 845:(17) (76th ed.) (published 22 April 1996): 3116–3119. 833:
C. Bula; K. T. McDonald; E. J. Prebys; et al. (1996).
413: 1016:(8) (111th ed.) (published 22 August 2013): 080405. 432: 904:(9) (60th ed.) (published 8 October 1999): 092004. 835:"Observation of Nonlinear Effects in Compton Scattering" 1231:(5) (107th ed.) (published 27 July 2011): 053604. 204: 92: 16:
Energy scale at which vacuum effects become important
713:(5) (82nd ed.) (published June 1951): 664–679. 649:(11) (2nd ed.) (published November 2006): 721. 1084: 294: 189: 1604: 1099: 401:creation, and associated scattering phenomena. 1324: 404:Photon–photon scattering and other effects of 1356: 633: 704: 1370: 1087:"ATLAS observes light scattering off light" 700: 698: 1363: 1349: 1236: 1183: 1172:International Journal of Modern Physics A 1115: 1021: 960: 949:International Journal of Modern Physics A 777: 662: 505: 283: 171: 1327:"A Laser to Give the Universe a Hernia?" 1302:"This Laser Could Rip Apart Empty Space" 1165:"Strong-Field QED and High Power Lasers" 695: 387:nonlinear variant of Maxwell's equations 18: 1605: 1162: 83:before nonlinearity for the vacuum of 1344: 1299: 1085:ATLAS Collaboration (17 March 2019). 13: 639:"Thesis: Past the Schwinger limit" 381:spontaneously, illustrated by the 285: 183: 173: 14: 1634: 1591:Template:Quantum mechanics topics 351:of the vacuum and is exceeded on 258: 146: 73:electron–positron pair production 59:in 1931 and discussed further by 1586: 1585: 1463:Anomalous magnetic dipole moment 1329:. Discovery News. Archived from 1318: 1293: 1216: 1156: 1093: 1078: 379:virtual electron–positron pairs 1255:10.1103/PhysRevLett.107.053604 1134:10.1103/PhysRevLett.123.052001 1040:10.1103/PhysRevLett.111.080405 1001: 940: 889: 826: 788:10.1103/PhysRevLett.105.220407 757: 627: 558: 499: 1: 492: 364:linear differential equations 7: 1386:Euler–Heisenberg Lagrangian 859:10.1103/PhysRevLett.76.3116 465: 47:is a scale above which the 10: 1639: 918:10.1103/PhysRevD.60.092004 33:vacuum charge fluctuations 1577: 1521: 1455: 1409: 1401:Path integral formulation 1378: 1202:10.1142/S0217751X1260010X 971:10.1142/S0217751X12600172 366:. This implies – by the 358:In vacuum, the classical 1569:Photon-photon scattering 456:Station of Extreme Light 418:scattering cross section 398:center-of-momentum frame 375:photon–photon scattering 1618:Quantum electrodynamics 1513:Ward–Takahashi identity 1396:Gupta–Bleuler formalism 1372:Quantum electrodynamics 1103:Physical Review Letters 368:superposition principle 41:quantum electrodynamics 727:10.1103/PhysRev.82.664 574:Zeitschrift fĂĽr Physik 508:Zeitschrift fĂĽr Physik 296: 191: 51:is expected to become 36: 1534:Breit–Wheeler process 1473:Klein–Nishina formula 482:Sokolov–Ternov effect 345:Large Hadron Collider 297: 192: 49:electromagnetic field 22: 1333:on November 3, 2011. 1300:Berboucha, Meriame. 450:The planned, funded 202: 90: 1549:DelbrĂĽck scattering 1503:Vacuum polarization 1427:Faddeev–Popov ghost 1325:I. O'Neill (2011). 1247:2011PhRvL.107e3604K 1194:2012IJMPA..2760010H 1163:Heinzl, T. (2012). 1126:2019PhRvL.123e2001A 1032:2013PhRvL.111h0405D 910:1999PhRvD..60i2004B 851:1996PhRvL..76.3116B 719:1951PhRv...82..664S 655:2006NatPh...2..721B 623:English translation 586:1936ZPhy...98..714H 570:Hans Heinrich Euler 520:1931ZPhy...69..742S 487:Vacuum polarization 360:Maxwell's equations 312:is the mass of the 235: 123: 65:Hans Heinrich Euler 1544:Compton scattering 594:10.1007/BF01343663 528:10.1007/BF01339461 292: 221: 187: 109: 37: 1600: 1599: 1559:Møller scattering 1529:Bhabha scattering 1498:Uehling potential 1447:Virtual particles 566:Werner Heisenberg 333:elementary charge 262: 255: 228: 212: 150: 143: 116: 100: 61:Werner Heisenberg 1630: 1613:Particle physics 1589: 1588: 1564:Schwinger effect 1365: 1358: 1351: 1342: 1341: 1335: 1334: 1322: 1316: 1315: 1313: 1312: 1297: 1291: 1290: 1240: 1220: 1214: 1213: 1187: 1169: 1160: 1154: 1153: 1119: 1097: 1091: 1090: 1082: 1076: 1075: 1025: 1005: 999: 998: 964: 944: 938: 937: 893: 887: 886: 830: 824: 823: 781: 761: 755: 754: 702: 693: 692: 666: 664:10.1038/nphys448 631: 625: 621: 562: 556: 555: 503: 477:Schwinger effect 472:Julian Schwinger 462:" in spacetime. 442: 437:ATLAS experiment 435:. In 2019, the 406:nonlinear optics 301: 299: 298: 293: 288: 282: 281: 263: 261: 257: 256: 253: 246: 245: 244: 234: 229: 226: 219: 214: 213: 210: 196: 194: 193: 188: 186: 181: 176: 170: 169: 151: 149: 145: 144: 141: 134: 133: 132: 122: 117: 114: 107: 102: 101: 98: 69:Julian Schwinger 63:and his student 1638: 1637: 1633: 1632: 1631: 1629: 1628: 1627: 1603: 1602: 1601: 1596: 1595: 1573: 1517: 1508:Vertex function 1493:Schwinger limit 1468:Furry's theorem 1451: 1405: 1391:Feynman diagram 1374: 1369: 1339: 1338: 1323: 1319: 1310: 1308: 1298: 1294: 1225:Phys. Rev. Lett 1221: 1217: 1167: 1161: 1157: 1098: 1094: 1083: 1079: 1010:Phys. Rev. Lett 1006: 1002: 955:(15): 1260017. 945: 941: 894: 890: 839:Phys. Rev. Lett 831: 827: 766:Phys. Rev. Lett 762: 758: 703: 696: 632: 628: 563: 559: 504: 500: 495: 468: 440: 394:reference frame 383:Feynman diagram 341:Planck constant 339:is the reduced 330: 311: 284: 277: 273: 252: 248: 247: 240: 236: 230: 225: 220: 218: 209: 205: 203: 200: 199: 182: 177: 172: 165: 161: 140: 136: 135: 128: 124: 118: 113: 108: 106: 97: 93: 91: 88: 87: 45:Schwinger limit 25:Feynman diagram 17: 12: 11: 5: 1636: 1626: 1625: 1623:Quantum optics 1620: 1615: 1598: 1597: 1594: 1593: 1579: 1578: 1575: 1574: 1572: 1571: 1566: 1561: 1556: 1551: 1546: 1541: 1539:Bremsstrahlung 1536: 1531: 1525: 1523: 1519: 1518: 1516: 1515: 1510: 1505: 1500: 1495: 1490: 1485: 1480: 1475: 1470: 1465: 1459: 1457: 1453: 1452: 1450: 1449: 1444: 1439: 1434: 1429: 1424: 1419: 1413: 1411: 1407: 1406: 1404: 1403: 1398: 1393: 1388: 1382: 1380: 1376: 1375: 1368: 1367: 1360: 1353: 1345: 1337: 1336: 1317: 1292: 1215: 1155: 1092: 1077: 1000: 939: 888: 825: 756: 694: 643:Nature Physics 626: 557: 497: 496: 494: 491: 490: 489: 484: 479: 474: 467: 464: 426:Standard Model 362:are perfectly 328: 322:speed of light 309: 303: 302: 291: 287: 280: 276: 272: 269: 266: 260: 251: 243: 239: 233: 224: 217: 208: 197: 185: 180: 175: 168: 164: 160: 157: 154: 148: 139: 131: 127: 121: 112: 105: 96: 81:magnetic field 77:electric field 15: 9: 6: 4: 3: 2: 1635: 1624: 1621: 1619: 1616: 1614: 1611: 1610: 1608: 1592: 1584: 1581: 1580: 1576: 1570: 1567: 1565: 1562: 1560: 1557: 1555: 1552: 1550: 1547: 1545: 1542: 1540: 1537: 1535: 1532: 1530: 1527: 1526: 1524: 1520: 1514: 1511: 1509: 1506: 1504: 1501: 1499: 1496: 1494: 1491: 1489: 1486: 1484: 1481: 1479: 1476: 1474: 1471: 1469: 1466: 1464: 1461: 1460: 1458: 1454: 1448: 1445: 1443: 1440: 1438: 1435: 1433: 1430: 1428: 1425: 1423: 1420: 1418: 1415: 1414: 1412: 1408: 1402: 1399: 1397: 1394: 1392: 1389: 1387: 1384: 1383: 1381: 1377: 1373: 1366: 1361: 1359: 1354: 1352: 1347: 1346: 1343: 1332: 1328: 1321: 1307: 1303: 1296: 1288: 1284: 1280: 1276: 1272: 1268: 1264: 1260: 1256: 1252: 1248: 1244: 1239: 1234: 1230: 1226: 1219: 1211: 1207: 1203: 1199: 1195: 1191: 1186: 1181: 1177: 1173: 1166: 1159: 1151: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1118: 1113: 1110:(5): 052001. 1109: 1105: 1104: 1096: 1088: 1081: 1073: 1069: 1065: 1061: 1057: 1053: 1049: 1045: 1041: 1037: 1033: 1029: 1024: 1019: 1015: 1011: 1004: 996: 992: 988: 984: 980: 976: 972: 968: 963: 958: 954: 950: 943: 935: 931: 927: 923: 919: 915: 911: 907: 903: 899: 892: 884: 880: 876: 872: 868: 864: 860: 856: 852: 848: 844: 840: 836: 829: 821: 817: 813: 809: 805: 801: 797: 793: 789: 785: 780: 775: 771: 767: 760: 752: 748: 744: 740: 736: 732: 728: 724: 720: 716: 712: 708: 701: 699: 690: 686: 682: 678: 674: 670: 665: 660: 656: 652: 648: 644: 640: 636: 635:Mark Buchanan 630: 624: 619: 615: 611: 607: 603: 599: 595: 591: 587: 583: 579: 576:(in German). 575: 571: 567: 561: 553: 549: 545: 541: 537: 533: 529: 525: 521: 517: 513: 510:(in German). 509: 502: 498: 488: 485: 483: 480: 478: 475: 473: 470: 469: 463: 461: 457: 453: 448: 446: 438: 434: 429: 427: 423: 419: 415: 411: 407: 402: 399: 395: 390: 388: 384: 380: 376: 373: 369: 365: 361: 356: 354: 350: 349:birefringence 346: 342: 338: 334: 327: 323: 319: 315: 308: 289: 278: 274: 270: 267: 264: 249: 241: 237: 231: 222: 215: 206: 198: 178: 166: 162: 158: 155: 152: 137: 129: 125: 119: 110: 103: 94: 86: 85: 84: 82: 78: 74: 70: 66: 62: 58: 54: 50: 46: 42: 35:of the other. 34: 30: 26: 21: 1582: 1492: 1331:the original 1320: 1309:. Retrieved 1305: 1295: 1228: 1224: 1218: 1175: 1171: 1158: 1107: 1101: 1095: 1080: 1013: 1009: 1003: 952: 948: 942: 901: 898:Phys. Rev. D 897: 891: 842: 838: 828: 769: 765: 759: 710: 706: 646: 642: 629: 577: 573: 560: 511: 507: 501: 449: 430: 420:belonged to 412:channels in 409: 403: 391: 357: 336: 325: 317: 306: 304: 57:Fritz Sauter 44: 38: 28: 1488:Self-energy 1478:Landau pole 1442:Positronium 1417:Dual photon 441:10 V/m 324:in vacuum, 43:(QED), the 29:box diagram 1607:Categories 1554:Lamb shift 1483:QED vacuum 1311:2021-02-18 1117:1904.03536 987:1247.81603 743:0043.42201 493:References 1583:See also: 1522:Processes 1410:Particles 1379:Formalism 1287:Q27347258 1263:0031-9007 1238:1102.4013 1210:119198507 1185:1111.5192 1150:260811101 1072:Q85643997 1048:0031-9007 1023:1305.7142 995:Q62555414 979:0217-751X 962:1201.2309 934:Q27441586 926:1550-7998 883:Q27450530 867:0031-9007 820:Q27447776 796:0031-9007 779:1007.4306 751:Q21709192 735:0031-899X 707:Phys. Rev 689:Q63918589 681:119831515 673:1745-2473 618:Q28794438 610:120354480 602:1434-6001 552:Q60698281 544:122120733 536:1434-6001 410:inelastic 353:magnetars 271:× 265:≃ 259:ℏ 159:× 153:≃ 147:ℏ 53:nonlinear 1456:Concepts 1437:Positron 1422:Electron 1283:Wikidata 1279:25991919 1271:21867070 1142:31491300 1068:Wikidata 1064:43797550 1056:24010419 991:Wikidata 930:Wikidata 879:Wikidata 875:10060879 816:Wikidata 812:36857911 804:21231373 747:Wikidata 685:Wikidata 637:(2006). 614:Wikidata 548:Wikidata 466:See also 314:electron 1243:Bibcode 1190:Bibcode 1122:Bibcode 1028:Bibcode 906:Bibcode 847:Bibcode 715:Bibcode 651:Bibcode 582:Bibcode 516:Bibcode 372:elastic 331:is the 320:is the 1432:Photon 1306:Forbes 1285:  1277:  1269:  1261:  1208:  1178:(15). 1148:  1140:  1070:  1062:  1054:  1046:  993:  985:  977:  932:  924:  881:  873:  865:  818:  810:  802:  794:  749:  741:  733:  687:  679:  671:  616:  608:  600:  550:  542:  534:  460:hernia 445:axions 335:, and 305:where 1275:S2CID 1233:arXiv 1206:S2CID 1180:arXiv 1168:(PDF) 1146:S2CID 1112:arXiv 1060:S2CID 1018:arXiv 957:arXiv 808:S2CID 774:arXiv 677:S2CID 606:S2CID 540:S2CID 422:PVLAS 1267:PMID 1259:ISSN 1138:PMID 1052:PMID 1044:ISSN 975:ISSN 922:ISSN 871:PMID 863:ISSN 800:PMID 792:ISSN 731:ISSN 669:ISSN 598:ISSN 532:ISSN 414:SLAC 268:4.41 156:1.32 1251:doi 1229:107 1198:doi 1130:doi 1108:123 1036:doi 1014:111 983:Zbl 967:doi 914:doi 855:doi 784:doi 770:105 739:Zbl 723:doi 659:doi 590:doi 524:doi 452:ELI 433:LHC 79:or 39:In 1609:: 1304:. 1281:. 1273:. 1265:. 1257:. 1249:. 1241:. 1227:. 1204:. 1196:. 1188:. 1176:27 1174:. 1170:. 1144:. 1136:. 1128:. 1120:. 1106:. 1066:. 1058:. 1050:. 1042:. 1034:. 1026:. 1012:. 989:. 981:. 973:. 965:. 953:27 951:. 928:. 920:. 912:. 902:60 900:. 877:. 869:. 861:. 853:. 843:76 841:. 837:. 814:. 806:. 798:. 790:. 782:. 768:. 745:. 737:. 729:. 721:. 711:82 709:. 697:^ 683:. 675:. 667:. 657:. 645:. 641:. 612:. 604:. 596:. 588:. 578:98 568:; 546:. 538:. 530:. 522:. 512:69 428:. 389:. 355:. 316:, 275:10 167:18 163:10 23:A 1364:e 1357:t 1350:v 1314:. 1289:. 1253:: 1245:: 1235:: 1212:. 1200:: 1192:: 1182:: 1152:. 1132:: 1124:: 1114:: 1089:. 1074:. 1038:: 1030:: 1020:: 997:. 969:: 959:: 936:. 916:: 908:: 885:. 857:: 849:: 822:. 786:: 776:: 753:. 725:: 717:: 691:. 661:: 653:: 647:2 620:. 592:: 584:: 554:. 526:: 518:: 337:ħ 329:e 326:q 318:c 310:e 307:m 290:, 286:T 279:9 254:e 250:q 242:2 238:c 232:2 227:e 223:m 216:= 211:c 207:B 184:m 179:/ 174:V 142:e 138:q 130:3 126:c 120:2 115:e 111:m 104:= 99:c 95:E 27:(

Index


Feynman diagram
vacuum charge fluctuations
quantum electrodynamics
electromagnetic field
nonlinear
Fritz Sauter
Werner Heisenberg
Hans Heinrich Euler
Julian Schwinger
electron–positron pair production
electric field
magnetic field
electron
speed of light
elementary charge
Planck constant
Large Hadron Collider
birefringence
magnetars
Maxwell's equations
linear differential equations
superposition principle
elastic
photon–photon scattering
virtual electron–positron pairs
Feynman diagram
nonlinear variant of Maxwell's equations
reference frame
center-of-momentum frame

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑