Knowledge

Active transport

Source đź“ť

564:). The energy derived from the pumping of protons across a cell membrane is frequently used as the energy source in secondary active transport. In humans, sodium (Na) is a commonly cotransported ion across the plasma membrane, whose electrochemical gradient is then used to power the active transport of a second ion or molecule against its gradient. In bacteria and small yeast cells, a commonly cotransported ion is hydrogen. Hydrogen pumps are also used to create an electrochemical gradient to carry out processes within cells such as in the 313: 489:) comprise a large and diverse protein family, often functioning as ATP-driven pumps. Usually, there are several domains involved in the overall transporter protein's structure, including two nucleotide-binding domains that constitute the ATP-binding motif and two hydrophobic transmembrane domains that create the "pore" component. In broad terms, ABC transporters are involved in the import or export of molecules across a cell membrane; yet within the protein family there is an extensive range of function. 645:. But the ATPase exports calcium ions more slowly: only 30 per second versus 2000 per second by the exchanger. The exchanger comes into service when the calcium concentration rises steeply or "spikes" and enables rapid recovery. This shows that a single type of ion can be transported by several enzymes, which need not be active all the time (constitutively), but may exist to meet specific, intermittent needs. 2126: 607: 500:), the ABC transporter PhABCG1 is involved in the active transport of volatile organic compounds. PhABCG1 is expressed in the petals of open flowers. In general, volatile compounds may promote the attraction of seed-dispersal organisms and pollinators, as well as aid in defense, signaling, allelopathy, and protection. To study the protein PhABCG1, transgenic petunia 227:. There are two forms of active transport, primary active transport and secondary active transport. In primary active transport, the proteins involved are pumps that normally use chemical energy in the form of ATP. Secondary active transport, however, makes use of potential energy, which is usually derived through exploitation of an 963:
Story of Discovery: SGLT2 Inhibitors: Harnessing the Kidneys to Help Treat Diabetes.” National Institute of Diabetes and Digestive and Kidney Diseases, U.S. Department of Health and Human Services, www.niddk.nih.gov/news/research-updates/Pages/story-discovery-SGLT2-inhibitors-harnessing-kidneys-help-treat-diabetes.aspx.
239:. The difference between passive transport and active transport is that the active transport requires energy, and moves substances against their respective concentration gradient, whereas passive transport requires no cellular energy and moves substances in the direction of their respective concentration gradient. 190:
treatment is sodium-glucose cotransporters. These transporters were discovered by scientists at the National Health Institute. These scientists had noticed a discrepancy in the absorption of glucose at different points in the kidney tubule of a rat. The gene was then discovered for intestinal glucose
522:
BY2 cells and is expressed in the presence of microbial elicitors. NtPDR1 is localized in the root epidermis and aerial trichomes of the plant. Experiments using antibodies specifically targeting NtPDR1 followed by Western blotting allowed for this determination of localization. Furthermore, it is
517:
Additionally in plants, ABC transporters may be involved in the transport of cellular metabolites. Pleiotropic Drug Resistance ABC transporters are hypothesized to be involved in stress response and export antimicrobial metabolites. One example of this type of ABC transporter is the protein NtPDR1.
492:
In plants, ABC transporters are often found within cell and organelle membranes, such as the mitochondria, chloroplast, and plasma membrane. There is evidence to support that plant ABC transporters play a direct role in pathogen response, phytohormone transport, and detoxification. Furthermore,
745:
are then used to digest the molecules absorbed by this process. Substances that enter the cell via signal mediated electrolysis include proteins, hormones and growth and stabilization factors. Viruses enter cells through a form of endocytosis that involves their outer membrane fusing with the
72:
uses ATP to pump sodium ions out of the cell and potassium ions into the cell, maintaining a concentration gradient essential for cellular function. Active transport is highly selective and regulated, with different transporters specific to different molecules or ions. Dysregulation of active
1455:
et al. 1960). The key point here was 'flux coupling', the cotransport of sodium and glucose in the apical membrane of the small intestinal epithelial cell. Half a century later this idea has turned into one of the most studied of all transporter proteins (SGLT1), the sodium–glucose
304:) ions exist in the cytosol of plant cells, and need to be transported into the vacuole. While the vacuole has channels for these ions, transportation of them is against the concentration gradient, and thus movement of these ions is driven by hydrogen pumps, or proton pumps. 93:
of molecules moving down a gradient, active transport uses cellular energy to move them against a gradient, polar repulsion, or other resistance. Active transport is usually associated with accumulating high concentrations of molecules that the cell needs, such as
508:
expression levels. In these transgenic lines, a decrease in emission of volatile compounds was observed. Thus, PhABCG1 is likely involved in the export of volatile compounds. Subsequent experiments involved incubating control and transgenic lines that expressed
637:, which allows three sodium ions into the cell to transport one calcium out. This antiporter mechanism is important within the membranes of cardiac muscle cells in order to keep the calcium concentration in the cytoplasm low. Many cells also possess 324:
Primary active transport, also called direct active transport, directly uses metabolic energy to transport molecules across a membrane. Substances that are transported across the cell membrane by primary active transport include metal ions, such as
547:
created by pumping ions in/out of the cell. Permitting one ion or molecule to move down an electrochemical gradient, but possibly against the concentration gradient where it is more concentrated to that where it is less concentrated, increases
513:
to test for transport activity involving different substrates. Ultimately, PhABCG1 is responsible for the protein-mediated transport of volatile organic compounds, such as benzyl alcohol and methylbenzoate, across the plasma membrane.
1391:
in 1961 was the first to formulate the cotransport concept to explain active transport . Specifically, he proposed that the accumulation of glucose in the intestinal epithelium across the brush border membrane was coupled to downhill
768:
Exocytosis involves the removal of substances through the fusion of the outer cell membrane and a vesicle membrane. An example of exocytosis would be the transmission of neurotransmitters across a synapse between brain cells.
583:
presented for the first time his discovery of the sodium-glucose cotransport as the mechanism for intestinal glucose absorption. Crane's discovery of cotransport was the first ever proposal of flux coupling in biology.
258:, meaning that one of the two substances is transported against its concentration gradient, utilizing the energy derived from the transport of another ion (mostly Na, K or H ions) down its concentration gradient. 2010: 950:
Inzucchi, Silvio E et al. “SGLT-2 Inhibitors and Cardiovascular Risk: Proposed Pathways and Review of Ongoing Outcome Trials.” Diabetes & Vascular Disease Research 12.2 (2015): 90–100. PMC. Web. 11 Nov.
231:
gradient. The energy created from one ion moving down its electrochemical gradient is used to power the transport of another ion moving against its electrochemical gradient. This involves pore-forming
368:. The sodium-potassium pump maintains the membrane potential by moving three Na ions out of the cell for every two K ions moved into the cell. Other sources of energy for primary active transport are 622:
In an antiporter two species of ions or other solutes are pumped in opposite directions across a membrane. One of these species is allowed to flow from high to low concentration, which yields the
1403:
transport cross the brush border. This hypothesis was rapidly tested, refined and extended encompass the active transport of a diverse range of molecules and ions into virtually every cell type.
737:. In the case of endocytosis, the cellular membrane folds around the desired materials outside the cell. The ingested particle becomes trapped within a pouch, known as a vesicle, inside the 269:) and transport them across the cell membrane. Because energy is required in this process, it is known as 'active' transport. Examples of active transport include the transportation of 73:
transport can lead to various disorders, including cystic fibrosis, caused by a malfunctioning chloride channel, and diabetes, resulting from defects in glucose transport into cells.
388:
to move protons across the inner mitochondrial membrane against their concentration gradient. An example of primary active transport using light energy are the proteins involved in
700:
This mechanism uses the absorption of sugar through the walls of the intestine to pull water in along with it. Defects in SGLT2 prevent effective reabsorption of glucose, causing
1687:
Zhou, L; Cryan, EV; D'Andrea, MR; Belkowski, S; Conway, BR; Demarest, KT (1 October 2003). "Human cardiomyocytes express high level of Na+/glucose cotransporter 1 (SGLT2)".
1556:"Depolarization-induced calcium responses in sympathetic neurons: relative contributions from Ca entry, extrusion, ER/mitochondrial Ca uptake and release, and Ca buffering" 1603:
Wright, EM; Loo, DD; Panayotova-Heiermann, M; Lostao, MP; Hirayama, BH; Mackenzie, B; Boorer, K; Zampighi, G (November 1994). "'Active' sugar transport in eukaryotes".
2007: 68:
Active transport is essential for various physiological processes, such as nutrient uptake, hormone secretion, and nerve impulse transmission. For example, the
65:, which allows molecules or ions to move down their concentration gradient, from an area of high concentration to an area of low concentration, without energy. 265:
the concentration gradient), specific transmembrane carrier proteins are required. These proteins have receptors that bind to specific molecules (e.g.,
1335:; Miller, D.; Bihler, I. (1961). "The restrictions on possible mechanisms of intestinal transport of sugars". In Kleinzeller, A.; Kotyk, A. (eds.). 1281: 1036: 1511:
Strehler, EE; Zacharias, DA (January 2001). "Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps".
1468:
Yu, SP; Choi, DW (June 1997). "Na-Ca exchange currents in cortical neurons: concomitant forward and reverse operation and effect of glutamate".
261:
If substrate molecules are moving from areas of lower concentration to areas of higher concentration (i.e., in the opposite direction as, or
191:
transport protein and linked to these membrane sodium glucose cotransport systems. The first of these membrane transport proteins was named
2163: 972: 812: 761:
In pinocytosis, cells engulf liquid particles (in humans this process occurs in the small intestine, where cells engulf fat droplets).
523:
likely that the protein NtPDR1 actively transports out antimicrobial diterpene molecules, which are toxic to the cell at high levels.
1340: 641:, which can operate at lower intracellular concentrations of calcium and sets the normal or resting concentration of this important 2136: 164:
Rosenberg (1948) formulated the concept of active transport based on energetic considerations, but later it would be redefined.
254:, two substrates are transported in the same direction across the membrane. Antiport and symport processes are associated with 2107: 1920: 1067: 106:. Examples of active transport include the uptake of glucose in the intestines in humans and the uptake of mineral ions into 2293: 1018: 661:
from high to low concentration to move another molecule uphill from low concentration to high concentration (against its
989:
Lodish H, Berk A, Zipursky SL, et al. Molecular Cell Biology. 4th edition. New York: W. H. Freeman; 2000. Section 15.6,
427:
induce a conformational (shape) change that drives the hydrogen ions to transport against the electrochemical gradient.
1947:
Paston, Ira; Willingham, Mark C. (1985). Endocytosis. Springer, Boston, MA. pp 1–44. doi: 10.1007/978-1-4615-6904-6_1.
1058:
Reese, Jane B.; Urry, Lisa A.; Cain, Michael L.; Wasserman, Steven A.; Minorsky, Peter V.; Jackson, Robert B. (2014).
1002:
Lodish H, Berk A, Zipursky SL, et al. Molecular Cell Biology. 4th edition. New York: W. H. Freeman; 2000. Chapter 15,
2130: 1952: 1092: 669: 266: 223:
of the membrane is impermeable to the substance moved or because the substance is moved against the direction of its
493:
certain plant ABC transporters may function in actively exporting volatile compounds and antimicrobial metabolites.
2156: 1318:
Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002.
1305:
Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002.
778: 486: 1730:
Poppe, R; Karbach, U; Gambaryan, S; Wiesinger, H; Lutzenburg, M; Kraemer, M; Witte, OW; Koepsell, H (July 1997).
734: 793: 288:. Active transport enables these cells to take up salts from this dilute solution against the direction of the 45:. Active transport requires cellular energy to achieve this movement. There are two types of active transport: 1936:
Transport into the Cell from the Plasma Membrane: Endocytosis – Molecular Biology of the Cell – NCBI Bookshelf
2313: 277:
into the cell by the sodium-potassium pump. Active transport often takes place in the internal lining of the
1935: 38: 200: 2149: 841:
Berlin: Reimer. (Vol. 1, Part 1, 1848; Vol. 1, Part 2, 1849; Vol. 2, Part 1, 1860; Vol. 2, Part 2, 1884).
284:
Plants need to absorb mineral salts from the soil or other sources, but these salts exist in very dilute
1199: 2362: 2261: 1289: 1044: 255: 1235:"NtPDR1, a plasma membrane ABC transporter from Nicotiana tabacum, is involved in diterpene transport" 2357: 544: 69: 1911:
Reece, Jane; Urry, Lisa; Cain, Michael; Wasserman, Steven; Minorsky, Peter; Jackson, Robert (2014).
2256: 697: 630: 565: 536: 412: 381: 176: 58: 1165:"Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter" 684:
is located in the small intestines, heart, and brain. It is also located in the S3 segment of the
2038: 783: 1337:
Membrane Transport and Metabolism. Proceedings of a Symposium held in Prague, August 22–27, 1960
662: 540: 289: 224: 130: 50: 42: 2223: 2208: 2090:
Lodish H.; Berk A.; Zipursky S.L.; Matsudaira P.; Baltimore D.; Darnell J.; LĂłpez D. (2000).
908:"On accumulation and active transport in biological systems. I. Thermodynamic considerations" 448: 317: 212: 180: 1830: 1176: 658: 569: 474: 285: 220: 123: 1915:(Tenth Addition ed.). United States of America: Pearson Education, Inc. p. 137. 1234: 626:
to drive the transport of the other solute from a low concentration region to a high one.
8: 2182: 219:
and allow it to move across the membrane when it otherwise would not, either because the
168: 1834: 1748: 1731: 1180: 2202: 2172: 2026: 1876:
Wright EM, Hirayama BA, Loo DF (2007). "Active sugar transport in health and disease".
1761: 1712: 1664: 1639: 1580: 1555: 1536: 1493: 1481: 1379: 1262: 1212: 1137: 1112: 883: 852: 393: 365: 216: 2190: 2103: 2096: 2068: 2064: 1990: 1982: 1978: 1948: 1916: 1893: 1889: 1858: 1853: 1818: 1796: 1753: 1704: 1669: 1620: 1585: 1528: 1485: 1438: 1371: 1254: 1216: 1204: 1142: 1088: 1063: 888: 788: 246:, one substrate is transported in one direction across the membrane while another is 82: 62: 1792: 1765: 1716: 1497: 1383: 1266: 941:"Jens C. Skou - Biographical". Nobelprize.org. Nobel Media AB 2014. Web. 11 Nov 2017 924: 907: 435:
and release of hydrogen ion then restores the carrier to its original conformation.
2198: 2060: 2008:
Cell : Two Major Process in Exchange Of Materials Between Cell And Environment
1974: 1885: 1848: 1838: 1788: 1743: 1696: 1659: 1651: 1612: 1575: 1567: 1540: 1520: 1477: 1447:
the insight from this time that remains in all current text books is the notion of
1433: 1428: 1416: 1363: 1246: 1194: 1184: 1132: 1124: 919: 878: 868: 642: 535:, energy is used to transport molecules across a membrane; however, in contrast to 501: 138: 27: 680:) molecule into the cell for every two sodium ions it imports into the cell. This 380:). An example of primary active transport using redox energy is the mitochondrial 312: 186:
One category of cotransporters that is especially prominent in research regarding
2014: 1524: 1452: 1448: 1388: 1354:
Wright EM, Turk E (February 2004). "The sodium/glucose cotransport family SLC5".
1332: 1022: 685: 580: 432: 420: 416: 361: 342: 278: 228: 146: 20: 1015: 2091: 1823:
Proceedings of the National Academy of Sciences of the United States of America
1319: 1306: 1003: 990: 638: 408: 389: 158: 86: 1640:"Nutrient regulation of human intestinal sugar transporter (SGLT2) expression" 1367: 1250: 126:
suggested the possibility of active transport of substances across membranes.
2351: 2334: 2288: 1986: 1843: 853:"The influence of light, temperature, and other conditions on the ability of 598:
depending on whether the substances move in the same or opposite directions.
587: 573: 532: 444: 236: 142: 35: 2051:
Jahn, Reinhard; SĂĽdhof, Thomas C. (1999). "Membrane Fusion and Exocytosis".
1965:
Jahn, Reinhard; SĂĽdhof, Thomas C. (1999). "Membrane Fusion and Exocytosis".
1451:
published originally as an appendix to a symposium paper published in 1960 (
1189: 1164: 19:
This article is about transport in cellular biology. For human systems, see
2318: 2298: 2072: 1994: 1897: 1800: 1708: 1589: 1532: 1442: 1375: 1258: 1208: 1146: 892: 754: 730: 561: 452: 424: 2089: 1862: 1757: 1673: 1624: 1616: 1571: 1489: 2308: 2303: 2280: 2218: 873: 750: 722: 713: 456: 346: 247: 39:
from a region of lower concentration to a region of higher concentration
1655: 16:
Cellular molecule transport mechanism against the concentration gradient
2328: 2251: 726: 717: 701: 634: 615: 595: 557: 428: 243: 154: 103: 1700: 392:
that use the energy of photons to create a proton gradient across the
2246: 2241: 2141: 1128: 1062:(Tenth ed.). United States: Pearson Education Inc. p. 135. 738: 681: 677: 654: 611: 591: 334: 330: 274: 251: 172: 107: 746:
membrane of the cell. This forces the viral DNA into the host cell.
1602: 742: 467: 461: 293: 232: 187: 2271: 2213: 689: 673: 623: 549: 338: 297: 119: 99: 90: 1732:"Expression of the Na+-D-glucose cotransporter SGLT1 in neurons" 2125: 1817:
Loo, DD; Zeuthen, T; Chandy, G; Wright, EM (12 November 1996).
693: 553: 373: 357: 353: 326: 270: 192: 1729: 1686: 733:
that move materials into and out of cells, respectively, via
397: 377: 369: 196: 150: 134: 478: 385: 606: 1938:. Ncbi.nlm.nih.gov (2011-10-03). Retrieved on 2011-12-05. 665:). Both molecules are transported in the same direction. 95: 2092:"Section 15.6 Cotransport by Symporters and Antiporters" 1637: 2017:. Takdang Aralin (2009-10-26). Retrieved on 2011-12-05. 1819:"Cotransport of water by the Na+/glucose cotransporter" 805: 438: 360:. A primary ATPase universal to all animal life is the 76: 1910: 1816: 1057: 749:
Biologists distinguish two main types of endocytosis:
485:
Adenosine triphosphate-binding cassette transporters (
464:: mitochondrial ATP synthase, chloroplast ATP synthase 356:
that perform this type of transport are transmembrane
1779:
Wright EM (2001). "Renal Na-glucose cotransporters".
1638:
Dyer, J; Hosie, KB; Shirazi-Beechey, SP (July 1997).
850: 349:
to cross membranes and distribute through the body.
1553: 1417:"Facts, fantasies and fun in epithelial physiology" 975:. Buzzle.com (2010-05-14). Retrieved on 2011-12-05. 2095: 2041:. Courses.washington.edu. Retrieved on 2011-12-05. 1554:Patterson, M; Sneyd, J; Friel, DD (January 2007). 985: 983: 981: 396:and also to create reduction power in the form of 2044: 1875: 1510: 1331: 1301: 1299: 1111:Kang, Joohyun; Park, Jiyoung (December 6, 2011). 2349: 1320:Electron-Transport Chains and Their Proton Pumps 851:Hoagland, D R; Hibbard, P L; Davis, A R (1926). 978: 959: 957: 415:(from low to high hydrogen ion concentration). 411:is used to transport hydrogen ions against the 1812: 1810: 1307:Carrier Proteins and Active Membrane Transport 1296: 857:cells to concentrate halogens in the cell sap" 764:In phagocytosis, cells engulf solid particles. 34:is the movement of molecules or ions across a 2157: 1025:. Biologycorner.com. Retrieved on 2011-12-05. 937: 935: 531:In secondary active transport, also known as 526: 1200:11245.1/2a6bd9dd-ea94-4c25-95b8-7b16bea44e92 954: 403: 203:also played a prominent role in this field. 1807: 839:Untersuchungen ĂĽber thierische Elektricität 307: 2181:Mechanisms for chemical transport through 2164: 2150: 2050: 1964: 1353: 932: 320:is an example of primary active transport. 161:under controlled experimental conditions. 145:gradient and discovered the dependence of 1852: 1842: 1778: 1747: 1663: 1579: 1432: 1198: 1188: 1136: 1087:. Washington, DC: ASK PRESS. p. 65. 991:Cotransport by Symporters and Antiporters 923: 905: 882: 872: 2102:(4th ed.). New York: W.H. Freeman. 1162: 1110: 605: 518:This unique ABC transporter is found in 311: 1414: 1232: 2350: 2171: 1467: 1082: 2145: 1228: 1226: 1163:Adebesin, Funmilayo (June 30, 2017). 1158: 1156: 1106: 1104: 2294:Non-specific, adsorptive pinocytosis 1470:The European Journal of Neuroscience 668:An example is the glucose symporter 545:electrochemical potential difference 439:Types of primary active transporters 77:Active cellular transportation (ACT) 1749:10.1046/j.1471-4159.1997.69010084.x 1605:The Journal of Experimental Biology 13: 1482:10.1111/j.1460-9568.1997.tb01482.x 1223: 1153: 1101: 657:uses the downhill movement of one 504:lines were created with decreased 384:that uses the reduction energy of 341:. These charged particles require 14: 2374: 2118: 1560:The Journal of General Physiology 1279: 1233:Crouzet, Jerome (April 7, 2013). 1060:Tenth Edition, Campbell's Biology 1034: 707: 696:. Its mechanism is exploited in 539:, there is no direct coupling of 250:in the opposite direction. In a 61:. This process is in contrast to 2124: 2065:10.1146/annurev.biochem.68.1.863 1979:10.1146/annurev.biochem.68.1.863 1890:10.1111/j.1365-2796.2006.01746.x 1689:Journal of Cellular Biochemistry 779:ATP-binding cassette transporter 533:cotransport or coupled transport 2032: 2020: 2001: 1958: 1941: 1929: 1913:Tenth Addition Campbell Biology 1904: 1869: 1793:10.1152/ajprenal.2001.280.1.F10 1772: 1723: 1680: 1631: 1596: 1547: 1504: 1461: 1408: 1347: 1325: 1312: 1273: 1076: 1051: 1028: 1009: 1004:Transport across Cell Membranes 996: 925:10.3891/acta.chem.scand.02-0014 837:Du Bois-Reymond, E. (1848–84). 813:"The importance of homeostasis" 179:for his research regarding the 1434:10.1113/expphysiol.2007.037523 1286:Essentials of Human Physiology 1085:The Cell: A Molecular Approach 1041:Essentials of Human Physiology 966: 944: 899: 844: 831: 543:. Instead, it relies upon the 364:, which helps to maintain the 235:that form channels across the 1: 2314:Receptor-mediated endocytosis 2053:Annual Review of Biochemistry 1967:Annual Review of Biochemistry 799: 601: 552:and can serve as a source of 206: 195:followed by the discovery of 1878:Journal of Internal Medicine 1525:10.1152/physrev.2001.81.1.21 648: 133:investigated the ability of 7: 772: 698:glucose rehydration therapy 579:In August 1960, in Prague, 568:, an important function of 10: 2379: 2262:Secondary active transport 2137:Secondary Active Transport 1781:Am J Physiol Renal Physiol 1282:"Section 7/7ch05/7ch05p12" 1037:"Section 7/7ch05/7ch05p11" 711: 672:, which co-transports one 527:Secondary active transport 256:secondary active transport 113: 55:secondary active transport 18: 2327: 2279: 2270: 2232: 2189: 2179: 1736:Journal of Neurochemistry 1368:10.1007/s00424-003-1063-6 1341:Czech Academy of Sciences 1269:– via SpringerLink. 1251:10.1007/s11103-013-0053-0 1083:Cooper, Geoffrey (2009). 702:familial renal glucosuria 404:Model of active transport 2257:Primary active transport 2083: 2013:August 11, 2010, at the 1844:10.1073/pnas.93.23.13367 1113:"Plant ABC Transporters" 1021:August 24, 2011, at the 973:Active Transport Process 631:sodium-calcium exchanger 566:electron transport chain 537:primary active transport 413:electrochemical gradient 382:electron transport chain 308:Primary active transport 177:Nobel Prize in Chemistry 59:electrochemical gradient 47:primary active transport 2027:Pinocytosis: Definition 1239:Plant Molecular Biology 1190:10.1126/science.aan0826 784:Countercurrent exchange 2098:Molecular Cell Biology 1415:Boyd CA (March 2008). 663:concentration gradient 619: 321: 290:concentration gradient 225:concentration gradient 213:transmembrane proteins 131:Dennis Robert Hoagland 51:adenosine triphosphate 43:concentration gradient 2209:Facilitated diffusion 1617:10.1242/jeb.196.1.197 1572:10.1085/jgp.200609660 1513:Physiological Reviews 906:Rosenberg, T (1948). 741:. Often enzymes from 609: 590:can be classified as 449:sodium potassium pump 423:and the binding of a 362:sodium-potassium pump 318:sodium-potassium pump 315: 181:sodium-potassium pump 70:sodium-potassium pump 2183:biological membranes 2133:at Wikimedia Commons 2029:. biology-online.org 1117:The Arabidopsis Book 874:10.1085/jgp.10.1.121 572:that happens in the 570:cellular respiration 496:In petunia flowers ( 477:) transporter: MDR, 475:ATP binding cassette 273:out of the cell and 221:phospholipid bilayer 124:Emil du Bois-Reymond 1835:1996PNAS...9313367L 1656:10.1136/gut.41.1.56 1427:(3): 303–14 (304). 1343:. pp. 439–449. 1181:2017Sci...356.1386A 1175:(6345): 1386–1388. 169:Jens Christian Skou 2203:mediated transport 2173:Membrane transport 729:are both forms of 629:An example is the 620: 394:thylakoid membrane 322: 316:The action of the 2363:Biological matter 2345: 2344: 2341: 2340: 2191:Passive transport 2129:Media related to 2109:978-0-7167-3136-8 1922:978-0-321-77565-8 1701:10.1002/jcb.10631 1280:Nosek, Thomas M. 1069:978-0-321-77565-8 1035:Nosek, Thomas M. 789:Protein targeting 520:Nicotiana tabacum 470:: vacuolar ATPase 157:using innovative 110:cells of plants. 85:, which uses the 83:passive transport 63:passive transport 2370: 2358:Membrane biology 2277: 2276: 2234:Active transport 2199:Simple diffusion 2166: 2159: 2152: 2143: 2142: 2131:Active transport 2128: 2113: 2101: 2077: 2076: 2048: 2042: 2036: 2030: 2024: 2018: 2005: 1999: 1998: 1962: 1956: 1945: 1939: 1933: 1927: 1926: 1908: 1902: 1901: 1873: 1867: 1866: 1856: 1846: 1829:(23): 13367–70. 1814: 1805: 1804: 1776: 1770: 1769: 1751: 1727: 1721: 1720: 1684: 1678: 1677: 1667: 1635: 1629: 1628: 1600: 1594: 1593: 1583: 1551: 1545: 1544: 1508: 1502: 1501: 1465: 1459: 1458: 1436: 1412: 1406: 1405: 1402: 1401: 1400: 1351: 1345: 1344: 1333:Crane, Robert K. 1329: 1323: 1316: 1310: 1303: 1294: 1293: 1288:. Archived from 1277: 1271: 1270: 1245:(1–2): 181–192. 1230: 1221: 1220: 1202: 1192: 1160: 1151: 1150: 1140: 1129:10.1199/tab.0153 1108: 1099: 1098: 1080: 1074: 1073: 1055: 1049: 1048: 1043:. Archived from 1032: 1026: 1016:Active Transport 1013: 1007: 1000: 994: 987: 976: 970: 964: 961: 952: 948: 942: 939: 930: 929: 927: 912:Acta Chem. Scand 903: 897: 896: 886: 876: 848: 842: 835: 829: 828: 826: 824: 809: 643:second messenger 502:RNA interference 487:ABC transporters 155:metabolic energy 28:cellular biology 2378: 2377: 2373: 2372: 2371: 2369: 2368: 2367: 2348: 2347: 2346: 2337: 2323: 2266: 2228: 2185: 2175: 2170: 2121: 2116: 2110: 2086: 2080: 2049: 2045: 2037: 2033: 2025: 2021: 2015:Wayback Machine 2006: 2002: 1963: 1959: 1946: 1942: 1934: 1930: 1923: 1909: 1905: 1874: 1870: 1815: 1808: 1777: 1773: 1728: 1724: 1685: 1681: 1636: 1632: 1601: 1597: 1552: 1548: 1509: 1505: 1466: 1462: 1413: 1409: 1399: 1397: 1396: 1395: 1393: 1352: 1348: 1330: 1326: 1317: 1313: 1304: 1297: 1278: 1274: 1231: 1224: 1161: 1154: 1109: 1102: 1095: 1081: 1077: 1070: 1056: 1052: 1033: 1029: 1023:Wayback Machine 1014: 1010: 1001: 997: 988: 979: 971: 967: 962: 955: 949: 945: 940: 933: 904: 900: 861:J. Gen. Physiol 849: 845: 836: 832: 822: 820: 811: 810: 806: 802: 775: 720: 712:Main articles: 710: 686:proximal tubule 651: 639:calcium ATPases 624:entropic energy 604: 581:Robert K. Crane 529: 498:Petunia hybrida 441: 433:phosphate group 421:carrier protein 417:Phosphorylation 406: 310: 303: 292:. For example, 279:small intestine 229:electrochemical 209: 149:absorption and 116: 79: 24: 21:active mobility 17: 12: 11: 5: 2376: 2366: 2365: 2360: 2343: 2342: 2339: 2338: 2333: 2331: 2325: 2324: 2322: 2321: 2316: 2311: 2306: 2301: 2296: 2291: 2285: 2283: 2274: 2268: 2267: 2265: 2264: 2259: 2254: 2249: 2244: 2238: 2236: 2230: 2229: 2227: 2226: 2221: 2216: 2211: 2206: 2195: 2193: 2187: 2186: 2180: 2177: 2176: 2169: 2168: 2161: 2154: 2146: 2140: 2139: 2134: 2120: 2119:External links 2117: 2115: 2114: 2108: 2085: 2082: 2081: 2079: 2078: 2043: 2031: 2019: 2000: 1973:(1): 863–911. 1957: 1940: 1928: 1921: 1903: 1868: 1806: 1771: 1722: 1679: 1630: 1595: 1546: 1503: 1476:(6): 1273–81. 1460: 1456:cotransporter. 1407: 1398: 1346: 1324: 1311: 1295: 1292:on 2016-03-24. 1272: 1222: 1152: 1100: 1093: 1075: 1068: 1050: 1047:on 2016-03-24. 1027: 1008: 995: 977: 965: 953: 943: 931: 898: 867:(1): 121–126. 843: 830: 803: 801: 798: 797: 796: 791: 786: 781: 774: 771: 766: 765: 762: 731:bulk transport 709: 708:Bulk transport 706: 659:solute species 650: 647: 603: 600: 588:Cotransporters 528: 525: 483: 482: 471: 465: 459: 440: 437: 409:ATP hydrolysis 405: 402: 390:photosynthesis 366:cell potential 309: 306: 301: 215:recognize the 208: 205: 115: 112: 87:kinetic energy 78: 75: 15: 9: 6: 4: 3: 2: 2375: 2364: 2361: 2359: 2356: 2355: 2353: 2336: 2335:Degranulation 2332: 2330: 2326: 2320: 2317: 2315: 2312: 2310: 2307: 2305: 2302: 2300: 2297: 2295: 2292: 2290: 2289:Efferocytosis 2287: 2286: 2284: 2282: 2278: 2275: 2273: 2269: 2263: 2260: 2258: 2255: 2253: 2250: 2248: 2245: 2243: 2240: 2239: 2237: 2235: 2231: 2225: 2222: 2220: 2217: 2215: 2212: 2210: 2207: 2204: 2200: 2197: 2196: 2194: 2192: 2188: 2184: 2178: 2174: 2167: 2162: 2160: 2155: 2153: 2148: 2147: 2144: 2138: 2135: 2132: 2127: 2123: 2122: 2111: 2105: 2100: 2099: 2093: 2088: 2087: 2074: 2070: 2066: 2062: 2058: 2054: 2047: 2040: 2035: 2028: 2023: 2016: 2012: 2009: 2004: 1996: 1992: 1988: 1984: 1980: 1976: 1972: 1968: 1961: 1954: 1953:9781461569060 1950: 1944: 1937: 1932: 1924: 1918: 1914: 1907: 1899: 1895: 1891: 1887: 1883: 1879: 1872: 1864: 1860: 1855: 1850: 1845: 1840: 1836: 1832: 1828: 1824: 1820: 1813: 1811: 1802: 1798: 1794: 1790: 1786: 1782: 1775: 1767: 1763: 1759: 1755: 1750: 1745: 1741: 1737: 1733: 1726: 1718: 1714: 1710: 1706: 1702: 1698: 1695:(2): 339–46. 1694: 1690: 1683: 1675: 1671: 1666: 1661: 1657: 1653: 1649: 1645: 1641: 1634: 1626: 1622: 1618: 1614: 1610: 1606: 1599: 1591: 1587: 1582: 1577: 1573: 1569: 1565: 1561: 1557: 1550: 1542: 1538: 1534: 1530: 1526: 1522: 1518: 1514: 1507: 1499: 1495: 1491: 1487: 1483: 1479: 1475: 1471: 1464: 1457: 1454: 1450: 1444: 1440: 1435: 1430: 1426: 1422: 1418: 1411: 1404: 1390: 1385: 1381: 1377: 1373: 1369: 1365: 1361: 1357: 1356:PflĂĽgers Arch 1350: 1342: 1338: 1334: 1328: 1321: 1315: 1308: 1302: 1300: 1291: 1287: 1283: 1276: 1268: 1264: 1260: 1256: 1252: 1248: 1244: 1240: 1236: 1229: 1227: 1218: 1214: 1210: 1206: 1201: 1196: 1191: 1186: 1182: 1178: 1174: 1170: 1169:Plant Science 1166: 1159: 1157: 1148: 1144: 1139: 1134: 1130: 1126: 1122: 1118: 1114: 1107: 1105: 1096: 1094:9780878933006 1090: 1086: 1079: 1071: 1065: 1061: 1054: 1046: 1042: 1038: 1031: 1024: 1020: 1017: 1012: 1005: 999: 992: 986: 984: 982: 974: 969: 960: 958: 947: 938: 936: 926: 921: 917: 913: 909: 902: 894: 890: 885: 880: 875: 870: 866: 862: 858: 856: 847: 840: 834: 818: 814: 808: 804: 795: 794:Translocation 792: 790: 787: 785: 782: 780: 777: 776: 770: 763: 760: 759: 758: 756: 752: 747: 744: 740: 736: 732: 728: 724: 719: 715: 705: 703: 699: 695: 691: 687: 683: 679: 675: 671: 666: 664: 660: 656: 646: 644: 640: 636: 632: 627: 625: 617: 613: 608: 599: 597: 593: 589: 585: 582: 577: 576:of the cell. 575: 574:mitochondrion 571: 567: 563: 559: 555: 551: 546: 542: 538: 534: 524: 521: 515: 512: 507: 503: 499: 494: 490: 488: 480: 476: 472: 469: 466: 463: 460: 458: 454: 450: 446: 445:P-type ATPase 443: 442: 436: 434: 431:of the bound 430: 426: 422: 418: 414: 410: 401: 399: 395: 391: 387: 383: 379: 375: 371: 367: 363: 359: 355: 350: 348: 344: 340: 336: 332: 328: 319: 314: 305: 299: 295: 291: 287: 282: 280: 276: 272: 268: 264: 259: 257: 253: 249: 248:cotransported 245: 240: 238: 237:cell membrane 234: 230: 226: 222: 218: 214: 204: 202: 198: 194: 189: 184: 182: 178: 175:received the 174: 170: 165: 162: 160: 159:model systems 156: 152: 151:translocation 148: 144: 143:concentration 140: 136: 132: 127: 125: 122:physiologist 121: 118:In 1848, the 111: 109: 105: 101: 97: 92: 88: 84: 74: 71: 66: 64: 60: 57:that uses an 56: 52: 48: 44: 41:—against the 40: 37: 36:cell membrane 33: 29: 22: 2319:Transcytosis 2299:Phagocytosis 2233: 2097: 2056: 2052: 2046: 2039:Phagocytosis 2034: 2022: 2003: 1970: 1966: 1960: 1943: 1931: 1912: 1906: 1884:(1): 32–43. 1881: 1877: 1871: 1826: 1822: 1787:(1): F10–8. 1784: 1780: 1774: 1742:(1): 84–94. 1739: 1735: 1725: 1692: 1688: 1682: 1647: 1643: 1633: 1608: 1604: 1598: 1566:(1): 29–56. 1563: 1559: 1549: 1519:(1): 21–50. 1516: 1512: 1506: 1473: 1469: 1463: 1449:Robert Crane 1446: 1424: 1421:Exp. Physiol 1420: 1410: 1387: 1362:(5): 510–8. 1359: 1355: 1349: 1336: 1327: 1314: 1290:the original 1285: 1275: 1242: 1238: 1172: 1168: 1120: 1116: 1084: 1078: 1059: 1053: 1045:the original 1040: 1030: 1011: 998: 968: 946: 915: 911: 901: 864: 860: 854: 846: 838: 833: 821:. Retrieved 816: 807: 767: 755:phagocytosis 748: 721: 667: 652: 628: 621: 610:Function of 586: 578: 562:ATP synthase 530: 519: 516: 510: 505: 497: 495: 491: 484: 453:calcium pump 425:hydrogen ion 407: 352:Most of the 351: 347:ion channels 323: 283: 262: 260: 241: 211:Specialized 210: 201:Robert Krane 185: 166: 163: 128: 117: 89:and natural 80: 67: 54: 46: 31: 25: 2309:Potocytosis 2304:Pinocytosis 2281:Endocytosis 2059:: 863–911. 1650:(1): 56–9. 1611:: 197–212. 751:pinocytosis 723:Endocytosis 714:Endocytosis 616:antiporters 596:antiporters 457:proton pump 372:energy and 171:, a Danish 104:amino acids 53:(ATP), and 2352:Categories 2329:Exocytosis 2252:Antiporter 1339:. Prague: 800:References 727:exocytosis 718:Exocytosis 635:antiporter 612:symporters 602:Antiporter 592:symporters 558:metabolism 429:Hydrolysis 244:antiporter 207:Background 141:against a 137:to absorb 49:that uses 2247:Symporter 2242:Uniporter 1987:0066-4154 1217:206658803 1123:: e0153. 918:: 14–33. 743:lysosomes 739:cytoplasm 682:symporter 678:galactose 655:symporter 649:Symporter 560:(e.g. in 343:ion pumps 296:(Cl) and 275:potassium 252:symporter 217:substance 173:physician 167:In 1997, 129:In 1926, 108:root hair 2224:Carriers 2219:Channels 2201:(or non- 2073:10872468 2011:Archived 1995:10872468 1898:17222166 1801:11133510 1766:34558770 1717:21908010 1709:14505350 1590:17190902 1533:11152753 1498:23146698 1443:18192340 1384:41985805 1376:12748858 1267:12276939 1259:23564360 1209:28663500 1147:22303277 1019:Archived 893:19872303 823:23 April 773:See also 735:vesicles 688:in each 468:V-ATPase 462:F-ATPase 376:energy ( 294:chloride 286:solution 233:proteins 188:diabetes 147:nutrient 2272:Cytosis 2214:Osmosis 1863:8917597 1831:Bibcode 1758:9202297 1674:9274472 1665:1027228 1625:7823022 1581:2151609 1541:9062253 1490:9215711 1177:Bibcode 1138:3268509 884:2140878 855:Nitella 817:Science 694:kidneys 692:in the 690:nephron 674:glucose 550:entropy 511:PhABCG1 506:PhABCG1 419:of the 358:ATPases 354:enzymes 298:nitrate 267:glucose 263:against 114:History 100:glucose 91:entropy 81:Unlike 32:active 2106:  2071:  1993:  1985:  1951:  1919:  1896:  1861:  1851:  1799:  1764:  1756:  1715:  1707:  1672:  1662:  1623:  1588:  1578:  1539:  1531:  1496:  1488:  1441:  1382:  1374:  1265:  1257:  1215:  1207:  1145:  1135:  1091:  1066:  891:  881:  554:energy 481:, etc. 374:photon 337:, and 271:sodium 242:In an 135:plants 120:German 2084:Notes 1854:24099 1762:S2CID 1713:S2CID 1537:S2CID 1494:S2CID 1453:Crane 1389:Crane 1380:S2CID 1263:S2CID 1213:S2CID 670:SGLT1 473:ABC ( 398:NADPH 378:light 370:redox 197:SGLT2 193:SGLT1 139:salts 2104:ISBN 2069:PMID 1991:PMID 1983:ISSN 1949:ISBN 1917:ISBN 1894:PMID 1859:PMID 1797:PMID 1754:PMID 1705:PMID 1670:PMID 1621:PMID 1586:PMID 1529:PMID 1486:PMID 1439:PMID 1372:PMID 1255:PMID 1205:PMID 1143:PMID 1089:ISBN 1064:ISBN 951:2017 889:PMID 825:2013 819:. me 753:and 725:and 716:and 676:(or 614:and 594:and 556:for 479:CFTR 386:NADH 102:and 96:ions 2061:doi 1975:doi 1886:doi 1882:261 1849:PMC 1839:doi 1789:doi 1785:280 1744:doi 1697:doi 1660:PMC 1652:doi 1644:Gut 1613:doi 1609:196 1576:PMC 1568:doi 1564:129 1521:doi 1478:doi 1429:doi 1364:doi 1360:447 1247:doi 1195:hdl 1185:doi 1173:356 1133:PMC 1125:doi 920:doi 879:PMC 869:doi 633:or 541:ATP 345:or 300:(NO 153:on 26:In 2354:: 2094:. 2067:. 2057:68 2055:. 1989:. 1981:. 1971:68 1969:. 1892:. 1880:. 1857:. 1847:. 1837:. 1827:93 1825:. 1821:. 1809:^ 1795:. 1783:. 1760:. 1752:. 1740:69 1738:. 1734:. 1711:. 1703:. 1693:90 1691:. 1668:. 1658:. 1648:41 1646:. 1642:. 1619:. 1607:. 1584:. 1574:. 1562:. 1558:. 1535:. 1527:. 1517:81 1515:. 1492:. 1484:. 1472:. 1445:. 1437:. 1425:93 1423:. 1419:. 1394:Na 1386:. 1378:. 1370:. 1358:. 1298:^ 1284:. 1261:. 1253:. 1243:82 1241:. 1237:. 1225:^ 1211:. 1203:. 1193:. 1183:. 1171:. 1167:. 1155:^ 1141:. 1131:. 1119:. 1115:. 1103:^ 1039:. 980:^ 956:^ 934:^ 914:. 910:. 887:. 877:. 865:10 863:. 859:. 815:. 757:. 704:. 653:A 455:, 451:, 447:: 400:. 339:Ca 335:Mg 333:, 329:, 327:Na 281:. 199:. 183:. 98:, 30:, 2205:) 2165:e 2158:t 2151:v 2112:. 2075:. 2063:: 1997:. 1977:: 1955:. 1925:. 1900:. 1888:: 1865:. 1841:: 1833:: 1803:. 1791:: 1768:. 1746:: 1719:. 1699:: 1676:. 1654:: 1627:. 1615:: 1592:. 1570:: 1543:. 1523:: 1500:. 1480:: 1474:9 1431:: 1366:: 1322:. 1309:. 1249:: 1219:. 1197:: 1187:: 1179:: 1149:. 1127:: 1121:9 1097:. 1072:. 1006:. 993:. 928:. 922:: 916:2 895:. 871:: 827:. 618:. 331:K 302:3 23:.

Index

active mobility
cellular biology
cell membrane
from a region of lower concentration to a region of higher concentration
concentration gradient
adenosine triphosphate
electrochemical gradient
passive transport
sodium-potassium pump
passive transport
kinetic energy
entropy
ions
glucose
amino acids
root hair
German
Emil du Bois-Reymond
Dennis Robert Hoagland
plants
salts
concentration
nutrient
translocation
metabolic energy
model systems
Jens Christian Skou
physician
Nobel Prize in Chemistry
sodium-potassium pump

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑