Knowledge

Additive category

Source 📝

2287: 2534: 2554: 2544: 1132: 723: 942: 580: 1489:. This concept makes sense, however: such matrices have no entries and so are completely determined by their size. While these matrices are rather degenerate, they do need to be included to get an additive category, since an additive category must have a zero object. 1127:{\displaystyle {\begin{pmatrix}f_{11}&f_{12}&\cdots &f_{1n}\\f_{21}&f_{22}&\cdots &f_{2n}\\\vdots &\vdots &\cdots &\vdots \\f_{m1}&f_{m2}&\cdots &f_{mn}\end{pmatrix}}} 1223: 718:{\displaystyle A\ {\xrightarrow {\quad \Delta \quad }}\ A\oplus A\oplus A\ {\xrightarrow {\alpha _{1}\,\oplus \,\alpha _{2}\,\oplus \,\alpha _{3}}}\ B\oplus B\oplus B\ {\xrightarrow {\quad \nabla \quad }}\ B} 139:
Thus an additive category is equivalently described as a preadditive category admitting all finitary products, or a preadditive category admitting all finitary coproducts.
285:
be a semiadditive category, so a category having all finitary biproducts. Then every hom-set has an addition, endowing it with the structure of an
1806: 1137: 1931: 2216: 1434:
This construction should be compared with the result that a ring is a preadditive category with just one object, shown
1886: 574:
This addition is both commutative and associative. The associativity can be seen by considering the composition
1722: 1266:
Thus additive categories can be seen as the most general context in which the algebra of matrices makes sense.
296:
is additive, then the two additions on hom-sets must agree. In particular, a semiadditive category is additive
193: 136:
every finitary coproduct is necessarily a product (this is a consequence of the definition, not a part of it).
1492:
Thinking about such matrices can be useful in one way, though: they highlight the fact that given any objects
1924: 2578: 2128: 2083: 238: 125: 117: 2557: 2497: 1435: 2206: 1697:
Almost all functors studied between additive categories are additive. In fact, it is a theorem that all
2547: 2333: 2197: 2105: 1753: 223: 2506: 2150: 2088: 2011: 256: 113: 1534:
is the composition of these morphisms, as can be calculated by multiplying the degenerate matrices.
2537: 2493: 2098: 1917: 1749: 176:
An additive category may then be defined as a semiadditive category in which every morphism has an
286: 2093: 2075: 1854: 2300: 2066: 2046: 1969: 62: 1876: 1702: 2182: 2021: 1575:. If the categories are additive, then a functor is additive if and only if it preserves all 1523: 1260: 1994: 1989: 1832: 1744: 1453: 270: 211: 39: 20: 1849:, Science of Computer Programming, Volume 78, Issue 11, 1 November 2013, Pages 2160-2191, 8: 2338: 2286: 2212: 2016: 1774: 1730: 260: 2192: 2187: 2169: 2051: 2026: 1786: 1781:
Many commonly studied additive categories are in fact abelian categories; for example,
1328: 249: 170: 2501: 2438: 2426: 2328: 2253: 2248: 2202: 1984: 1882: 1850: 1379: 1274: 106: 102: 1823: 2462: 2348: 2323: 2258: 2243: 2238: 2177: 2006: 1974: 1858: 1818: 1761: 1698: 200: 177: 133: 2374: 1940: 1899: 1828: 1256: 245: 31: 1862: 1255:, it follows that addition and composition of matrices obey the usual rules for 2411: 2406: 2390: 2353: 2343: 2263: 1353: 297: 166: 19:
For the weaker sense of the term "additive category" (without biproducts), see
2572: 2401: 2233: 2110: 2036: 1705:). Most of the interesting functors studied in category theory are adjoints. 310:
To define the addition law, we will use the convention that for a biproduct,
230: 181: 90: 273:
over a ring, thought of as a category as described below, is also additive.
65:
equipped with additional structure, and another as a category equipped with
2155: 2056: 1766: 1564: 1486: 94: 2416: 2396: 2268: 2138: 1836:
Sections 18 and 19 deal with the addition law in semiadditive categories.
1770: 1467: 158: 27: 2448: 2386: 1999: 1906:; Academic Press, Inc. (out of print) goes over all of this very slowly 165:. It is then a remarkable theorem that the Hom sets naturally admit an 61:
There are two equivalent definitions of an additive category: One as a
2442: 2133: 1576: 1218:{\displaystyle f_{kl}:=p_{k}\circ f\circ i_{l}\colon A_{l}\to B_{k}.} 234: 162: 129: 121: 50: 1846: 700: 630: 595: 2511: 2143: 2041: 1789:
provide an example of a category that is additive but not abelian.
157:
to be a category (note: not a preadditive category) which admits a
70: 47: 1909: 2481: 2471: 2120: 2031: 1568: 1543: 1504:
to 0 (just as there is exactly one 0-by-1 matrix with entries in
86: 1394:, and where composition is given by matrix multiplication. Then 276: 2476: 206:. These are categories enriched over the monoidal category of 2358: 303:
This shows that the addition law for an additive category is
1515:(just as there is exactly one 1-by-0 matrix with entries in 1500:
in an additive category, there is exactly one morphism from
1701:
between additive categories must be additive functors (see
289:, and such that the composition of morphisms is bilinear. 1904:
Abelian Categories with Applications to Rings and Modules
184:
structure instead of merely an abelian monoid structure.
1522:) – this is just what it means to say that 0 is a 1748:
is an additive category in which every morphism has a
1717:-linear additive categories, one usually restricts to 951: 16:
Preadditive category that admits all finitary products
1357: 1140: 945: 857: 583: 1847:
Typing linear algebra: A biproduct-oriented approach
1269:
Recall that the morphisms from a single object 
894:
in an additive category, we can represent morphisms
222:
The original example of an additive category is the
1217: 1126: 717: 2570: 1477:This may be confusing in the special case where 142: 128:in the case of an empty diagram), and hence a 1925: 1811:Bulletin of the American Mathematical Society 277:Internal characterisation of the addition law 76: 1360:) and letting the hom-set of morphisms from 836:. Using this, we can represent any morphism 752:It is also bilinear, using for example that 192:More generally, one also considers additive 1485:is zero, because we usually don't think of 2553: 2543: 2299: 1932: 1918: 1765:is a pre-abelian category such that every 1470:of the category of left modules over  317:will denote the projection morphisms, and 112:In a preadditive category, every finitary 1822: 660: 656: 645: 641: 300:every morphism has an additive inverse. 1874: 1804: 255:is additive, and so in particular, the 214:and admitting all finitary biproducts. 2571: 1526:. Furthermore, the zero morphism from 116:(including the empty product, i.e., a 2298: 1951: 1913: 1511:) and exactly one morphism from 0 to 324:will denote the injection morphisms. 233:, the addition of morphisms is given 1537: 1317:matrices with entries from the ring 1939: 1708: 147:We give an alternative definition. 13: 1713:When considering functors between 1559:between preadditive categories is 858:Matrix representation of morphisms 702: 597: 180:. This then gives the Hom sets an 14: 2590: 1487:matrices with 0 rows or 0 columns 474:, there exists a unique morphism 187: 2552: 2542: 2533: 2532: 2285: 1952: 1736: 93:and composition of morphisms is 1824:10.1090/S0002-9904-1950-09427-0 795:We remark that for a biproduct 705: 701: 600: 596: 1868: 1839: 1798: 1725:, so those functors giving an 1635:should be a biproduct of  1334:, we can form a category  1199: 237:, and biproducts are given by 1: 1792: 1405:is an additive category, and 173:of this fact is given below. 56: 1845:H.D. Macedo, J.N. Oliveira, 1785:is an abelian category. The 7: 2227:Constructions on categories 1863:10.1016/j.scico.2012.07.012 1441:If we interpret the object 217: 143:Via semiadditive categories 73:satisfy certain equations. 10: 2595: 2334:Higher-dimensional algebra 1881:, CRC Press, p. 466, 1875:Shastri, Anant R. (2013), 1805:MacLane, Saunders (1950), 1664:with projection morphisms 1606:with projection morphisms 1563:if it is an abelian group 457:Next, given two morphisms 224:category of abelian groups 85:is preadditive if all its 77:Via preadditive categories 18: 2528: 2461: 2425: 2373: 2366: 2317: 2307: 2294: 2283: 2226: 2168: 2119: 2074: 2065: 1962: 1958: 1947: 257:category of vector spaces 229:. The zero object is the 1878:Basic Algebraic Topology 1680:and injection morphisms 1615:and injection morphisms 551:We can therefore define 2144:Cokernels and quotients 2067:Universal constructions 1586:is a biproduct of  2301:Higher category theory 2047:Natural transformation 1352:indexed by the set of 1327:Conversely, given any 1297:, then morphisms from 1287:-fold product of  1219: 1128: 719: 244:More generally, every 69:but whose objects and 1220: 1129: 720: 2170:Algebraic categories 1807:"Duality for groups" 1745:pre-abelian category 1138: 943: 581: 40:preadditive category 21:preadditive category 2579:Additive categories 2339:Homotopy hypothesis 2017:Commutative diagram 1787:free abelian groups 1731:module homomorphism 1390:matrices over  1283:. If we denote the 1273:to itself form the 754:∆ ∘ β = (β ⊕ β) ∘ ∆ 706: 671: 601: 548:, and 0 otherwise. 375:codiagonal morphism 120:) is necessarily a 109:of abelian groups. 2052:Universal property 1345:by taking objects 1215: 1124: 1118: 715: 307:to that category. 197:-linear categories 97:; in other words, 67:no extra structure 30:, specifically in 2566: 2565: 2524: 2523: 2520: 2519: 2502:monoidal category 2457: 2456: 2329:Enriched category 2281: 2280: 2277: 2276: 2254:Quotient category 2249:Opposite category 2164: 2163: 1733:on each hom-set. 1538:Additive functors 1275:endomorphism ring 711: 707: 694: 676: 672: 624: 606: 602: 589: 337:diagonal morphism 107:monoidal category 36:additive category 2586: 2556: 2555: 2546: 2545: 2536: 2535: 2371: 2370: 2349:Simplex category 2324:Categorification 2315: 2314: 2296: 2295: 2289: 2259:Product category 2244:Kleisli category 2239:Functor category 2084:Terminal objects 2072: 2071: 2007:Adjoint functors 1960: 1959: 1949: 1948: 1934: 1927: 1920: 1911: 1910: 1893: 1891: 1872: 1866: 1843: 1837: 1835: 1826: 1802: 1762:abelian category 1728: 1720: 1716: 1699:adjoint functors 1693: 1679: 1659: 1634: 1623: 1614: 1601: 1585: 1558: 1533: 1529: 1521: 1514: 1510: 1503: 1499: 1495: 1484: 1480: 1473: 1461: 1451: 1430: 1419: 1415: 1404: 1393: 1389: 1385: 1377: 1368: 1344: 1333: 1323: 1308: 1302: 1296: 1290: 1286: 1282: 1272: 1254: 1224: 1222: 1221: 1216: 1211: 1210: 1198: 1197: 1185: 1184: 1166: 1165: 1153: 1152: 1133: 1131: 1130: 1125: 1123: 1122: 1115: 1114: 1095: 1094: 1080: 1079: 1041: 1040: 1021: 1020: 1009: 1008: 995: 994: 975: 974: 963: 962: 935: 931: 927: 893: 877: 853: 835: 804: 791: 755: 748: 731: 724: 722: 721: 716: 709: 708: 696: 692: 674: 673: 670: 669: 655: 654: 640: 639: 626: 622: 604: 603: 591: 587: 570: 547: 537: 528: 500: 473: 453: 435: 418: 407: 390: 369: 352: 330: 327:For each object 265: 254: 209: 205: 201:commutative ring 196: 178:additive inverse 2594: 2593: 2589: 2588: 2587: 2585: 2584: 2583: 2569: 2568: 2567: 2562: 2516: 2486: 2453: 2430: 2421: 2378: 2362: 2313: 2303: 2290: 2273: 2222: 2160: 2129:Initial objects 2115: 2061: 1954: 1943: 1941:Category theory 1938: 1900:Nicolae Popescu 1896: 1889: 1873: 1869: 1844: 1840: 1803: 1799: 1795: 1739: 1726: 1723:linear functors 1718: 1714: 1711: 1690: 1681: 1677: 1665: 1656: 1646: 1636: 1625: 1621: 1616: 1612: 1607: 1599: 1593: 1587: 1583: 1546: 1540: 1531: 1527: 1516: 1512: 1505: 1501: 1497: 1493: 1482: 1478: 1471: 1464:matrix category 1457: 1450: 1442: 1428: 1421: 1417: 1414: 1406: 1395: 1391: 1387: 1383: 1375: 1370: 1366: 1361: 1354:natural numbers 1350: 1335: 1331: 1318: 1304: 1298: 1292: 1291:with itself by 1288: 1284: 1277: 1270: 1257:matrix addition 1252: 1243: 1235: 1229: 1206: 1202: 1193: 1189: 1180: 1176: 1161: 1157: 1145: 1141: 1139: 1136: 1135: 1117: 1116: 1107: 1103: 1101: 1096: 1087: 1083: 1081: 1072: 1068: 1065: 1064: 1059: 1054: 1049: 1043: 1042: 1033: 1029: 1027: 1022: 1016: 1012: 1010: 1004: 1000: 997: 996: 987: 983: 981: 976: 970: 966: 964: 958: 954: 947: 946: 944: 941: 940: 933: 929: 925: 919: 911: 905: 895: 891: 885: 879: 875: 869: 863: 860: 837: 833: 826: 819: 812: 806: 796: 789: 785: 781: 777: 773: 769: 765: 761: 757: 753: 747: 740: 733: 729: 695: 665: 661: 650: 646: 635: 631: 625: 590: 582: 579: 578: 568: 564: 561: := ∇ ∘ (α 560: 556: 552: 539: 536: 530: 527: 518: 514: 510: 502: 483: 479: 475: 464: 458: 452: 446: 437: 434: 428: 420: 413: 406: 399: 392: 377: 368: 361: 354: 339: 328: 322: 315: 279: 269:The algebra of 263: 252: 246:module category 220: 207: 203: 194: 190: 161:and all binary 145: 79: 59: 32:category theory 24: 17: 12: 11: 5: 2592: 2582: 2581: 2564: 2563: 2561: 2560: 2550: 2540: 2529: 2526: 2525: 2522: 2521: 2518: 2517: 2515: 2514: 2509: 2504: 2490: 2484: 2479: 2474: 2468: 2466: 2459: 2458: 2455: 2454: 2452: 2451: 2446: 2435: 2433: 2428: 2423: 2422: 2420: 2419: 2414: 2409: 2404: 2399: 2394: 2383: 2381: 2376: 2368: 2364: 2363: 2361: 2356: 2354:String diagram 2351: 2346: 2344:Model category 2341: 2336: 2331: 2326: 2321: 2319: 2312: 2311: 2308: 2305: 2304: 2292: 2291: 2284: 2282: 2279: 2278: 2275: 2274: 2272: 2271: 2266: 2264:Comma category 2261: 2256: 2251: 2246: 2241: 2236: 2230: 2228: 2224: 2223: 2221: 2220: 2210: 2200: 2198:Abelian groups 2195: 2190: 2185: 2180: 2174: 2172: 2166: 2165: 2162: 2161: 2159: 2158: 2153: 2148: 2147: 2146: 2136: 2131: 2125: 2123: 2117: 2116: 2114: 2113: 2108: 2103: 2102: 2101: 2091: 2086: 2080: 2078: 2069: 2063: 2062: 2060: 2059: 2054: 2049: 2044: 2039: 2034: 2029: 2024: 2019: 2014: 2009: 2004: 2003: 2002: 1997: 1992: 1987: 1982: 1977: 1966: 1964: 1956: 1955: 1945: 1944: 1937: 1936: 1929: 1922: 1914: 1908: 1907: 1895: 1894: 1887: 1867: 1838: 1817:(6): 485–516, 1796: 1794: 1791: 1779: 1778: 1757: 1738: 1735: 1710: 1709:Generalization 1707: 1688: 1673: 1654: 1644: 1619: 1610: 1597: 1591: 1539: 1536: 1446: 1426: 1410: 1373: 1364: 1348: 1261:multiplication 1248: 1239: 1231: 1226: 1225: 1214: 1209: 1205: 1201: 1196: 1192: 1188: 1183: 1179: 1175: 1172: 1169: 1164: 1160: 1156: 1151: 1148: 1144: 1121: 1113: 1110: 1106: 1102: 1100: 1097: 1093: 1090: 1086: 1082: 1078: 1075: 1071: 1067: 1066: 1063: 1060: 1058: 1055: 1053: 1050: 1048: 1045: 1044: 1039: 1036: 1032: 1028: 1026: 1023: 1019: 1015: 1011: 1007: 1003: 999: 998: 993: 990: 986: 982: 980: 977: 973: 969: 965: 961: 957: 953: 952: 950: 923: 917: 909: 903: 889: 883: 873: 867: 862:Given objects 859: 856: 831: 824: 817: 810: 787: 783: 779: 775: 771: 767: 763: 759: 745: 738: 726: 725: 714: 704: 699: 691: 688: 685: 682: 679: 668: 664: 659: 653: 649: 644: 638: 634: 629: 621: 618: 615: 612: 609: 599: 594: 586: 566: 562: 558: 554: 532: 523: 516: 512: 506: 481: 477: 460: 448: 442: 430: 424: 410: 409: 404: 397: 371: 366: 359: 320: 313: 298:if and only if 287:abelian monoid 278: 275: 219: 216: 189: 188:Generalization 186: 167:abelian monoid 144: 141: 126:initial object 91:abelian groups 78: 75: 58: 55: 46:admitting all 15: 9: 6: 4: 3: 2: 2591: 2580: 2577: 2576: 2574: 2559: 2551: 2549: 2541: 2539: 2531: 2530: 2527: 2513: 2510: 2508: 2505: 2503: 2499: 2495: 2491: 2489: 2487: 2480: 2478: 2475: 2473: 2470: 2469: 2467: 2464: 2460: 2450: 2447: 2444: 2440: 2437: 2436: 2434: 2432: 2424: 2418: 2415: 2413: 2410: 2408: 2405: 2403: 2402:Tetracategory 2400: 2398: 2395: 2392: 2391:pseudofunctor 2388: 2385: 2384: 2382: 2380: 2372: 2369: 2365: 2360: 2357: 2355: 2352: 2350: 2347: 2345: 2342: 2340: 2337: 2335: 2332: 2330: 2327: 2325: 2322: 2320: 2316: 2310: 2309: 2306: 2302: 2297: 2293: 2288: 2270: 2267: 2265: 2262: 2260: 2257: 2255: 2252: 2250: 2247: 2245: 2242: 2240: 2237: 2235: 2234:Free category 2232: 2231: 2229: 2225: 2218: 2217:Vector spaces 2214: 2211: 2208: 2204: 2201: 2199: 2196: 2194: 2191: 2189: 2186: 2184: 2181: 2179: 2176: 2175: 2173: 2171: 2167: 2157: 2154: 2152: 2149: 2145: 2142: 2141: 2140: 2137: 2135: 2132: 2130: 2127: 2126: 2124: 2122: 2118: 2112: 2111:Inverse limit 2109: 2107: 2104: 2100: 2097: 2096: 2095: 2092: 2090: 2087: 2085: 2082: 2081: 2079: 2077: 2073: 2070: 2068: 2064: 2058: 2055: 2053: 2050: 2048: 2045: 2043: 2040: 2038: 2037:Kan extension 2035: 2033: 2030: 2028: 2025: 2023: 2020: 2018: 2015: 2013: 2010: 2008: 2005: 2001: 1998: 1996: 1993: 1991: 1988: 1986: 1983: 1981: 1978: 1976: 1973: 1972: 1971: 1968: 1967: 1965: 1961: 1957: 1950: 1946: 1942: 1935: 1930: 1928: 1923: 1921: 1916: 1915: 1912: 1905: 1901: 1898: 1897: 1890: 1888:9781466562431 1884: 1880: 1879: 1871: 1864: 1860: 1856: 1852: 1848: 1842: 1834: 1830: 1825: 1820: 1816: 1812: 1808: 1801: 1797: 1790: 1788: 1784: 1776: 1772: 1768: 1764: 1763: 1758: 1755: 1751: 1747: 1746: 1741: 1740: 1737:Special cases 1734: 1732: 1724: 1706: 1704: 1700: 1695: 1691: 1684: 1676: 1672: 1668: 1663: 1657: 1650: 1643: 1639: 1632: 1628: 1622: 1613: 1605: 1600: 1590: 1580: 1578: 1574: 1570: 1566: 1562: 1557: 1553: 1549: 1545: 1535: 1525: 1520: 1509: 1490: 1488: 1475: 1469: 1465: 1460: 1455: 1449: 1445: 1439: 1437: 1432: 1425: 1413: 1409: 1402: 1398: 1381: 1376: 1367: 1359: 1355: 1351: 1342: 1338: 1330: 1325: 1322: 1316: 1312: 1307: 1301: 1295: 1281: 1276: 1267: 1264: 1262: 1258: 1251: 1247: 1242: 1238: 1234: 1212: 1207: 1203: 1194: 1190: 1186: 1181: 1177: 1173: 1170: 1167: 1162: 1158: 1154: 1149: 1146: 1142: 1119: 1111: 1108: 1104: 1098: 1091: 1088: 1084: 1076: 1073: 1069: 1061: 1056: 1051: 1046: 1037: 1034: 1030: 1024: 1017: 1013: 1005: 1001: 991: 988: 984: 978: 971: 967: 959: 955: 948: 939: 938: 937: 926: 916: 912: 902: 898: 892: 882: 876: 866: 855: 854:as a matrix. 852: 848: 844: 840: 830: 823: 816: 809: 803: 799: 793: 750: 744: 737: 732:, using that 712: 697: 689: 686: 683: 680: 677: 666: 662: 657: 651: 647: 642: 636: 632: 627: 619: 616: 613: 610: 607: 592: 584: 577: 576: 575: 572: 549: 546: 542: 535: 526: 522: 509: 505: 499: 495: 491: 487: 472: 468: 463: 455: 451: 445: 441: 433: 427: 423: 416: 403: 396: 389: 385: 381: 376: 372: 365: 358: 351: 347: 343: 338: 334: 333: 332: 331:, we define: 325: 323: 316: 308: 306: 301: 299: 295: 292:Moreover, if 290: 288: 284: 274: 272: 267: 266:is additive. 262: 258: 251: 247: 242: 240: 236: 232: 231:trivial group 228: 225: 215: 213: 202: 198: 185: 183: 182:abelian group 179: 174: 172: 169:structure. A 168: 164: 160: 156: 153: 148: 140: 137: 135: 131: 127: 123: 119: 115: 110: 108: 104: 100: 96: 92: 88: 84: 74: 72: 68: 64: 54: 52: 49: 45: 41: 37: 33: 29: 22: 2482: 2463:Categorified 2367:n-categories 2318:Key concepts 2156:Direct limit 2139:Coequalizers 2057:Yoneda lemma 1979: 1963:Key concepts 1953:Key concepts 1903: 1877: 1870: 1841: 1814: 1810: 1800: 1782: 1780: 1767:monomorphism 1760: 1743: 1712: 1696: 1686: 1682: 1674: 1670: 1666: 1661: 1652: 1648: 1641: 1637: 1630: 1626: 1617: 1608: 1603: 1595: 1588: 1582:That is, if 1581: 1572: 1565:homomorphism 1560: 1555: 1551: 1547: 1541: 1518: 1507: 1491: 1476: 1463: 1462:, then this 1458: 1452:as the left 1447: 1443: 1440: 1433: 1423: 1420:-fold power 1411: 1407: 1400: 1396: 1371: 1362: 1346: 1340: 1336: 1326: 1320: 1314: 1310: 1305: 1299: 1293: 1279: 1268: 1265: 1249: 1245: 1240: 1236: 1232: 1227: 921: 914: 907: 900: 896: 887: 880: 871: 864: 861: 850: 846: 842: 838: 828: 821: 814: 807: 801: 797: 794: 751: 742: 735: 727: 573: 550: 544: 540: 533: 524: 520: 507: 503: 497: 493: 489: 485: 470: 466: 461: 456: 449: 443: 439: 431: 425: 421: 414: 411: 401: 394: 387: 383: 379: 374: 363: 356: 349: 345: 341: 336: 326: 318: 311: 309: 304: 302: 293: 291: 282: 280: 268: 243: 226: 221: 191: 175: 154: 152:semiadditive 151: 149: 146: 138: 118:final object 111: 98: 82: 80: 66: 60: 43: 35: 25: 2431:-categories 2407:Kan complex 2397:Tricategory 2379:-categories 2269:Subcategory 2027:Exponential 1995:Preadditive 1990:Pre-abelian 1771:epimorphism 1524:zero object 1468:subcategory 1416:equals the 1356:(including 1228:Using that 239:direct sums 159:zero object 81:A category 28:mathematics 2449:3-category 2439:2-category 2412:∞-groupoid 2387:Bicategory 2134:Coproducts 2094:Equalizers 2000:Bicategory 1793:References 1579:diagrams. 1517:End  1506:End  1466:becomes a 1319:End  1278:End  501:such that 419:, we have 412:Then, for 163:biproducts 134:conversely 57:Definition 51:biproducts 2498:Symmetric 2443:2-functor 2183:Relations 2106:Pullbacks 1855:0167-6423 1647:), ... , 1577:biproduct 1200:→ 1187:: 1174:∘ 1168:∘ 1099:⋯ 1062:⋮ 1057:⋯ 1052:⋮ 1047:⋮ 1025:⋯ 979:⋯ 936:matrices 756:and that 730:α + 0 = α 703:∇ 687:⊕ 681:⊕ 663:α 658:⊕ 648:α 643:⊕ 633:α 617:⊕ 611:⊕ 598:Δ 235:pointwise 150:Define a 130:biproduct 122:coproduct 105:over the 71:morphisms 2573:Category 2558:Glossary 2538:Category 2512:n-monoid 2465:concepts 2121:Colimits 2089:Products 2042:Morphism 1985:Concrete 1980:Additive 1970:Category 1902:; 1973; 1754:cokernel 1660:in  1602:in  1594:, ... , 1567:on each 1561:additive 920:⊕ ⋅⋅⋅ ⊕ 906:⊕ ⋅⋅⋅ ⊕ 805:we have 734:α ⊕ 0 = 728:We have 698:→ 628:→ 593:→ 305:internal 271:matrices 218:Examples 155:category 103:enriched 95:bilinear 87:hom-sets 63:category 48:finitary 2548:Outline 2507:n-group 2472:2-group 2427:Strict 2417:∞-topos 2213:Modules 2151:Pushout 2099:Kernels 2032:Functor 1975:Abelian 1833:0049192 1624:, then 1569:hom-set 1544:functor 1378:be the 886:, ..., 870:, ..., 529:equals 429:∘ ∆ = 1 259:over a 248:over a 212:modules 114:product 2494:Traced 2477:2-ring 2207:Fields 2193:Groups 2188:Magmas 2076:Limits 1885:  1853:  1831:  1775:normal 1752:and a 1750:kernel 1456:  1454:module 1134:where 782:) ⊕ (α 774:) = (α 766:) ∘ (β 741:∘ α ∘ 710:  693:  675:  623:  605:  588:  417:= 1, 2 199:for a 132:, and 42:  2488:-ring 2375:Weak 2359:Topos 2203:Rings 569:) ∘ ∆ 261:field 171:proof 38:is a 34:, an 2178:Sets 1883:ISBN 1851:ISSN 1769:and 1703:here 1496:and 1436:here 1386:-by- 1329:ring 1313:-by- 1309:are 1259:and 932:-by- 878:and 519:) ∘ 511:∘ (α 438:∇ ∘ 436:and 393:∇ = 373:the 355:∆ = 335:the 281:Let 250:ring 124:(or 89:are 2022:End 2012:CCC 1859:doi 1819:doi 1773:is 1759:An 1571:in 1530:to 1481:or 1397:Mat 1382:of 1380:set 1369:to 1337:Mat 1303:to 1253:= 1 928:as 834:= 1 786:∘ β 778:∘ β 770:⊕ β 762:⊕ α 565:⊕ α 557:+ α 538:if 515:⊕ α 480:⊕ α 447:= 1 391:by 378:∇: 353:by 340:∆: 101:is 26:In 2575:: 2500:) 2496:)( 1857:, 1829:MR 1827:, 1815:56 1813:, 1809:, 1783:Ab 1742:A 1694:. 1554:→ 1550:: 1542:A 1474:. 1438:. 1431:. 1324:. 1263:. 1244:∘ 1155::= 1018:22 1006:21 972:12 960:11 913:→ 899:: 849:⊕ 845:→ 841:⊕ 827:∘ 820:+ 813:∘ 800:⊕ 792:. 758:(α 749:. 571:. 543:= 496:⊕ 492:→ 488:⊕ 484:: 469:→ 465:: 454:. 400:+ 386:→ 382:⊕ 362:+ 348:⊕ 344:→ 241:. 227:Ab 53:. 2492:( 2485:n 2483:E 2445:) 2441:( 2429:n 2393:) 2389:( 2377:n 2219:) 2215:( 2209:) 2205:( 1933:e 1926:t 1919:v 1892:. 1865:. 1861:: 1821:: 1777:. 1756:. 1729:- 1727:R 1721:- 1719:R 1715:R 1692:) 1689:j 1687:i 1685:( 1683:F 1678:) 1675:j 1671:p 1669:( 1667:F 1662:D 1658:) 1655:n 1653:A 1651:( 1649:F 1645:1 1642:A 1640:( 1638:F 1633:) 1631:B 1629:( 1627:F 1620:j 1618:i 1611:k 1609:p 1604:C 1598:n 1596:A 1592:1 1589:A 1584:B 1573:C 1556:D 1552:C 1548:F 1532:B 1528:A 1519:B 1513:B 1508:A 1502:A 1498:B 1494:A 1483:n 1479:m 1472:R 1459:R 1448:n 1444:A 1429:) 1427:1 1424:A 1422:( 1418:n 1412:n 1408:A 1403:) 1401:R 1399:( 1392:R 1388:n 1384:m 1374:m 1372:A 1365:n 1363:A 1358:0 1349:n 1347:A 1343:) 1341:R 1339:( 1332:R 1321:A 1315:n 1311:m 1306:A 1300:A 1294:A 1289:A 1285:n 1280:A 1271:A 1250:k 1246:p 1241:k 1237:i 1233:k 1230:∑ 1213:. 1208:k 1204:B 1195:l 1191:A 1182:l 1178:i 1171:f 1163:k 1159:p 1150:l 1147:k 1143:f 1120:) 1112:n 1109:m 1105:f 1092:2 1089:m 1085:f 1077:1 1074:m 1070:f 1038:n 1035:2 1031:f 1014:f 1002:f 992:n 989:1 985:f 968:f 956:f 949:( 934:n 930:m 924:m 922:B 918:1 915:B 910:n 908:A 904:1 901:A 897:f 890:m 888:B 884:1 881:B 874:n 872:A 868:1 865:A 851:D 847:C 843:B 839:A 832:2 829:p 825:2 822:i 818:1 815:p 811:1 808:i 802:B 798:A 790:) 788:2 784:2 780:1 776:1 772:2 768:1 764:2 760:1 746:1 743:p 739:1 736:i 713:B 690:B 684:B 678:B 667:3 652:2 637:1 620:A 614:A 608:A 585:A 567:2 563:1 559:2 555:1 553:α 545:l 541:k 534:k 531:α 525:k 521:i 517:2 513:1 508:l 504:p 498:B 494:B 490:A 486:A 482:2 478:1 476:α 471:B 467:A 462:k 459:α 450:A 444:k 440:i 432:A 426:k 422:p 415:k 408:. 405:2 402:p 398:1 395:p 388:A 384:A 380:A 370:; 367:2 364:i 360:1 357:i 350:A 346:A 342:A 329:A 321:k 319:i 314:k 312:p 294:C 283:C 264:K 253:R 210:- 208:R 204:R 195:R 99:C 83:C 44:C 23:.

Index

preadditive category
mathematics
category theory
preadditive category
finitary
biproducts
category
morphisms
hom-sets
abelian groups
bilinear
enriched
monoidal category
product
final object
coproduct
initial object
biproduct
conversely
zero object
biproducts
abelian monoid
proof
additive inverse
abelian group
R-linear categories
commutative ring
modules
category of abelian groups
trivial group

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.