Knowledge

Two-photon physics

Source 📝

300: 31: 292: 69:. Normally, beams of light pass through each other unperturbed. Inside an optical material, and if the intensity of the beams is high enough, the beams may affect each other through a variety of non-linear effects. In pure vacuum, some weak scattering of light by light exists as well. Also, above some threshold of this center-of-mass 121:
at merely intergalactic distances. An analogy would be light traveling through a fog: at near distances a light source is more clearly visible than at long distances due to the scattering of light by fog particles. Similarly, the further a gamma-ray travels through the universe, the more likely it
275:
since they carry no charge and no 2 fermion + 2 boson vertex exists due to requirements of renormalizability, but they can interact through higher-order processes or couple directly to each other in a vertex with an additional two W bosons: a photon can, within the bounds of the uncertainty
129:
At those energies and distances, very high energy gamma-ray photons have a significant probability of a photon-photon interaction with a low energy background photon from the extragalactic background light resulting in either the creation of particle-antiparticle pairs via direct
728:
CMS Collaboration†; TOTEM Collaboration‡; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Escalante Del Valle, A.; FrĂŒhwirth, R.; Jeitler, M.; Krammer, N.; Lechner, L.; Liko, D.; Mikulec, I.; Pitters, F. M. (2022-06-28).
227:
interaction much more visible. In UPCs, because the ions are heavily charged, it is possible to have two independent interactions between a single ion pair, such as production of two electron-positron pairs. UPCs are studied with the
173:
Frequently, photon-photon interactions will be studied via ultraperipheral collisions (UPCs) of heavy ions, such as gold or lead. These are collisions in which the colliding nuclei do not touch each other; i.e., the
134:
or (less often) by photon-photon scattering events that lower the incident photon energies. This renders the universe effectively opaque to very high energy photons at intergalactic to cosmological distances.
284:–antifermion pair, to either of which the other photon can couple. This fermion pair can be leptons or quarks. Thus, two-photon physics experiments can be used as ways to study the 681: 235:
Light-by-light scattering, as predicted in, can be studied using the strong electromagnetic fields of the hadrons collided at the LHC, it has first been seen in 2016 by the
225: 147:, where the accelerated particles are not the photons themselves but charged particles that will radiate photons. The most significant studies so far were performed at the 780:
Zavattini, G.; Gastaldi, U.; Pengo, R.; Ruoso, G.; Valle, F. Della; Milotti, E. (20 June 2012). "Measuring the magnetic birefringence of vacuum: the PVLAS experiment".
1176: 195: 731:"First Search for Exclusive Diphoton Production at High Mass with Tagged Protons in Proton-Proton Collisions at $ \sqrt{s}=13\text{ }\text{ }\mathrm{TeV}$ " 166:
is large, one or both electrons can be detected; this is called tagging. The other particles that are created in the interaction are tracked by large
467:* Electromagnetic physics at relativistic heavy ion colliders: for worse and for better, G. Baur and C.A.Bertulani, Nucl. Phys. A 505 (1989) 835 649:
Collaboration, CMS (2019). "Evidence for light-by-light scattering and searches for axion-like particles in ultraperipheral PbPb collisions at
17: 1163: 940:
Bardeen, William A.; Buras, Andrzej J. (1 June 1979). "Higher-order asymptotic-freedom corrections to photon-photon scattering".
477:
d'Enterria, David; da Silveira, Gustavo G. (22 August 2013). "Observing Light-by-Light Scattering at the Large Hadron Collider".
1201: 148: 458:* Relativistic Heavy Ion Physics without Nuclear Contact, C.A. Bertulani and G. Baur, Physics Today, March 1994, pg. 22. 363:
For the latter two cases, the scale of the interaction is such as the strong coupling constant is large. This is called
255:. Observation of a cross section larger than that predicted by the Standard Model could signify new physics such as 94:
Photon–photon interactions limit the spectrum of observed gamma-ray photons at moderate cosmological distances to a
1196: 1173: 381:
radiation has been considered as a method to generate polarized high energy photon beams for gamma–gamma colliders.
243:
collaboration., including at high two-photon energies. The best previous constraint on the elastic photon–photon
123: 840:
Igor P. Ivanov1, Valeriy G. Serbo2,3, Pengming Zhang4,5, Fate of the Landau-Yang theorem for twisted photons,
359:: Both target and probe photon have formed a vector meson. This results in an interaction between two hadrons. 271:
it can be found that photons cannot couple directly to each other and a fermionic field according to the
652: 1191: 399: 339: 303:
Creation of a fermion–antifermion pair through the direct two-photon interaction. These drawings are
207: 299: 244: 1032:
Achard, P.; et al. (L3 collaboration) (2005). "Measurement of the photon structure function F
897:
Witten, Edward (1977). "Anomalous cross section for photon-photon scattering in gauge theories".
268: 62: 326:–antilepton pair is created, this process involves only quantum electrodynamics (QED), but if a 1097:
Nisius, Richard (2000). "The photon structure from deep inelastic electron–photon scattering".
365: 331: 394: 378: 240: 144: 1168: 1160: 1116: 1055: 996: 949: 906: 863: 799: 565: 496: 431: 163: 8: 272: 43: 1120: 1059: 1000: 953: 910: 867: 803: 569: 500: 435: 1140: 1106: 1079: 1045: 823: 789: 742: 710: 692: 589: 555: 528: 486: 198: 180: 1128: 201:
between the quarks composing the nuclei is thus greatly suppressed, making the weaker
1144: 1132: 1083: 1071: 1014: 965: 922: 918: 879: 875: 844:"What is actually forbidden is production of a spin-1 particle by such a photon pair" 827: 815: 762: 714: 581: 520: 512: 167: 593: 532: 259:, the search of which is the primary goal of PVLAS and several similar experiments. 1124: 1067: 1063: 1004: 957: 914: 871: 807: 757: 752: 730: 706: 702: 577: 573: 546:
Michael Schirber (22 Aug 2013). "Synopsis: Spotlight on Photon-Photon Scattering".
508: 504: 439: 285: 277: 236: 202: 175: 58: 985:"Erratum: Higher-order asymptotic-freedom corrections to photon-photon scattering" 727: 389: 384: 304: 156: 131: 78: 35: 607: 252: 811: 1185: 1136: 1075: 1018: 1009: 984: 969: 926: 883: 819: 516: 95: 961: 854:
Walsh, T.F.; Zerwas, P. (1973). "Two-photon processes in the parton model".
444: 419: 766: 585: 524: 350: 30: 420:"Photon–Photon Interactions and the Opacity of the Universe in Gamma Rays" 342:, experimentally analyzed in deep-inelastic electron–photon scattering. 322:: The photon couples directly to a quark inside the target photon. If a 1111: 1050: 841: 122:
is to be scattered by an interaction with a low energy photon from the
103: 42:) for photon–photon scattering: one photon scatters from the transient 27:
Branch of particle physics concerning interactions between two photons
633: 251:, which reported an upper limit far above the level predicted by the 229: 634:
Light-by-light scattering in ultra-peripheral Pb+Pb collisions at √s
747: 697: 159: 794: 560: 491: 330:–antiquark pair is created, it involves both QED and perturbative 281: 66: 323: 74: 70: 338:
The intrinsic quark content of the photon is described by the
291: 327: 256: 248: 113: 353:. The probing photon couples to a constituent of this meson. 288:, or, somewhat metaphorically, what is "inside" the photon. 976: 779: 152: 1161:
Lauber,J A, 1997, A small tutorial in gamma–gamma Physics
476: 118: 99: 89: 983:
Bardeen, William A.; Buras, Andrzej J. (1 March 1980).
197:
is larger than the sum of the radii of the nuclei. The
369:(VMD) and has to be modelled in non-perturbative QCD. 295:
The photon fluctuates into a fermion–antifermion pair.
655: 210: 183: 143:Two-photon physics can be studied with high-energy 675: 219: 189: 470: 1183: 545: 948:(1). American Physical Society (APS): 166–178. 788:(15). World Scientific Pub Co Pte Lt: 1260017. 170:to reconstruct the physics of the interaction. 485:(8). American Physical Society (APS): 080405. 648: 349:: The quark pair of the target photon form a 995:(7). American Physical Society (APS): 2041. 982: 939: 638:=5.02 TeV with the ATLAS detector at the LHC 417: 239:collaboration and was then confirmed by the 853: 117:. This limit reaches up to around 20  1110: 1049: 1008: 793: 782:International Journal of Modern Physics A 756: 746: 696: 559: 490: 443: 298: 290: 29: 608:"ATLAS spots light-by-light scattering" 311:There are three interaction processes: 14: 1184: 1096: 1031: 896: 418:Franceschini, Alberto (14 May 2021). 90:Cosmological/intergalactic gamma rays 842:https://arxiv.org/pdf/1904.12110.pdf 24: 73:of the system of the two photons, 25: 1213: 1154: 676:{\displaystyle {\sqrt {s_{NN}}}} 149:Large Electron–Positron Collider 1090: 1025: 933: 890: 847: 834: 773: 1068:10.1016/j.physletb.2005.07.028 1036:with the L3 detector at LEP". 758:10.1103/PhysRevLett.129.011801 721: 707:10.1016/j.physletb.2019.134826 642: 626: 600: 578:10.1103/PhysRevLett.111.080405 539: 509:10.1103/physrevlett.111.080405 461: 452: 411: 220:{\displaystyle \gamma \gamma } 138: 124:extragalactic background light 106:of greater than approximately 13: 1: 1202:Experimental particle physics 1129:10.1016/s0370-1573(99)00115-5 405: 919:10.1016/0550-3213(77)90038-4 876:10.1016/0370-2693(73)90520-0 276:principle, fluctuate into a 262: 84: 7: 905:(2). Elsevier BV: 189–202. 862:(2). Elsevier BV: 195–198. 372: 10: 1218: 1174:Two-photon physics at CESR 44:vacuum charge fluctuations 1169:Two-photon physics at LEP 812:10.1142/s0217751x12600172 340:photon structure function 1010:10.1103/physrevd.21.2041 245:scattering cross section 18:Photon–photon scattering 1197:Quantum electrodynamics 962:10.1103/physrevd.20.166 735:Physical Review Letters 548:Physical Review Letters 479:Physical Review Letters 445:10.3390/universe7050146 269:quantum electrodynamics 677: 366:vector meson dominance 332:quantum chromodynamics 308: 296: 221: 191: 162:transfer and thus the 47: 678: 632:ATLAS Collaboration: 400:Breit–Wheeler process 302: 294: 222: 192: 145:particle accelerators 98:below around 20  33: 653: 208: 181: 1121:2000PhR...332..165N 1060:2005PhLB..622..249A 1001:1980PhRvD..21.2041B 954:1979PhRvD..20..166B 911:1977NuPhB.120..189W 868:1973PhLB...44..195W 804:2012IJMPA..2760017Z 570:2013PhRvL.111h0405D 501:2013PhRvL.111h0405D 436:2021Univ....7..146F 395:DelbrĂŒck scattering 273:Landau-Yang theorem 61:that describes the 55:gamma–gamma physics 673: 309: 297: 217: 199:strong interaction 187: 51:Two-photon physics 48: 1038:Physics Letters B 989:Physical Review D 942:Physical Review D 899:Nuclear Physics B 856:Physics Letters B 671: 232:simulation code. 190:{\displaystyle b} 57:, is a branch of 16:(Redirected from 1209: 1192:Particle physics 1149: 1148: 1114: 1105:(4–6): 165–317. 1094: 1088: 1087: 1053: 1044:(3–4): 249–264. 1029: 1023: 1022: 1012: 980: 974: 973: 937: 931: 930: 894: 888: 887: 851: 845: 838: 832: 831: 797: 777: 771: 770: 760: 750: 725: 719: 718: 700: 682: 680: 679: 674: 672: 670: 669: 657: 646: 640: 630: 624: 623: 621: 619: 604: 598: 597: 563: 543: 537: 536: 494: 474: 468: 465: 459: 456: 450: 449: 447: 415: 305:Feynman diagrams 286:photon structure 226: 224: 223: 218: 196: 194: 193: 188: 176:impact parameter 116: 111: 102:, that is, to a 59:particle physics 21: 1217: 1216: 1212: 1211: 1210: 1208: 1207: 1206: 1182: 1181: 1157: 1152: 1099:Physics Reports 1095: 1091: 1035: 1030: 1026: 981: 977: 938: 934: 895: 891: 852: 848: 839: 835: 778: 774: 726: 722: 662: 658: 656: 654: 651: 650: 647: 643: 637: 631: 627: 617: 615: 606: 605: 601: 544: 540: 475: 471: 466: 462: 457: 453: 416: 412: 408: 390:Pair production 385:Matter creation 375: 357:Double resolved 347:Single resolved 265: 209: 206: 205: 203:electromagnetic 182: 179: 178: 141: 132:pair production 109: 107: 92: 87: 36:Feynman diagram 28: 23: 22: 15: 12: 11: 5: 1215: 1205: 1204: 1199: 1194: 1180: 1179: 1171: 1166: 1156: 1155:External links 1153: 1151: 1150: 1112:hep-ex/9912049 1089: 1051:hep-ex/0507042 1033: 1024: 975: 932: 889: 846: 833: 772: 720: 668: 665: 661: 641: 635: 625: 599: 538: 469: 460: 451: 409: 407: 404: 403: 402: 397: 392: 387: 382: 374: 371: 361: 360: 354: 336: 335: 264: 261: 253:Standard Model 216: 213: 186: 140: 137: 91: 88: 86: 83: 53:, also called 26: 9: 6: 4: 3: 2: 1214: 1203: 1200: 1198: 1195: 1193: 1190: 1189: 1187: 1178: 1175: 1172: 1170: 1167: 1165: 1162: 1159: 1158: 1146: 1142: 1138: 1134: 1130: 1126: 1122: 1118: 1113: 1108: 1104: 1100: 1093: 1085: 1081: 1077: 1073: 1069: 1065: 1061: 1057: 1052: 1047: 1043: 1039: 1028: 1020: 1016: 1011: 1006: 1002: 998: 994: 990: 986: 979: 971: 967: 963: 959: 955: 951: 947: 943: 936: 928: 924: 920: 916: 912: 908: 904: 900: 893: 885: 881: 877: 873: 869: 865: 861: 857: 850: 843: 837: 829: 825: 821: 817: 813: 809: 805: 801: 796: 791: 787: 783: 776: 768: 764: 759: 754: 749: 744: 741:(1): 011801. 740: 736: 732: 724: 716: 712: 708: 704: 699: 694: 690: 686: 685:Phys. Lett. B 683:= 5.02 TeV". 666: 663: 659: 645: 639: 629: 614:. 11 Nov 2016 613: 609: 603: 595: 591: 587: 583: 579: 575: 571: 567: 562: 557: 554:(8): 080405. 553: 549: 542: 534: 530: 526: 522: 518: 514: 510: 506: 502: 498: 493: 488: 484: 480: 473: 464: 455: 446: 441: 437: 433: 429: 425: 421: 414: 410: 401: 398: 396: 393: 391: 388: 386: 383: 380: 377: 376: 370: 368: 367: 358: 355: 352: 348: 345: 344: 343: 341: 333: 329: 325: 321: 317: 314: 313: 312: 306: 301: 293: 289: 287: 283: 279: 274: 270: 260: 258: 254: 250: 246: 242: 238: 233: 231: 214: 211: 204: 200: 184: 177: 171: 169: 165: 161: 158: 154: 150: 146: 136: 133: 127: 125: 120: 115: 105: 101: 97: 96:photon energy 82: 80: 76: 72: 68: 64: 60: 56: 52: 45: 41: 37: 32: 19: 1102: 1098: 1092: 1041: 1037: 1027: 992: 988: 978: 945: 941: 935: 902: 898: 892: 859: 855: 849: 836: 785: 781: 775: 738: 734: 723: 688: 684: 644: 628: 616:. Retrieved 612:CERN Courier 611: 602: 551: 547: 541: 482: 478: 472: 463: 454: 427: 423: 413: 364: 362: 356: 351:vector meson 346: 337: 319: 315: 310: 266: 234: 172: 142: 128: 93: 65:between two 63:interactions 54: 50: 49: 46:of the other 39: 379:Channelling 247:was set by 139:Experiments 40:box diagram 1186:Categories 748:2110.05916 698:1810.04602 691:: 134826. 430:(5). 146. 406:References 164:deflection 157:transverse 104:wavelength 1145:119437227 1137:0370-1573 1084:119346514 1076:0370-2693 1019:0556-2821 970:0556-2821 927:0550-3213 884:0370-2693 828:119248772 820:0217-751X 795:1201.2309 715:201698459 561:1305.7142 517:0031-9007 492:1305.7142 320:pointlike 263:Processes 230:STARlight 215:γ 212:γ 168:detectors 155:. If the 151:(LEP) at 85:Astronomy 767:35841572 594:43797550 586:24010419 533:43797550 525:24010419 424:Universe 373:See also 280:charged 160:momentum 112:10  1177:Archive 1164:Archive 1117:Bibcode 1056:Bibcode 997:Bibcode 950:Bibcode 907:Bibcode 864:Bibcode 800:Bibcode 566:Bibcode 497:Bibcode 432:Bibcode 282:fermion 278:virtual 79:created 77:can be 67:photons 1143:  1135:  1082:  1074:  1017:  968:  925:  882:  826:  818:  765:  713:  618:27 May 592:  584:  531:  523:  515:  334:(QCD). 324:lepton 316:Direct 257:axions 75:matter 71:energy 1141:S2CID 1107:arXiv 1080:S2CID 1046:arXiv 824:S2CID 790:arXiv 743:arXiv 711:S2CID 693:arXiv 590:S2CID 556:arXiv 529:S2CID 487:arXiv 328:quark 267:From 249:PVLAS 237:ATLAS 1133:ISSN 1072:ISSN 1015:ISSN 966:ISSN 923:ISSN 880:ISSN 816:ISSN 763:PMID 620:2019 582:PMID 521:PMID 513:ISSN 153:CERN 1125:doi 1103:332 1064:doi 1042:622 1005:doi 958:doi 915:doi 903:120 872:doi 808:doi 753:doi 739:129 703:doi 689:797 574:doi 552:111 505:doi 483:111 440:doi 318:or 241:CMS 119:TeV 108:6.2 100:GeV 1188:: 1139:. 1131:. 1123:. 1115:. 1101:. 1078:. 1070:. 1062:. 1054:. 1040:. 1013:. 1003:. 993:21 991:. 987:. 964:. 956:. 946:20 944:. 921:. 913:. 901:. 878:. 870:. 860:44 858:. 822:. 814:. 806:. 798:. 786:27 784:. 761:. 751:. 737:. 733:. 709:. 701:. 687:. 636:NN 610:. 588:. 580:. 572:. 564:. 550:. 527:. 519:. 511:. 503:. 495:. 481:. 438:. 426:. 422:. 126:. 81:. 34:A 1147:. 1127:: 1119:: 1109:: 1086:. 1066:: 1058:: 1048:: 1034:2 1021:. 1007:: 999:: 972:. 960:: 952:: 929:. 917:: 909:: 886:. 874:: 866:: 830:. 810:: 802:: 792:: 769:. 755:: 745:: 717:. 705:: 695:: 667:N 664:N 660:s 622:. 596:. 576:: 568:: 558:: 535:. 507:: 499:: 489:: 448:. 442:: 434:: 428:7 307:. 185:b 114:m 110:× 38:( 20:)

Index

Photon–photon scattering

Feynman diagram
vacuum charge fluctuations
particle physics
interactions
photons
energy
matter
created
photon energy
GeV
wavelength
m
TeV
extragalactic background light
pair production
particle accelerators
Large Electron–Positron Collider
CERN
transverse
momentum
deflection
detectors
impact parameter
strong interaction
electromagnetic
STARlight
ATLAS
CMS

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑