Knowledge

946 eruption of Paektu Mountain

Source đź“ť

437:(PDC) volume was around 6.2-7.8 km DRE. These estimates place the bulk volume of the eruption to be between 40.2 and 97.7 km, which equates to 17.5 to 42.5 km DRE magma (using a tephra deposit density of 1000 kg/m and a magma density of 2300 kg/m). Tephra dispersal models were recently used with tephra fallout thicknesses from both phases to constrain the eruption parameters and volumes of the two separate phases. Between 3 and 16 km (best estimate of 7.2 km) of DRE magma was dispersed by the first comenditic phase, and 4-20 km (best estimate of 9.3 km) during the second trachytic phase of the eruption. When the PDC volumes are considered with these updated fallout volumes, the total volumes are around 23 km DRE magma – similar to the amount of material removed from the edifice to generate a caldera.  403:, by massive pyroclastic flows that covered an area of 2,000 km (770 square miles) with an average thickness of 5 m (16 feet) and reached a distance as far as 50 km (31 miles). These pyroclastic flows were generated by the collapse of the Plinian eruption column. A co-ignimbrite ash layer, generated from elutriation during pyroclastic flow, overlies the pyroclastic flows, representing the topmost deposition from this eruption phase. The magma composition of this phase was predominantly comenditic and of distinct light grey colour. The mass eruption rate of this phase has been estimated to be 1-4 Ă— 10 kg/s. Based on the historical records of falling white ash in Nara, it is suggested that the first phase may have started on 2 November 946 CE. 472:, was assessed by taking the amount of the volatile element dissolved in the magma when it was crystallising and taking off the amount still in the magma when it erupted. Bodies of magma often become trapped in the crystals during crystallisation forming melt inclusions, which are analysed to determine the original volatile concentration. The remaining amount of the volatile dissolved in the melt is established by analysing the matrix glass – the magma quenched on eruption. The difference in the volatile element between the MI and matrix glass is then multiplied by the volume of the melt to estimate the amount of the volatiles that are released into the atmosphere. 476:
between 5 and 30 Tg S, 6-32 Tg F, and 2-15 Tg Cl. The fluorine and chlorine contents of MI and matrix glasses cover a similar range, suggesting the melts were probably not saturated in either element, and loss of these volatile phases could be negligible. The low S yield is consistent with ice core records that estimated the S load was ~2 Tg based on the non-sea salt sulphate record, and the limited climate impact recorded in palaeoenvironmental and palaeoclimate proxies
31: 488:, likely resulting in a major worldwide climatic impact, though more recent studies indicate that the Millennium Eruption of Mt. Paektu volcano may have been limited to regional climatic effects. However, there are some meteorological anomalies in A.D. 945–948 which may relate to the Millennium Eruption. The event is thought to have caused a 475:
Fluorine, chlorine, and sulfur contents of MI and matrix glasses have been measured for the comenditic magma erupted in the first phases of the eruption. Using these average volatile contents in the MI and matrix glass combined with the comendite magma volume (3-17 km DRE) the volatile release was
419:
Unlike the first phase, this phase began with pulsing eruptions from non-sustained columns characterised by frequent column collapses, depositing multiple tephra fall units of alternating colour and interbedded with co-occurring pyroclastic flows from column collapsing. As many as seven fall units
248:
with chemical fingerprints associated with the Millennium eruption were located in the Greenland ice core, and the position corresponds to a date of 946–947 CE. The tree stump with preserved rings and the 774-775 CE Miyake event, and the identification of the tephra layer in the precisely dated
424:
in all directions within a radius of 20 km (12 miles) of the caldera. The uppermost part of the second phase deposits is also a co-ignimbrite ash layer. There was widespread ash dispersal associated with this trachytic phase, and modelling suggests that the eruption plume extended >30 km in
710:
Oppenheimer, Clive; Wacker, Lukas; Xu, Jiandong; Galván, Juan Diego; Stoffel, Markus; Guillet, Sébastien; Corona, Christophe; Sigl, Michael; Di Cosmo, Nicola; Hajdas, Irka; Pan, Bo; Breuker, Remco; Schneider, Lea; Esper, Jan; Fei, Jie; Hammond, James O. S.; Büntgen, Ulf (15 February 2017).
241:) was identified in one of the tree stumps felled by the eruption. Exactly 172 rings were counted between this 774-775 CE Miyake event and the bark edge implying that the tree was killed in 946 CE. This date supports that obtained from the Greenland ice core age model. The comenditic and 398:
The first phase began with a stable Plinian eruption column which was estimated to have reached a height of 30–40 km and produced a widely dispersed layer of light coloured pumice fallout. The pumice fallout layer is then immediately overlain, no co-occurring as indicated by lack of
411:
There are still disputes over what pyroclastic products were emplaced during the second phase, and whether there was a significant period of quiescence between the first and the second phase. At multiple locations, non-pyroclastic materials or
215:
for dating and correlating regional to global sedimentary archives, as evidence of the eruption is found throughout the Sea of Japan. Therefore, the timing of this eruption was one of the most intensely studied subject in the volcanology of
228:
A precise radiocarbon date for the Millennium Eruption was achieved by obtaining numerous radiocarbon measurements across the stumps of trees that were felled and carbonised during the eruption. These radiocarbon measurements were
368:
Further confirmation came from studies of tree rings from a subfossil larch that was engulfed and killed during the initial explosive eruption. The tree was alive and recorded the atmospheric chemical changes during the major
1237:
Sigl, M.; Winstrup, M.; McConnell, J. R.; Welten, K. C.; Plunkett, G.; Ludlow, F.; BĂĽntgen, U.; Caffee, M.; Chellman, N.; Dahl-Jensen, D.; Fischer, H.; Kipfstuhl, S.; Kostick, C.; Maselli, O. J.; Mekhaldi, F. (8 July 2015).
381:
Extensive studies of the sedimentary record of the Millennium Eruption revealed that the eruption had two phases, both generating widespread tephra fallout and pyroclastic flows. The first phase began with a
159:). The eruption had two phases that each included a Plinian fallout and a pyroclastic flow and erupted magmas that were different in composition. An average of 5 cm (2.0 in) of Plinian ashfall and co– 923:
Yang, Qingyuan; Jenkins, Susanna F.; Lerner, Geoffrey A.; Li, Weiran; Suzuki, Takehiko; McLean, Danielle; Derkachev, A. N.; Utkin, I. V.; Wei, Haiquan; Xu, Jiandong; Pan, Bo (23 October 2021).
171:
for correlating regional sedimentary archives in and around the Sea of Japan. The Millennium Eruption was one of the largest and most powerful eruptions in the last 5,000 years, along with the
1137:"Identification of the Changbaishan 'Millennium' (B-Tm) eruption deposit in the Lake Suigetsu (SG06) sedimentary archive, Japan: Synchronisation of hemispheric-wide palaeoclimate archives" 1306:"Ash from Changbaishan Millennium eruption recorded in Greenland ice: Implications for determining the eruption's timing and impact: SUN ET. AL. MILLENNIUM ERUPTION ASH IN GREENLAND" 373:. Between this event and the outermost ring, there are exactly 172 rings, implying that the tree was killed in 946 CE. This provides an unambiguous date for the Millennium Eruption. 1304:
Sun, Chunqing; Plunkett, Gill; Liu, Jiaqi; Zhao, Hongli; Sigl, Michael; McConnell, Joseph R.; Pilcher, Jonathan R.; Vinther, Bo; Steffensen, J. P.; Hall, Valerie (28 January 2014).
433:
Based on the proximal and distal thicknesses of the deposit, it was estimated that the fallout volume was between 13.4 and 37.4 km Dense Rock Equivalent (DRE) of magma, and the
1066:"The VEI-7 Millennium eruption, Changbaishan-Tianchi volcano, China/DPRK: New field, petrological, and chemical constraints on stratigraphy, volcanology, and magma dynamics" 420:
are recognised in this phase. Fallout were also deposited as high-temperature agglutinates mantling the inner caldera wall. The pyroclastic flows of this phase filled
1016:
Costa, Antonio; Mingari, Leonardo; Smith, Victoria C.; Macedonio, Giovanni; McLean, Danielle; Folch, Arnau; Lee, Jeonghyun; Yun, Sung-Hyo (2 January 2024).
1779: 257:
Several meteorological phenomena recorded in ancient Korea and Japan during the mid-10th century may have been caused by the Millennium Eruption. The
290:
In the first year of the reign of Emperor Jeongjong (946 CE), heaven's drums sounded. That year the sky rumbled and cried out, there was an amnesty.
365:
were found at an ice depth dated precisely to 946–947 CE, effectively confirming that the eruption occurred within the last 3 months of 946 CE.
1684:"Climatic impact of the Millennium eruption of Changbaishan volcano in China: New insights from high-precision radiocarbon wiggle-match dating" 778:
Jin, Yuting; Li, Junxia; Zhao, Ying; Xu, Chenxi; Chen, Zhenju; Li, Feng; Chen, Jiayang; Zhang, Jingyuan; Hou, Sen; Xin, Ziang (1 June 2022).
1626:"Volcanic stratospheric sulfur injections and aerosol optical depth during the Holocene (past 11 500 years) from a bipolar ice-core array" 293:
KaesĹŹng is approximately 470 km from Paektu volcano, a distance over which the Millennium Eruption may have been heard. In addition, the
834:"Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China" 780:"Cambial evidence of the "Millennium Eruption" of Changbaishan volcano (c. 946 CE) and century-scale climatic change in the Middle Ages" 233:
onto the calibration curve to constrain the date to between to 938–946 CE. Further constraints on the date were obtained when the major
390:. After a hiatus of unknown duration, the second phase produced trachytic agglutinates and welded pyroclastic flow and surge deposits. 1823: 1135:
McLean, Danielle; Albert, Paul G.; Nakagawa, Takeshi; Staff, Richard A.; Suzuki, Takehiko; Smith, Victoria C. (15 October 2016).
1018:"Eruption plumes extended more than 30 km in altitude in both phases of the Millennium eruption of Paektu (Changbaishan) volcano" 1873: 1853: 1737:
Fei, J (2006). "The possible climatic impact in China of Iceland's Eldgja eruption inferred from historical sources".
1848: 1682:
Xu, Jiandong; Pan, Bo; Liu, Tanzhuo; Hajdas, Irka; Zhao, Bo; Yu, Hongmei; Liu, Ruoxin; Zhao, Ping (15 January 2013).
515: 1064:
Pan, Bo; de Silva, Shanaka L.; Xu, Jiandong; Chen, Zhengquan; Miggins, Daniel P.; Wei, Haiquan (1 September 2017).
104: 1450:"The mass estimation of volatile emission during 1199–1200 AD eruption of Baitoushan volcano and its significance" 1580:"Reassessment of the sulfur and halogen emissions from the Millennium Eruption of Changbaishan (Paektu) volcano" 1833: 1828: 658: 200: 883:
Horn, S (2000). "Volatile emission during the eruption of Baitoushan Volcano (China/North Korea) ca. 969 AD".
1579: 1346: 1065: 833: 779: 1858: 1838: 434: 370: 234: 56: 1863: 167:
and northern Japan. This ash layer has been named the "Baegdusan-Tomakomai ash" (B-Tm) and is valuable
90: 1624:
Sigl, Michael; Toohey, Matthew; McConnell, Joseph R.; Cole-Dai, Jihong; Severi, Mirko (12 July 2022).
1136: 1868: 653: 386:
eruption that produced widely dispersed comenditic tephra followed by unwelded pyroclastic flows and
1843: 686: 1400:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
1542:"Evidence of a Pre-eruptive Fluid Phase for the Millennium Eruption, Paektu Volcano, North Korea" 1541: 691: 446: 1395: 1187: 151:
The eruption ejected about 13–47 cubic kilometres of magma (dense rock equivalent) and formed a
924: 192: 1496:"Volatile emission during the eruption of Baitoushan Volcano (China/North Korea) ca. 969 AD" 1746: 1695: 1637: 1591: 1553: 1407: 1358: 1251: 1199: 1148: 1077: 1029: 936: 845: 791: 724: 1495: 484:
The Millennium Eruption is thought to have emitted an enormous mass of volatiles into the
8: 1750: 1699: 1641: 1595: 1557: 1448:
Guo, Zhengfu; Liu, Jiaqi; Sui, Shuzhen; Liu, Qiang; He, Huaiyu; Ni, Yunyan (June 2002).
1411: 1362: 1255: 1203: 1152: 1081: 1033: 940: 849: 795: 728: 249:
Greenland ice cores indicate an unambiguous date of 946 CE for the Millennium Eruption.
1762: 1719: 1515: 1469: 1327: 1283: 970: 900: 807: 760: 416:
separates the first and second phase eruptive products, indicating an eruption hiatus.
137: 79: 1766: 1711: 1625: 1603: 1519: 1449: 1423: 1347:"Tephrostratigraphy of Changbaishan volcano, northeast China, since the mid-Holocene" 1275: 1267: 1089: 1017: 974: 962: 904: 832:
Wei, Haiquan; Wang, Yu; Jin, Jinyu; Gao, Ling; Yun, Sung-Hyo; Jin, Bolu (June 2007).
811: 752: 387: 1723: 1473: 1370: 1331: 1160: 764: 737: 712: 1754: 1703: 1655: 1645: 1599: 1507: 1461: 1415: 1366: 1317: 1287: 1259: 1207: 1156: 1085: 1037: 952: 944: 892: 853: 799: 742: 732: 383: 346:
allows extremely precise dating to the exact calendar year of any ice depth in the
343: 141: 61: 857: 803: 489: 454: 413: 230: 217: 180: 172: 41: 128:
also known as Changbaishan, occurred in late 946 CE. This event is known as the
1042: 948: 681: 564: 358: 245: 212: 168: 1758: 1650: 1239: 1812: 1794: 1781: 1715: 1271: 966: 756: 713:"Multi-proxy dating the 'Millennium Eruption' of Changbaishan to late 946 CE" 259: 196: 188: 117: 1188:"Identifying references to volcanic eruptions in Chinese historical records" 647: 184: 1818: 1427: 1419: 1279: 1240:"Timing and climate forcing of volcanic eruptions for the past 2,500 years" 485: 400: 238: 164: 1683: 1511: 1345:
Sun, Chunqing; Liu, Jiaqi; You, Haitao; Nemeth, Karoly (1 December 2017).
1211: 896: 1707: 1396:"The effects and consequences of very large explosive volcanic eruptions" 1322: 1305: 925:"The Millennium Eruption of Changbaishan Tianchi Volcano is VEI 6, not 7" 421: 302: 156: 121: 83: 30: 1660: 1263: 957: 347: 160: 747: 1465: 543: 525: 312: 176: 465: 461: 450: 355: 351: 275: 242: 334:
On 7 February 947 CE, there was a sound in the sky, like thunder.
630: 284: 152: 308:
On 3 November 946 CE, evening, white ash fell gently like snow.
558: 557:
It snowed over ten days, and caused inadequate food supply and
469: 270:
On 19 February 944 CE, around midnight, shaking, sounds above.
425:
altitude and the mass eruption rate was larger than 10 kg/s.
362: 145: 125: 75: 71: 315:, first phase of the B-Tm ash fall. Three months later, the 1623: 1236: 1015: 163:
ashfall covered about 1,500,000 km (580,000 sq mi) of the
1134: 709: 539: 460:
The amount of volatiles released by an eruption, such as
1539: 1540:
Iacovino, K.; Sisson, T. W.; Lowenstern, J. B. (2014).
1494:
Horn, Susanne; Schmincke, Hans-Ulrich (February 2000).
445:
Large volcanic eruptions can inject a large amount of
331:) both documented a loud disturbance on the same day: 301:) recorded a particularly interesting observation in 1578:
Scaillet, Bruno; Oppenheimer, Clive (October 2023).
350:
or any tree ring with virtually no age uncertainty.
1577: 922: 1303: 676: 674: 220:, before its final settlement in the late 946 CE. 1063: 784:Palaeogeography, Palaeoclimatology, Palaeoecology 361:with chemical fingerprints of that of Millennium 1810: 1192:Geological Society, London, Special Publications 1344: 671: 1681: 1584:Journal of Volcanology and Geothermal Research 1186:Chen, Zhengquan; Chen, Zheng (11 March 2021). 1070:Journal of Volcanology and Geothermal Research 1493: 831: 588:Japanese historical meteorological materials 577:Japanese historical meteorological materials 1447: 393: 1114: 777: 406: 273:Another similar but later record from the 1659: 1649: 1454:Science in China Series D: Earth Sciences 1321: 1041: 956: 746: 736: 337: 311:The "white ash" may have been the white, 1185: 211:The eruption ash layer is an invaluable 187:(around 230 CE), the 431 CE eruption of 1811: 1022:Communications Earth & Environment 252: 1389: 1387: 1299: 1297: 1232: 1230: 1228: 1181: 1179: 1177: 1130: 1128: 1126: 1011: 705: 703: 701: 223: 1393: 1110: 1108: 1106: 1009: 1007: 1005: 1003: 1001: 999: 997: 995: 993: 991: 918: 916: 914: 882: 878: 876: 874: 376: 1736: 1119:. Tokyo: University of Tokyo Press. 1117:Atlas of Tephra in and around Japan 563:Old History of the Five Dynasties, 440: 13: 1675: 1384: 1294: 1225: 1174: 1123: 698: 635:Old History of the Five Dynasties 621:Old History of the Five Dynasties 610:Old History of the Five Dynasties 599:Old History of the Five Dynasties 549:Old History of the Five Dynasties 530:Old History of the Five Dynasties 479: 428: 14: 1885: 1103: 988: 911: 871: 516:Old History of the Five Dynasties 136:. It is one of the most powerful 1604:10.1016/j.jvolgeores.2023.107909 1090:10.1016/j.jvolgeores.2017.05.029 585:Frost, and cold as harsh winter 571:24. Feb, 947 until 23. Apr, 947 453:into the atmosphere, leading to 29: 16:Major volcanic eruption in Korea 1730: 1617: 1571: 1533: 1487: 1441: 1371:10.1016/j.quascirev.2017.10.021 1338: 1161:10.1016/j.quascirev.2016.08.022 738:10.1016/j.quascirev.2016.12.024 114:946 eruption of Paektu Mountain 24:946 eruption of Paektu Mountain 1824:10th-century natural disasters 1115:Machida, H.; Arai, F. (2003). 1057: 825: 771: 659:1815 eruption of Mount Tambora 283:) describes, at the palace in 201:1815 eruption of Mount Tambora 193:1257 eruption of Mount Samalas 1: 664: 155:, which now contains a lake ( 103:At least short-term regional 1688:Geophysical Research Letters 1310:Geophysical Research Letters 858:10.1016/j.lithos.2006.10.004 804:10.1016/j.palaeo.2022.110971 7: 641: 457:and environmental changes. 435:pyroclastic density current 10: 1890: 1874:Natural disasters in China 1854:Volcanic eruptions in Asia 1546:AGU Fall Meeting Abstracts 1351:Quaternary Science Reviews 1141:Quaternary Science Reviews 1043:10.1038/s43247-023-01162-0 949:10.1007/s00445-021-01487-8 717:Quaternary Science Reviews 235:774-775 CE carbon-14 spike 1759:10.1007/s10584-005-9012-3 1651:10.5194/essd-14-3167-2022 1630:Earth System Science Data 1394:Self, S. (28 June 2006). 654:1883 eruption of Krakatoa 394:Phase 1 (comendite magma) 295:Heungboksa Temple History 287:, of a loud disturbance: 99: 89: 67: 55: 47: 37: 28: 23: 1849:Medieval volcanic events 687:Global Volcanism Program 407:Phase 2 (trachyte magma) 342:Ice core chronology and 144:; classified at least a 1500:Bulletin of Volcanology 929:Bulletin of Volcanology 692:Smithsonian Institution 501:Meteorological Anomaly 206: 1420:10.1098/rsta.2006.1814 538:Large scale frost and 371:774 CE carbon-14 spike 338:Ice-core and tree-ring 1834:10th century in Korea 1829:10th century in China 1512:10.1007/s004450050004 1212:10.1144/sp510-2020-86 897:10.1007/s004450050004 359:volcanic glass shards 246:volcanic glass shards 120:on the border of the 1795:41.9931°N 128.0769°E 1708:10.1029/2012gl054246 1323:10.1002/2013GL058642 321:Old Diaries of Japan 1791: /  1751:2006ClCh...76..443F 1700:2013GeoRL..40...54X 1642:2022ESSD...14.3167S 1596:2023JVGR..44207909S 1558:2014AGUFM.V24D..08I 1412:2006RSPTA.364.2073S 1406:(1845): 2073–2097. 1363:2017QSRv..177..104S 1264:10.1038/nature14565 1256:2015Natur.523..543S 1204:2021GSLSP.510..271C 1153:2016QSRv..150..301M 1082:2017JVGR..343...45P 1034:2024ComEE...5....6C 941:2021BVol...83...74Y 850:2007Litho..96..315W 796:2022PPP...59510971J 729:2017QSRv..158..164O 546:covered all plants 253:Historical accounts 130:Millennium Eruption 1859:Volcanism of China 1839:Volcanoes of China 512:It snowed heavily 317:Dai Nihon Kokiroku 299:Annals of KĹŤfukuji 224:Radiocarbon dating 138:volcanic eruptions 80:Ryanggang Province 1864:Plinian eruptions 1800:41.9931; 128.0769 1250:(7562): 543–549. 639: 638: 377:Eruption dynamics 281:History of Goryeo 110: 109: 1881: 1869:Volcanic winters 1806: 1805: 1803: 1802: 1801: 1796: 1792: 1789: 1788: 1787: 1784: 1771: 1770: 1745:(3–4): 443–457. 1734: 1728: 1727: 1679: 1673: 1672: 1670: 1668: 1663: 1653: 1636:(7): 3167–3196. 1621: 1615: 1614: 1612: 1610: 1575: 1569: 1568: 1566: 1564: 1537: 1531: 1530: 1528: 1526: 1491: 1485: 1484: 1482: 1480: 1466:10.1360/02yd9055 1445: 1439: 1438: 1436: 1434: 1391: 1382: 1381: 1379: 1377: 1342: 1336: 1335: 1325: 1301: 1292: 1291: 1234: 1223: 1222: 1220: 1218: 1183: 1172: 1171: 1169: 1167: 1132: 1121: 1120: 1112: 1101: 1100: 1098: 1096: 1061: 1055: 1054: 1052: 1050: 1045: 1013: 986: 985: 983: 981: 960: 920: 909: 908: 880: 869: 868: 866: 864: 844:(1–2): 315–324. 829: 823: 822: 820: 818: 775: 769: 768: 750: 740: 707: 696: 695: 678: 495: 494: 441:Volatile release 344:tree ring dating 142:recorded history 134:Tianchi eruption 33: 21: 20: 1889: 1888: 1884: 1883: 1882: 1880: 1879: 1878: 1844:VEI-6 eruptions 1809: 1808: 1799: 1797: 1793: 1790: 1785: 1782: 1780: 1778: 1777: 1775: 1774: 1739:Climatic Change 1735: 1731: 1680: 1676: 1666: 1664: 1622: 1618: 1608: 1606: 1576: 1572: 1562: 1560: 1538: 1534: 1524: 1522: 1492: 1488: 1478: 1476: 1446: 1442: 1432: 1430: 1392: 1385: 1375: 1373: 1343: 1339: 1302: 1295: 1235: 1226: 1216: 1214: 1184: 1175: 1165: 1163: 1133: 1124: 1113: 1104: 1094: 1092: 1062: 1058: 1048: 1046: 1014: 989: 979: 977: 921: 912: 881: 872: 862: 860: 830: 826: 816: 814: 776: 772: 708: 699: 680: 679: 672: 667: 644: 490:volcanic winter 482: 480:Climate effects 455:volcanic winter 443: 431: 429:Eruption volume 409: 396: 379: 340: 329:Japan Chronicle 265:Japan Chronicle 255: 226: 218:Paektu Mountain 209: 181:Hatepe eruption 173:Minoan eruption 105:climate changes 42:Paektu Mountain 17: 12: 11: 5: 1887: 1877: 1876: 1871: 1866: 1861: 1856: 1851: 1846: 1841: 1836: 1831: 1826: 1821: 1773: 1772: 1729: 1674: 1616: 1570: 1532: 1506:(8): 537–555. 1486: 1460:(6): 530–539. 1440: 1383: 1337: 1316:(2): 694–701. 1293: 1224: 1198:(1): 271–289. 1173: 1122: 1102: 1056: 987: 910: 891:(8): 537–555. 870: 824: 770: 697: 682:"Changbaishan" 669: 668: 666: 663: 662: 661: 656: 651: 643: 640: 637: 636: 633: 627: 623: 622: 619: 616: 612: 611: 608: 605: 601: 600: 597: 594: 590: 589: 586: 583: 579: 578: 575: 572: 568: 567: 565:Zizhi Tongjian 561: 555: 551: 550: 547: 536: 532: 531: 528: 523: 519: 518: 513: 510: 506: 505: 502: 499: 481: 478: 442: 439: 430: 427: 408: 405: 395: 392: 378: 375: 339: 336: 254: 251: 231:wiggle-matched 225: 222: 213:marker horizon 208: 205: 169:marker horizon 108: 107: 101: 97: 96: 93: 87: 86: 69: 65: 64: 59: 53: 52: 49: 45: 44: 39: 35: 34: 26: 25: 15: 9: 6: 4: 3: 2: 1886: 1875: 1872: 1870: 1867: 1865: 1862: 1860: 1857: 1855: 1852: 1850: 1847: 1845: 1842: 1840: 1837: 1835: 1832: 1830: 1827: 1825: 1822: 1820: 1817: 1816: 1814: 1807: 1804: 1768: 1764: 1760: 1756: 1752: 1748: 1744: 1740: 1733: 1725: 1721: 1717: 1713: 1709: 1705: 1701: 1697: 1693: 1689: 1685: 1678: 1662: 1657: 1652: 1647: 1643: 1639: 1635: 1631: 1627: 1620: 1605: 1601: 1597: 1593: 1589: 1585: 1581: 1574: 1559: 1555: 1551: 1547: 1543: 1536: 1521: 1517: 1513: 1509: 1505: 1501: 1497: 1490: 1475: 1471: 1467: 1463: 1459: 1455: 1451: 1444: 1429: 1425: 1421: 1417: 1413: 1409: 1405: 1401: 1397: 1390: 1388: 1372: 1368: 1364: 1360: 1356: 1352: 1348: 1341: 1333: 1329: 1324: 1319: 1315: 1311: 1307: 1300: 1298: 1289: 1285: 1281: 1277: 1273: 1269: 1265: 1261: 1257: 1253: 1249: 1245: 1241: 1233: 1231: 1229: 1213: 1209: 1205: 1201: 1197: 1193: 1189: 1182: 1180: 1178: 1162: 1158: 1154: 1150: 1146: 1142: 1138: 1131: 1129: 1127: 1118: 1111: 1109: 1107: 1091: 1087: 1083: 1079: 1075: 1071: 1067: 1060: 1044: 1039: 1035: 1031: 1027: 1023: 1019: 1012: 1010: 1008: 1006: 1004: 1002: 1000: 998: 996: 994: 992: 976: 972: 968: 964: 959: 954: 950: 946: 942: 938: 934: 930: 926: 919: 917: 915: 906: 902: 898: 894: 890: 886: 885:Bull Volcanol 879: 877: 875: 859: 855: 851: 847: 843: 839: 835: 828: 813: 809: 805: 801: 797: 793: 789: 785: 781: 774: 766: 762: 758: 754: 749: 744: 739: 734: 730: 726: 722: 718: 714: 706: 704: 702: 693: 689: 688: 683: 677: 675: 670: 660: 657: 655: 652: 649: 646: 645: 634: 632: 629:It snowed in 628: 626:24. Oct, 948 625: 624: 620: 617: 614: 613: 609: 606: 604:25. Dec, 947 603: 602: 598: 595: 593:16. Dec, 947 592: 591: 587: 584: 582:14. May, 947 581: 580: 576: 573: 570: 569: 566: 562: 560: 556: 554:31. Jan, 947 553: 552: 548: 545: 541: 537: 534: 533: 529: 527: 524: 522:28. Nov, 946 521: 520: 517: 514: 511: 508: 507: 503: 500: 497: 496: 493: 491: 487: 477: 473: 471: 467: 463: 458: 456: 452: 448: 438: 436: 426: 423: 417: 415: 404: 402: 391: 389: 385: 374: 372: 366: 364: 360: 357: 353: 349: 345: 335: 332: 330: 326: 325:Nihon Kiryaku 322: 318: 314: 309: 306: 304: 300: 296: 291: 288: 286: 282: 278: 277: 271: 268: 266: 262: 261: 260:Nihon Kiryaku 250: 247: 244: 240: 236: 232: 221: 219: 214: 204: 202: 198: 197:Mount Rinjani 194: 190: 189:Lake Ilopango 186: 182: 178: 174: 170: 166: 162: 158: 154: 149: 147: 143: 139: 135: 131: 127: 123: 119: 118:stratovolcano 115: 106: 102: 98: 94: 92: 88: 85: 81: 77: 73: 70: 66: 63: 60: 58: 54: 50: 46: 43: 40: 36: 32: 27: 22: 19: 1776: 1742: 1738: 1732: 1694:(1): 54–59. 1691: 1687: 1677: 1665:. Retrieved 1661:2158/1279650 1633: 1629: 1619: 1607:. Retrieved 1587: 1583: 1573: 1561:. Retrieved 1549: 1545: 1535: 1523:. Retrieved 1503: 1499: 1489: 1477:. Retrieved 1457: 1453: 1443: 1431:. Retrieved 1403: 1399: 1374:. Retrieved 1354: 1350: 1340: 1313: 1309: 1247: 1243: 1215:. Retrieved 1195: 1191: 1164:. Retrieved 1144: 1140: 1116: 1093:. Retrieved 1073: 1069: 1059: 1047:. Retrieved 1025: 1021: 978:. Retrieved 958:10356/160061 932: 928: 888: 884: 861:. Retrieved 841: 837: 827: 815:. Retrieved 787: 783: 773: 720: 716: 685: 615:6. Jan, 948 574:Warm spring 535:7. Dec, 946 509:4. Apr, 945 486:stratosphere 483: 474: 459: 444: 432: 422:paleovalleys 418: 410: 401:interbedding 397: 380: 367: 341: 333: 328: 324: 320: 316: 310: 307: 298: 294: 292: 289: 280: 274: 272: 269: 264: 258: 256: 239:Miyake event 227: 210: 165:Sea of Japan 150: 133: 129: 113: 111: 18: 1798: / 1786:128°04′37″E 1357:: 104–119. 1147:: 301–307. 723:: 164–171. 157:Heaven Lake 122:North Korea 84:North Korea 51:late 946 CE 1813:Categories 1783:41°59′35″N 935:(11): 74. 748:1887/71591 665:References 648:El ChichĂłn 618:Glaze ice 607:Glaze ice 596:Glaze ice 348:Common Era 313:comenditic 199:, and the 185:Lake TaupĹŤ 161:ignimbrite 1767:129296868 1716:0094-8276 1520:129624918 1272:1476-4687 1076:: 45–59. 975:239461051 967:1432-0819 905:129624918 812:247963699 757:0277-3791 526:Glaze ice 447:volatiles 356:trachytic 352:Rhyolitic 305:, Japan: 243:trachytic 1724:37314098 1667:26 April 1609:26 April 1563:26 April 1525:26 April 1479:26 April 1474:55255517 1433:26 April 1428:16844649 1376:26 April 1332:53985654 1280:26153860 1217:26 April 1166:26 April 1095:26 April 1049:26 April 1028:(1): 6. 980:26 April 863:26 April 817:26 April 765:56233614 642:See also 466:chlorine 462:fluorine 451:aerosols 276:Goryeosa 68:Location 1747:Bibcode 1696:Bibcode 1638:Bibcode 1592:Bibcode 1554:Bibcode 1408:Bibcode 1359:Bibcode 1288:4462058 1252:Bibcode 1200:Bibcode 1149:Bibcode 1078:Bibcode 1030:Bibcode 937:Bibcode 846:Bibcode 792:Bibcode 725:Bibcode 631:Kaifeng 504:Source 414:erosion 384:Plinian 285:KaesĹŹng 153:caldera 62:Plinian 38:Volcano 1765:  1722:  1714:  1518:  1472:  1426:  1330:  1286:  1278:  1270:  1244:Nature 973:  965:  903:  838:Lithos 810:  763:  755:  650:, 1982 559:famine 542:, and 470:sulfur 468:, and 388:surges 323:) and 191:, the 179:, the 100:Impact 1763:S2CID 1720:S2CID 1516:S2CID 1470:S2CID 1328:S2CID 1284:S2CID 971:S2CID 901:S2CID 808:S2CID 761:S2CID 498:Date 363:magma 195:near 177:Thera 146:VEI 6 126:China 76:China 72:Jilin 1712:ISSN 1669:2024 1611:2024 1565:2024 1550:2014 1527:2024 1481:2024 1435:2024 1424:PMID 1378:2024 1276:PMID 1268:ISSN 1219:2024 1168:2024 1097:2024 1051:2024 982:2024 963:ISSN 865:2024 819:2024 753:ISSN 544:rime 449:and 354:and 303:Nara 207:Date 124:and 116:, a 112:The 78:and 57:Type 48:Date 1819:946 1755:doi 1704:doi 1656:hdl 1646:doi 1600:doi 1588:442 1508:doi 1462:doi 1416:doi 1404:364 1367:doi 1355:177 1318:doi 1260:doi 1248:523 1208:doi 1196:510 1157:doi 1145:150 1086:doi 1074:343 1038:doi 953:hdl 945:doi 893:doi 854:doi 800:doi 788:595 743:hdl 733:doi 721:158 540:fog 267:): 183:of 175:of 140:in 132:or 91:VEI 1815:: 1761:. 1753:. 1743:76 1741:. 1718:. 1710:. 1702:. 1692:40 1690:. 1686:. 1654:. 1644:. 1634:14 1632:. 1628:. 1598:. 1590:. 1586:. 1582:. 1552:. 1548:. 1544:. 1514:. 1504:61 1502:. 1498:. 1468:. 1458:45 1456:. 1452:. 1422:. 1414:. 1402:. 1398:. 1386:^ 1365:. 1353:. 1349:. 1326:. 1314:41 1312:. 1308:. 1296:^ 1282:. 1274:. 1266:. 1258:. 1246:. 1242:. 1227:^ 1206:. 1194:. 1190:. 1176:^ 1155:. 1143:. 1139:. 1125:^ 1105:^ 1084:. 1072:. 1068:. 1036:. 1024:. 1020:. 990:^ 969:. 961:. 951:. 943:. 933:83 931:. 927:. 913:^ 899:. 889:61 887:. 873:^ 852:. 842:96 840:. 836:. 806:. 798:. 790:. 786:. 782:. 759:. 751:. 741:. 731:. 719:. 715:. 700:^ 690:. 684:. 673:^ 492:. 464:, 203:. 148:. 82:, 74:, 1769:. 1757:: 1749:: 1726:. 1706:: 1698:: 1671:. 1658:: 1648:: 1640:: 1613:. 1602:: 1594:: 1567:. 1556:: 1529:. 1510:: 1483:. 1464:: 1437:. 1418:: 1410:: 1380:. 1369:: 1361:: 1334:. 1320:: 1290:. 1262:: 1254:: 1221:. 1210:: 1202:: 1170:. 1159:: 1151:: 1099:. 1088:: 1080:: 1053:. 1040:: 1032:: 1026:5 984:. 955:: 947:: 939:: 907:. 895:: 867:. 856:: 848:: 821:. 802:: 794:: 767:. 745:: 735:: 727:: 694:. 327:( 319:( 297:( 279:( 263:( 237:( 95:6

Index


Paektu Mountain
Type
Plinian
Jilin
China
Ryanggang Province
North Korea
VEI
climate changes
stratovolcano
North Korea
China
volcanic eruptions
recorded history
VEI 6
caldera
Heaven Lake
ignimbrite
Sea of Japan
marker horizon
Minoan eruption
Thera
Hatepe eruption
Lake TaupĹŤ
Lake Ilopango
1257 eruption of Mount Samalas
Mount Rinjani
1815 eruption of Mount Tambora
marker horizon

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑