Knowledge

Segmentation (biology)

Source đź“ť

85: 154: 27: 67:. These three groups form segments by using a "growth zone" to direct and define the segments. While all three have a generally segmented body plan and use a growth zone, they use different mechanisms for generating this patterning. Even within these groups, different organisms have different mechanisms for segmenting the body. Segmentation of the body plan is important for allowing free movement and development of certain body parts. It also allows for regeneration in specific individuals. 1474: 279: 1486: 1462: 383:, with this gradient promotes the development of other structures, such as muscles, across the basic segments. Lower vertebrates such as zebrafish do not require retinoic acid repression of caudal Fgf8 for somitogenesis due to differences in gastrulation and neuromesodermal progenitor function compared to higher vertebrates. 258:
of the midline. The N and Q lineages contribute two blast cells for each segment, while the M, O, and P lineages only contribute one cell per segment. Finally, the number of segments within the embryo is defined by the number of divisions and blast cells. Segmentation appears to be regulated by the gene
404:
Segmentation can be seen as originating in two ways. To caricature, the 'amplification' pathway would involve a single-segment ancestral organism becoming segmented by repeating itself. This seems implausible, and the 'parcellization' framework is generally preferred – where existing organization of
257:
has been described as “budding” segmentation. Early divisions within the leech embryo result in teloblast cells, which are stem cells that divide asymmetrically to create bandlets of blast cells. Furthermore, there are five different teloblast lineages (N, M, O, P, and Q), with one set for each side
379:; retinoic acid repression of Fgf8 gene expression defines the wavefront as the point at which the concentrations of both retinoic acid and diffusible FGF8 protein are at their lowest. Cells at this point will mature and form a pair of somites. The interaction of other signaling molecules, such as 75:
Segmentation is a difficult process to satisfactorily define. Many taxa (for example the molluscs) have some form of serial repetition in their units but are not conventionally thought of as segmented. Segmented animals are those considered to have organs that were repeated, or to have a body
405:
organ systems is 'formalized' from loosely defined packets into more rigid segments. As such, organisms with a loosely defined metamerism, whether internal (as some molluscs) or external (as onychophora), can be seen as 'precursors' to eusegmented organisms such as annelids or arthropods.
355:, creating travelling waves of gene expression. The "wavefront" is where clock oscillations arrest, initiating gene expression that leads to the patterning of somite boundaries. The position of the wavefront is defined by a decreasing posterior-to-anterior gradient of 269:
Within the annelids, as with the arthropods, the body wall, nervous system, kidneys, muscles and body cavity are generally segmented. However, this is not true for all of the traits all of the time: many lack segmentation in the body wall, coelom and musculature.
391:
In other taxa, there is some evidence of segmentation in some organs, but this segmentation is not pervasive to the full list of organs mentioned above for arthropods and annelids. One might think of the serially repeated units in many
230:
Within the arthropods, the body wall, nervous system, kidneys, muscles and body cavity are segmented, as are the appendages (when they are present). Some of these elements (e.g. musculature) are not segmented in their sister taxon, the
191:
phylum in general, it is the most highly studied. Early screens to identify genes involved in cuticle development led to the discovery of a class of genes that was necessary for proper segmentation of the
686:
Dray, N.; Tessmar-Raible, K.; Le Gouar, M.; Vibert, L.; Christodoulou, F.; Schipany, K.; Guillou, A.; Zantke, J.; Snyman, H.; BĂ©hague, J.; Vervoort, M.; Arendt, D.; Balavoine, G. (2010).
215:, which set up the boundaries between the different segments. The gradients produced from gap gene expression then define the expression pattern for the 211:
axis is defined by maternally supplied transcripts giving rise to gradients of these proteins. This gradient then defines the expression pattern for
84: 51:
into a linear series of repetitive segments that may or may not be interconnected to each other. This article focuses on the segmentation of
571: 1441: 223:, expressed in regular stripes down the length of the embryo. These transcription factors then regulate the expression of 1406: 1251: 979: 166: 951: 76:
composed of self-similar units, but usually it is the parts of an organism that are referred to as being segmented.
1208: 994: 989: 886:"Mouse but not zebrafish requires retinoic acid for control of neuromesodermal progenitors and body axis extension" 343:. The "clock" refers to the periodic oscillation in abundance of specific gene products, such as members of the 1506: 1385: 1236: 227:, which define the polarity of each segment. Boundaries and identities of each segment are later defined. 1203: 380: 1452: 1395: 1261: 1093: 1088: 340: 20: 308:
the embryological process of segmentation has been studied in many vertebrate groups, such as fish (
356: 294: 396:, or the segmented body armature of the chitons (which is not accompanied by a segmented coelom). 1329: 1266: 1241: 1124: 1044: 1314: 1213: 1198: 1068: 600:
Peel AD; Chipman AD; Akam M (2005). "Arthropod Segmentation: Beyond The Drosophila Paradigm".
1425: 1319: 1246: 1145: 1083: 1078: 1009: 944: 224: 371:), the wavefront also depends upon an opposing anterior-to-posterior decreasing gradient of 1334: 1177: 1172: 1054: 1049: 1036: 699: 652: 414: 220: 118: 8: 1430: 348: 208: 703: 656: 153: 1119: 910: 885: 861: 834: 810: 785: 720: 687: 625: 487: 313: 101:
Segmentation in animals typically falls into three types, characteristic of different
1380: 1160: 1155: 1064: 915: 866: 815: 766: 725: 668: 617: 575: 537: 479: 475: 1364: 786:"Mechanisms of retinoic acid signalling and its roles in organ and limb development" 491: 1390: 1359: 1354: 1309: 937: 905: 897: 856: 846: 805: 797: 756: 715: 707: 660: 629: 609: 567: 527: 471: 89: 1400: 1304: 1114: 532: 515: 420: 259: 126: 901: 1490: 1478: 1466: 929: 643:
Weisblat DA; Shankland M (1985). "Cell lineage and segmentation in the leech".
216: 761: 744: 26: 1500: 1368: 1282: 1150: 984: 961: 393: 372: 333: 290: 177:
probably had three body regions, each with a unique combination of Hox genes.
173:) by up to three segments. Segments with maxillipeds have Hox gene 7. Fossil 711: 558:
Pick, L (1998). "Segmentation: Painting Stripes From Flies to Vertebrates".
459: 328:). Segmentation in chordates is characterized as the formation of a pair of 1473: 1193: 1014: 1004: 919: 870: 819: 770: 729: 688:"Hedgehog signaling regulates segment formation in the annelid Platynereis" 664: 621: 541: 483: 170: 169:. The Hox genes 7, 8, and 9 correspond in these groups but are shifted (by 672: 579: 278: 1129: 1109: 360: 325: 232: 106: 1373: 1073: 1026: 851: 426: 317: 303: 263: 245: 183: 138: 114: 102: 56: 30: 1485: 16:
Division of some animal and plant body plans into a series of segments
1324: 1292: 1059: 965: 368: 344: 339:
In vertebrates, segmentation is most often explained in terms of the
309: 282: 250: 188: 174: 162: 142: 122: 94: 48: 801: 613: 572:
10.1002/(SICI)1520-6408(1998)23:1<1::AID-DVG1>3.0.CO;2-A
1461: 1287: 1256: 352: 212: 204: 158: 110: 64: 60: 1019: 364: 329: 321: 286: 130: 685: 999: 835:"Location, Location, Location: Signals in Muscle Specification" 52: 41: 254: 134: 45: 332:
on either side of the midline. This is often referred to as
1297: 376: 417: â€“ Segmented body with a serial repetition of organs 745:"Understanding the somitogenesis clock: what's missing?" 117:
form segments from a field of equivalent cells based on
55:
body plans, specifically using the examples of the taxa
599: 642: 1450: 777: 423: â€“ Embryonic precursor structures in vertebrates 297:, as well as periodic oscillation of gene expression. 289:
through a process that is reliant upon gradients of
262:, suggesting its common evolutionary origin in the 783: 429: â€“ Transient structure in animal development 1498: 959: 945: 832: 359:signalling. In higher vertebrates including 161:in the body segments of different groups of 301:Although perhaps not as well understood as 952: 938: 453: 451: 449: 447: 445: 443: 187:segmentation is not representative of the 909: 883: 877: 860: 850: 809: 760: 742: 719: 531: 513: 351:end of the embryo and moves towards the 277: 152: 83: 25: 679: 557: 509: 507: 505: 503: 501: 440: 375:which limits the anterior spreading of 1499: 1442:Index of evolutionary biology articles 784:Cunningham, T.J.; Duester, G. (2015). 595: 593: 591: 589: 553: 551: 347:gene family. Expression starts at the 933: 833:Chang, CN; Kioussi, C (18 May 2018). 498: 457: 884:Berenguer, M.; et al. (2018). 586: 548: 40:in biology is the division of some 13: 1252:Evolutionary developmental biology 645:Philos Trans R Soc Lond B Biol Sci 238: 167:evolutionary developmental biology 33:have a segmented vertebral column. 14: 1518: 345:Hairy and Enhancer of Split (Hes) 219:. The pair-rule genes are mostly 1484: 1472: 1460: 1209:Evolution of sexual reproduction 839:Journal of Developmental Biology 476:10.1046/j.1525-142X.2001.01041.x 243:While not as well studied as in 121:gradients. Vertebrates like the 460:"Why are arthropods segmented?" 980:Genotype–phenotype distinction 826: 736: 636: 97:with 170 segments and 662 legs 1: 1237:Regulation of gene expression 433: 386: 148: 79: 70: 1407:Endless Forms Most Beautiful 1187:Evolution of genetic systems 995:Gene–environment correlation 990:Gene–environment interaction 533:10.1016/j.devcel.2004.08.008 273: 266:of arthropods and annelids. 129:to define segments known as 7: 1386:Christiane NĂĽsslein-Volhard 902:10.1016/j.ydbio.2018.06.019 408: 381:myogenic regulatory factors 10: 1523: 1262:Hedgehog signaling pathway 1139:Developmental architecture 145:cells to define segments. 18: 1439: 1418: 1347: 1275: 1229: 1222: 1186: 1138: 1102: 1089:Transgressive segregation 1035: 972: 762:10.1016/j.mod.2007.06.004 464:Evolution and Development 399: 341:clock and wavefront model 113:. Arthropods such as the 21:Segmentation contractions 790:Nat. Rev. Mol. Cell Biol 199:To properly segment the 19:Not to be confused with 1267:Notch signaling pathway 1242:Gene regulatory network 1125:Dual inheritance theory 712:10.1126/science.1188913 285:form segments known as 133:. Annelids such as the 1315:cis-regulatory element 1223:Control of development 1103:Non-genetic influences 1069:evolutionary landscape 665:10.1098/rstb.1985.0176 298: 253:, segmentation in the 225:segment polarity genes 178: 141:budded off from large 98: 34: 1507:Developmental biology 1426:Nature versus nurture 1330:Cell surface receptor 1247:Evo-devo gene toolkit 1146:Developmental biology 1084:Polygenic inheritance 1010:Quantitative genetics 281: 221:transcription factors 156: 87: 29: 1335:Transcription factor 1050:Genetic assimilation 1037:Genetic architecture 458:Budd, G. E. (2001). 119:transcription factor 1431:Morphogenetic field 1348:Influential figures 704:2010Sci...329..339D 657:1985RSPTB.312...39W 1120:Genomic imprinting 852:10.3390/jdb6020011 743:Cinquin O (2007). 299: 179: 99: 35: 1448: 1447: 1381:Eric F. Wieschaus 1343: 1342: 1161:Pattern formation 1065:Fitness landscape 698:(5989): 339–342. 514:Tautz, D (2004). 1514: 1489: 1488: 1477: 1476: 1465: 1464: 1456: 1391:William McGinnis 1360:Richard Lewontin 1355:C. H. Waddington 1227: 1226: 1204:Neutral networks 954: 947: 940: 931: 930: 924: 923: 913: 881: 875: 874: 864: 854: 830: 824: 823: 813: 781: 775: 774: 764: 755:(7–8): 501–517. 740: 734: 733: 723: 683: 677: 676: 640: 634: 633: 597: 584: 583: 555: 546: 545: 535: 511: 496: 495: 455: 324:), and mammals ( 125:use oscillating 90:Illacme plenipes 1522: 1521: 1517: 1516: 1515: 1513: 1512: 1511: 1497: 1496: 1495: 1483: 1471: 1459: 1451: 1449: 1444: 1435: 1414: 1401:Sean B. Carroll 1339: 1271: 1218: 1182: 1134: 1115:Maternal effect 1098: 1031: 968: 958: 928: 927: 882: 878: 831: 827: 802:10.1038/nrm3932 782: 778: 741: 737: 684: 680: 651:(1153): 39–56. 641: 637: 614:10.1038/nrg1724 608:(12): 905–916. 598: 587: 556: 549: 512: 499: 456: 441: 436: 421:Pharyngeal arch 411: 402: 389: 276: 241: 239:Annelids: Leech 217:pair-rule genes 165:, as traced by 151: 127:gene expression 82: 73: 24: 17: 12: 11: 5: 1520: 1510: 1509: 1494: 1493: 1481: 1469: 1446: 1445: 1440: 1437: 1436: 1434: 1433: 1428: 1422: 1420: 1416: 1415: 1413: 1412: 1411: 1410: 1398: 1393: 1388: 1383: 1378: 1377: 1376: 1365:François Jacob 1362: 1357: 1351: 1349: 1345: 1344: 1341: 1340: 1338: 1337: 1332: 1327: 1322: 1317: 1312: 1307: 1302: 1301: 1300: 1290: 1285: 1279: 1277: 1273: 1272: 1270: 1269: 1264: 1259: 1254: 1249: 1244: 1239: 1233: 1231: 1224: 1220: 1219: 1217: 1216: 1211: 1206: 1201: 1196: 1190: 1188: 1184: 1183: 1181: 1180: 1175: 1170: 1165: 1164: 1163: 1158: 1148: 1142: 1140: 1136: 1135: 1133: 1132: 1127: 1122: 1117: 1112: 1106: 1104: 1100: 1099: 1097: 1096: 1094:Sequence space 1091: 1086: 1081: 1076: 1071: 1062: 1057: 1052: 1047: 1041: 1039: 1033: 1032: 1030: 1029: 1024: 1023: 1022: 1012: 1007: 1002: 997: 992: 987: 982: 976: 974: 970: 969: 957: 956: 949: 942: 934: 926: 925: 896:(1): 127–131. 876: 825: 796:(2): 110–123. 776: 735: 678: 635: 585: 547: 526:(3): 301–312. 516:"Segmentation" 497: 438: 437: 435: 432: 431: 430: 424: 418: 410: 407: 401: 398: 388: 385: 275: 272: 240: 237: 157:Expression of 150: 147: 81: 78: 72: 69: 15: 9: 6: 4: 3: 2: 1519: 1508: 1505: 1504: 1502: 1492: 1487: 1482: 1480: 1475: 1470: 1468: 1463: 1458: 1457: 1454: 1443: 1438: 1432: 1429: 1427: 1424: 1423: 1421: 1417: 1409: 1408: 1404: 1403: 1402: 1399: 1397: 1394: 1392: 1389: 1387: 1384: 1382: 1379: 1375: 1372: 1371: 1370: 1369:Jacques Monod 1366: 1363: 1361: 1358: 1356: 1353: 1352: 1350: 1346: 1336: 1333: 1331: 1328: 1326: 1323: 1321: 1318: 1316: 1313: 1311: 1308: 1306: 1303: 1299: 1296: 1295: 1294: 1291: 1289: 1286: 1284: 1283:Homeotic gene 1281: 1280: 1278: 1274: 1268: 1265: 1263: 1260: 1258: 1255: 1253: 1250: 1248: 1245: 1243: 1240: 1238: 1235: 1234: 1232: 1228: 1225: 1221: 1215: 1212: 1210: 1207: 1205: 1202: 1200: 1197: 1195: 1192: 1191: 1189: 1185: 1179: 1176: 1174: 1171: 1169: 1166: 1162: 1159: 1157: 1154: 1153: 1152: 1151:Morphogenesis 1149: 1147: 1144: 1143: 1141: 1137: 1131: 1128: 1126: 1123: 1121: 1118: 1116: 1113: 1111: 1108: 1107: 1105: 1101: 1095: 1092: 1090: 1087: 1085: 1082: 1080: 1077: 1075: 1072: 1070: 1066: 1063: 1061: 1058: 1056: 1053: 1051: 1048: 1046: 1043: 1042: 1040: 1038: 1034: 1028: 1025: 1021: 1018: 1017: 1016: 1013: 1011: 1008: 1006: 1003: 1001: 998: 996: 993: 991: 988: 986: 985:Reaction norm 983: 981: 978: 977: 975: 971: 967: 963: 955: 950: 948: 943: 941: 936: 935: 932: 921: 917: 912: 907: 903: 899: 895: 891: 887: 880: 872: 868: 863: 858: 853: 848: 844: 840: 836: 829: 821: 817: 812: 807: 803: 799: 795: 791: 787: 780: 772: 768: 763: 758: 754: 750: 746: 739: 731: 727: 722: 717: 713: 709: 705: 701: 697: 693: 689: 682: 674: 670: 666: 662: 658: 654: 650: 646: 639: 631: 627: 623: 619: 615: 611: 607: 603: 602:Nat Rev Genet 596: 594: 592: 590: 581: 577: 573: 569: 565: 561: 554: 552: 543: 539: 534: 529: 525: 521: 517: 510: 508: 506: 504: 502: 493: 489: 485: 481: 477: 473: 470:(5): 332–42. 469: 465: 461: 454: 452: 450: 448: 446: 444: 439: 428: 425: 422: 419: 416: 413: 412: 406: 397: 395: 394:Cycloneuralia 384: 382: 378: 374: 373:retinoic acid 370: 366: 362: 358: 354: 350: 346: 342: 337: 335: 334:somitogenesis 331: 327: 323: 319: 316:), reptiles ( 315: 311: 307: 305: 296: 292: 291:retinoic acid 288: 284: 280: 271: 267: 265: 261: 256: 252: 248: 247: 236: 234: 228: 226: 222: 218: 214: 210: 206: 202: 197: 195: 190: 186: 185: 176: 172: 168: 164: 160: 155: 146: 144: 140: 136: 132: 128: 124: 120: 116: 112: 108: 104: 96: 92: 91: 86: 77: 68: 66: 62: 58: 54: 50: 47: 43: 39: 32: 28: 22: 1405: 1298:eyeless gene 1194:Evolvability 1168:Segmentation 1167: 1045:Canalisation 1015:Heterochrony 1005:Heritability 973:Key concepts 893: 889: 879: 842: 838: 828: 793: 789: 779: 752: 748: 738: 695: 691: 681: 648: 644: 638: 605: 601: 563: 559: 523: 519: 467: 463: 403: 390: 338: 302: 300: 268: 244: 242: 229: 203:embryo, the 200: 198: 193: 182: 180: 171:heterochrony 137:use smaller 100: 88: 74: 38:Segmentation 37: 36: 1396:Mike Levine 1305:Distal-less 1130:Polyphenism 1110:Epigenetics 962:development 566:(1): 1–10. 367:, (but not 233:onychophora 139:blast cells 107:vertebrates 31:Vertebrates 1374:Lac operon 1199:Robustness 1178:Modularity 1173:Metamerism 1079:Plasticity 1074:Pleiotropy 1027:Heterotopy 434:References 427:Rhombomere 415:Metamerism 387:Other taxa 320:), birds ( 318:Corn Snake 304:Drosophila 246:Drosophila 201:Drosophila 194:Drosophila 184:Drosophila 175:trilobites 149:Arthropods 103:arthropods 80:Embryology 71:Definition 57:Arthropoda 49:body plans 1325:Morphogen 1310:Engrailed 1293:Pax genes 1214:Tinkering 1060:Epistasis 1055:Dominance 966:phenotype 890:Dev. Biol 845:(2): 11. 560:Dev Genet 369:Zebrafish 349:posterior 310:Zebrafish 283:Zebrafish 274:Chordates 251:zebrafish 213:gap genes 209:posterior 189:arthropod 181:Although 163:arthropod 159:Hox genes 143:teloblast 123:zebrafish 115:fruit fly 95:millipede 1501:Category 1288:Hox gene 1276:Elements 1257:Homeobox 920:29964026 871:29783715 820:25560970 771:17643270 749:Mech Dev 730:20647470 622:16341071 542:15363406 520:Dev Cell 492:37935884 484:11710765 409:See also 353:anterior 264:ancestor 260:Hedgehog 205:anterior 196:embryo. 111:annelids 65:Annelida 61:Chordata 1491:Science 1479:Animals 1467:Biology 1453:Portals 1419:Debates 1230:Systems 1156:Eyespot 1020:Neoteny 911:6064660 862:6027348 811:4636111 721:3182550 700:Bibcode 692:Science 673:2869529 653:Bibcode 630:7230856 580:9706689 330:somites 322:Chicken 287:somites 131:somites 1320:Ligand 1000:Operon 918:  908:  869:  859:  818:  808:  769:  728:  718:  671:  628:  620:  578:  540:  490:  482:  400:Origin 314:Medaka 109:, and 63:, and 53:animal 42:animal 626:S2CID 488:S2CID 365:Chick 361:Mouse 326:Mouse 255:leech 135:leech 46:plant 960:The 916:PMID 867:PMID 816:PMID 767:PMID 726:PMID 669:PMID 618:PMID 576:PMID 538:PMID 480:PMID 377:FGF8 363:and 293:and 249:and 93:, a 44:and 964:of 906:PMC 898:doi 894:441 857:PMC 847:doi 806:PMC 798:doi 757:doi 753:124 716:PMC 708:doi 696:329 661:doi 649:312 610:doi 568:doi 528:doi 472:doi 357:FGF 295:FGF 1503:: 1367:+ 914:. 904:. 892:. 888:. 865:. 855:. 841:. 837:. 814:. 804:. 794:16 792:. 788:. 765:. 751:. 747:. 724:. 714:. 706:. 694:. 690:. 667:. 659:. 647:. 624:. 616:. 604:. 588:^ 574:. 564:23 562:. 550:^ 536:. 522:. 518:. 500:^ 486:. 478:. 466:. 462:. 442:^ 336:. 312:, 235:. 105:, 59:, 1455:: 1067:/ 953:e 946:t 939:v 922:. 900:: 873:. 849:: 843:6 822:. 800:: 773:. 759:: 732:. 710:: 702:: 675:. 663:: 655:: 632:. 612:: 606:6 582:. 570:: 544:. 530:: 524:7 494:. 474:: 468:3 306:, 207:- 23:.

Index

Segmentation contractions

Vertebrates
animal
plant
body plans
animal
Arthropoda
Chordata
Annelida

Illacme plenipes
millipede
arthropods
vertebrates
annelids
fruit fly
transcription factor
zebrafish
gene expression
somites
leech
blast cells
teloblast

Hox genes
arthropod
evolutionary developmental biology
heterochrony
trilobites

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑