Knowledge

Enriched category

Source 📝

2358: 711: 1882: 924: 912: 2605: 25: 2625: 2615: 1727: 1719:
Because the hom-objects need not be sets in an enriched category, one cannot speak of a particular morphism. There is no longer any notion of an identity morphism, nor of a particular composition of two morphisms. Instead, morphisms from the unit to a hom-object should be thought of as selecting an
161:
in some fixed monoidal category of "hom-objects". In order to emulate the (associative) composition of morphisms in an ordinary category, the hom-category must have a means of composing hom-objects in an associative manner: that is, there must be a binary operation on objects giving us at least the
185:
ordinary categories where the hom-set carries additional structure beyond being a set. That is, there are operations on, or properties of morphisms that need to be respected by composition (e.g., the existence of 2-cells between morphisms and horizontal composition thereof in a
1802: 699: 1720:
identity, and morphisms from the monoidal product should be thought of as composition. The usual functorial axioms are replaced with corresponding commutative diagrams involving these morphisms.
991:". Commutativity of the latter two diagrams is then the statement that compositions (as defined by the functions °) involving these distinguished individual "identity morphisms in 432: 1840: 618: 586: 381: 145:. It is motivated by the observation that, in many practical applications, the hom-set often has additional structure that should be respected, e.g., that of being a 213:
with the usual cartesian product, the definitions of enriched category, enriched functor, etc... reduce to the original definitions from ordinary category theory.
902:
The notion that an ordinary category must have identity morphisms is replaced by the second and third diagrams, which express identity in terms of left and right
864:
What is new here is that the above expresses the requirement for associativity without any explicit reference to individual morphisms in the enriched category
861:. Commutativity of the diagram is then merely the statement that both orders of composition give the same result, exactly as required for ordinary categories. 232:. Due to Mac Lane's preference for the letter V in referring to the monoidal category, enriched categories are also sometimes referred to generally as 1579:, –) to the category of sets, so any enriched category has an underlying ordinary category. In many examples (such as those above) this functor is 1739: 197:
category-like entities that don't themselves have any notion of individual morphism but whose hom-objects have similar compositional aspects (e.g.,
627: 2002: 157:
of morphisms. In an enriched category, the set of morphisms (the hom-set) associated with every pair of objects is replaced by an
2287: 89: 61: 1371:, where the latter is given ordinary category structure via the inverse of its usual ordering (i.e., there exists a morphism 1603:
to enriched categories. Enriched functors are then maps between enriched categories which respect the enriched structure.
68: 42: 1944: 1203:
with Cartesian product as the monoidal operation. (A locally small category is one whose hom-objects are small sets.)
876:— thus making the concept of associativity of composition meaningful in the general case where the hom-objects 108: 75: 1522:
are enriched over themselves, where the morphisms inherit the algebraic structure "pointwise". More generally,
46: 1362: 57: 1995: 1936: 798:
in the first diagram corresponds to one of the two ways of composing three consecutive individual morphisms
2654: 2199: 2154: 1166: 390: 205:, where the hom-objects are numerical distances and the composition rule provides the triangle inequality). 181:
Enriched category theory thus encompasses within the same framework a wide variety of structures including
1716:), satisfying enriched versions of the axioms of a functor, viz preservation of identity and composition. 783:, while °, now a function, defines how consecutive morphisms compose. In this case, each path leading to 2628: 2568: 1200: 1177:
and the vertical-composition rule that relates them correspond to the morphisms of the ordinary category
171: 2277: 2618: 2404: 2268: 2176: 1169:, with monoidal structure being given by cartesian product. In this case the 2-cells between morphisms 591: 559: 354: 2577: 2221: 2159: 2082: 2649: 2608: 2564: 2169: 1988: 1358: 1225: 175: 166:, though in some contexts the operation may also need to be commutative and perhaps also to have a 158: 2164: 2146: 1206: 202: 35: 2371: 2137: 2117: 2040: 1192: 134: 82: 1133:
deemed to have individual morphisms of its own, is not necessarily identifying a specific one.
2253: 2092: 1242:, consisting of two objects and a single nonidentity arrow between them that we can write as 279:(alternatively, in situations where the choice of monoidal category needs to be explicit, a 2065: 2060: 1523: 1503: 1918: 1587:
can be described as an ordinary category with certain additional structure or properties.
8: 2409: 2357: 2283: 2087: 1519: 1958: 1266:) then simply deny or affirm a particular binary relation on the given pair of objects ( 2263: 2258: 2240: 2122: 2097: 1954: 1887: 1337:
which are none other than the axioms for ≤ being a preorder. And since all diagrams in
1284:. The existence of the compositions and identity required for a category enriched over 764:, the terminal single-point set, and the canonical isomorphisms they induce, then each 710: 299: 2572: 2509: 2497: 2324: 2319: 2273: 2055: 2050: 1940: 1928: 1895: 1881: 1152: 761: 269: 163: 154: 142: 2533: 2419: 2394: 2329: 2314: 2309: 2248: 2077: 2045: 1900: 1580: 1548: 1507: 1148: 923: 911: 733: 210: 191: 1967: 1082:
has for each of its objects by virtue of it being (at least) an ordinary category.
998:
Note that there are several distinct notions of "identity" being referenced here:
2445: 2011: 1354: 122: 2482: 2477: 2461: 2424: 2414: 2334: 1797:{\displaystyle T_{aa}\circ \operatorname {id} _{a}=\operatorname {id} _{T(a)},} 1531: 1274:); for the sake of having more familiar notation we can write this relation as 1235: 2643: 2472: 2304: 2181: 2107: 1495: 1468: 1460: 167: 2226: 2127: 1515: 146: 1387:) and a monoidal structure via addition (+) and zero (0). The hom-objects 2487: 2467: 2339: 2209: 126: 2519: 2457: 2070: 1214: 1158: 779:
is a set whose elements may be thought of as "individual morphisms" of
718: 187: 2513: 2204: 1914: 1365:, are categories enriched over the nonnegative extended real numbers 1345:
content of the enriched category axioms for categories enriched over
868:— again, these diagrams are for morphisms in monoidal category 995:" behave exactly as per the identity rules for ordinary categories. 694:{\displaystyle g\circ _{\textbf {C}}f={^{\circ }}_{abc}(g\otimes f)} 24: 2582: 2214: 2112: 1836:
for ordinary functors. Additionally, one demands that the diagram
1726: 1659: 198: 150: 1980: 1923:. Reprints in Theory and Applications of Categories. Vol. 10. 2552: 2542: 2191: 2102: 1963:. Reprints in Theory and Applications of Categories. Vol. 1. 1618:-categories (that is, categories enriched over monoidal category 1600: 1471:
as the monoidal operation; the special point of a hom-object Hom(
1017:-theoretic sense, and even then only up to canonical isomorphism 138: 717:
That is, the associativity requirement is now taken over by the
2547: 1839: 1014: 983:, something we can then think of as the "identity morphism for 903: 934:
is the category of sets with cartesian product, the morphisms
705:
The first diagram expresses the associativity of composition:
2429: 1410:), and the existence of composition and identity translate to 216:
An enriched category with hom-objects from monoidal category
209:
In the case where the hom-object category happens to be the
1971: 1288:
immediately translate to the following axioms respectively
1238:
are categories enriched over a certain monoidal category,
1534:
as the monoidal operation (thinking of abelian groups as
701:
together with three commuting diagrams, discussed below.
1960:
Metric Spaces, Generalized Logic, and Closed Categories
1542: 1742: 1599:
is the appropriate generalization of the notion of a
630: 594: 562: 393: 357: 1877: 201:
where the composition rule ensures transitivity, or
49:. Unsourced material may be challenged and removed. 1796: 1143:Ordinary categories are categories enriched over ( 1137: 693: 612: 580: 426: 375: 1563:can be reinterpreted as a category enriched over 1217:with Cartesian product as the monoidal operation. 2641: 16:Category whose hom sets have algebraic structure 190:, or the addition operation on morphisms in an 1996: 1209:, by analogy, are categories enriched over ( 968:, identify a particular element of each set 1913: 1250:, conjunction as the monoid operation, and 2624: 2614: 2370: 2003: 1989: 1920:Basic Concepts of Enriched Category Theory 1254:as its monoidal identity. The hom-objects 1155:as the monoidal operation, as noted above. 1638:is a map which assigns to each object of 109:Learn how and when to remove this message 1939:. Vol. 5 (2nd ed.). Springer. 1933:Categories for the Working Mathematician 1927: 1846:commute, which is analogous to the rule 1733:commutes, which amounts to the equation 1479:) corresponds to the zero morphism from 1467:, ∧), the category of pointed sets with 960:become functions from the one-point set 1953: 2642: 1013:, being an identity for ⊗ only in the 2369: 2022: 1984: 427:{\displaystyle f:I\rightarrow C(a,b)} 1723:In detail, one has that the diagram 1590: 964:and must then, for any given object 556:, used to define the composition of 47:adding citations to reliable sources 18: 2010: 1543:Relationship with monoidal functors 899:any notion of individual morphism. 640: 13: 1838: 1725: 1559:, then any category enriched over 14: 2666: 2623: 2613: 2604: 2603: 2356: 2023: 1880: 1815:. This is analogous to the rule 922: 910: 709: 613:{\displaystyle g:b\rightarrow c} 581:{\displaystyle f:a\rightarrow b} 376:{\displaystyle f:a\rightarrow b} 23: 1189:) and its own composition rule. 1138:Examples of enriched categories 1122:, which is again a morphism of 34:needs additional citations for 1786: 1780: 1704:)) between the hom-objects of 1583:, so a category enriched over 1526:are categories enriched over ( 1463:are categories enriched over ( 1195:are categories enriched over ( 1126:which, even in the case where 688: 676: 604: 572: 421: 409: 403: 367: 1: 1937:Graduate Texts in Mathematics 1906: 1646:and for each pair of objects 1161:are categories enriched over 239: 1402:are essentially distances d( 1167:category of small categories 930:Returning to the case where 141:with objects from a general 7: 2298:Constructions on categories 1873: 540:for each triple of objects 170:(i.e., making the category 10: 2671: 2405:Higher-dimensional algebra 1567:. Every monoidal category 1087:enriched category identity 756:is the monoidal structure 351:, used to define an arrow 339:for every pair of objects 133:generalizes the idea of a 2599: 2532: 2496: 2444: 2437: 2388: 2378: 2365: 2354: 2297: 2239: 2190: 2145: 2136: 2033: 2029: 2018: 1870:) for ordinary functors. 1551:from a monoidal category 1441:) (triangle inequality) 1359:generalized metric spaces 1207:Locally finite categories 721:of the monoidal category 176:symmetric closed monoidal 1363:pseudoquasimetric spaces 1226:closed monoidal category 1193:Locally small categories 1004:monoidal identity object 222:enriched category over M 2215:Cokernels and quotients 2138:Universal constructions 1571:has a monoidal functor 1555:to a monoidal category 203:Lawvere's metric spaces 2372:Higher category theory 2118:Natural transformation 1843: 1811:is the unit object of 1798: 1730: 1712:(which are objects in 1524:preadditive categories 1232:is enriched in itself. 1213:, ×), the category of 1199:, ×), the category of 695: 614: 582: 428: 377: 281:category enriched over 226:enriched category in M 1842: 1799: 1729: 1341:commute, this is the 895:itself need not even 816:, i.e. elements from 696: 615: 583: 429: 378: 2241:Algebraic categories 1740: 628: 592: 560: 391: 355: 43:improve this article 2655:Monoidal categories 2410:Homotopy hypothesis 2088:Commutative diagram 1510:, and the category 58:"Enriched category" 2123:Universal property 1931:(September 1998). 1929:Mac Lane, Saunders 1888:Mathematics portal 1844: 1794: 1731: 1626:-enriched functor 891:are abstract, and 728:For the case that 691: 610: 578: 424: 373: 172:symmetric monoidal 2637: 2636: 2595: 2594: 2591: 2590: 2573:monoidal category 2528: 2527: 2400:Enriched category 2352: 2351: 2348: 2347: 2325:Quotient category 2320:Opposite category 2235: 2234: 1968:Enriched category 1896:Internal category 1591:Enriched functors 1498:and the category 1153:Cartesian product 1034:identity morphism 762:cartesian product 642: 475:for every object 274:enriched category 270:monoidal category 220:is said to be an 178:, respectively). 164:monoidal category 155:topological space 143:monoidal category 131:enriched category 119: 118: 111: 93: 2662: 2627: 2626: 2617: 2616: 2607: 2606: 2442: 2441: 2420:Simplex category 2395:Categorification 2386: 2385: 2367: 2366: 2360: 2330:Product category 2315:Kleisli category 2310:Functor category 2155:Terminal objects 2143: 2142: 2078:Adjoint functors 2031: 2030: 2020: 2019: 2005: 1998: 1991: 1982: 1981: 1964: 1950: 1924: 1901:Isbell conjugacy 1890: 1885: 1884: 1803: 1801: 1800: 1795: 1790: 1789: 1768: 1767: 1755: 1754: 1597:enriched functor 1549:monoidal functor 1508:commutative ring 1459:Categories with 1401: 1370: 1361:, also known as 1283: 1149:category of sets 1114:for each object 1113: 1077: 1028: 1008: 982: 959: 926: 914: 890: 860: 845: 830: 815: 797: 778: 759: 755: 734:category of sets 713: 700: 698: 697: 692: 675: 674: 663: 662: 661: 645: 644: 643: 619: 617: 616: 611: 587: 585: 584: 579: 531: 466: 433: 431: 430: 425: 382: 380: 379: 374: 334: 267: 211:category of sets 192:abelian category 114: 107: 103: 100: 94: 92: 51: 27: 19: 2670: 2669: 2665: 2664: 2663: 2661: 2660: 2659: 2650:Category theory 2640: 2639: 2638: 2633: 2587: 2557: 2524: 2501: 2492: 2449: 2433: 2384: 2374: 2361: 2344: 2293: 2231: 2200:Initial objects 2186: 2132: 2025: 2014: 2012:Category theory 2009: 1979: 1947: 1909: 1886: 1879: 1876: 1835: 1824: 1776: 1772: 1763: 1759: 1747: 1743: 1741: 1738: 1737: 1670: 1593: 1545: 1388: 1366: 1355:William Lawvere 1275: 1236:Preordered sets 1147:, ×, {•}), the 1140: 1095: 1089: 1051: 1036: 1018: 1006: 969: 941: 935: 877: 847: 832: 817: 799: 784: 765: 757: 737: 664: 657: 654: 653: 652: 639: 638: 634: 629: 626: 625: 593: 590: 589: 561: 558: 557: 493: 487: 471:designating an 448: 442: 392: 389: 388: 356: 353: 352: 321: 294:), consists of 245: 242: 228:, or simply an 162:structure of a 123:category theory 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 2668: 2658: 2657: 2652: 2635: 2634: 2632: 2631: 2621: 2611: 2600: 2597: 2596: 2593: 2592: 2589: 2588: 2586: 2585: 2580: 2575: 2561: 2555: 2550: 2545: 2539: 2537: 2530: 2529: 2526: 2525: 2523: 2522: 2517: 2506: 2504: 2499: 2494: 2493: 2491: 2490: 2485: 2480: 2475: 2470: 2465: 2454: 2452: 2447: 2439: 2435: 2434: 2432: 2427: 2425:String diagram 2422: 2417: 2415:Model category 2412: 2407: 2402: 2397: 2392: 2390: 2383: 2382: 2379: 2376: 2375: 2363: 2362: 2355: 2353: 2350: 2349: 2346: 2345: 2343: 2342: 2337: 2335:Comma category 2332: 2327: 2322: 2317: 2312: 2307: 2301: 2299: 2295: 2294: 2292: 2291: 2281: 2271: 2269:Abelian groups 2266: 2261: 2256: 2251: 2245: 2243: 2237: 2236: 2233: 2232: 2230: 2229: 2224: 2219: 2218: 2217: 2207: 2202: 2196: 2194: 2188: 2187: 2185: 2184: 2179: 2174: 2173: 2172: 2162: 2157: 2151: 2149: 2140: 2134: 2133: 2131: 2130: 2125: 2120: 2115: 2110: 2105: 2100: 2095: 2090: 2085: 2080: 2075: 2074: 2073: 2068: 2063: 2058: 2053: 2048: 2037: 2035: 2027: 2026: 2016: 2015: 2008: 2007: 2000: 1993: 1985: 1978: 1977: 1965: 1951: 1945: 1925: 1910: 1908: 1905: 1904: 1903: 1898: 1892: 1891: 1875: 1872: 1826: 1820: 1805: 1804: 1793: 1788: 1785: 1782: 1779: 1775: 1771: 1766: 1762: 1758: 1753: 1750: 1746: 1668: 1592: 1589: 1547:If there is a 1544: 1541: 1540: 1539: 1532:tensor product 1496:abelian groups 1488: 1461:zero morphisms 1456: 1455: 1454: 1453: 1442: 1412: 1411: 1351: 1350: 1335: 1334: 1333: 1319: 1318:(transitivity) 1290: 1289: 1233: 1218: 1204: 1190: 1156: 1139: 1136: 1135: 1134: 1091: 1083: 1038: 1030: 937: 928: 927: 916: 915: 715: 714: 703: 702: 690: 687: 684: 681: 678: 673: 670: 667: 660: 656: 651: 648: 637: 633: 609: 606: 603: 600: 597: 577: 574: 571: 568: 565: 536:designating a 489: 484: 444: 439: 423: 420: 417: 414: 411: 408: 405: 402: 399: 396: 372: 369: 366: 363: 360: 318: 241: 238: 207: 206: 195: 125:, a branch of 117: 116: 31: 29: 22: 15: 9: 6: 4: 3: 2: 2667: 2656: 2653: 2651: 2648: 2647: 2645: 2630: 2622: 2620: 2612: 2610: 2602: 2601: 2598: 2584: 2581: 2579: 2576: 2574: 2570: 2566: 2562: 2560: 2558: 2551: 2549: 2546: 2544: 2541: 2540: 2538: 2535: 2531: 2521: 2518: 2515: 2511: 2508: 2507: 2505: 2503: 2495: 2489: 2486: 2484: 2481: 2479: 2476: 2474: 2473:Tetracategory 2471: 2469: 2466: 2463: 2462:pseudofunctor 2459: 2456: 2455: 2453: 2451: 2443: 2440: 2436: 2431: 2428: 2426: 2423: 2421: 2418: 2416: 2413: 2411: 2408: 2406: 2403: 2401: 2398: 2396: 2393: 2391: 2387: 2381: 2380: 2377: 2373: 2368: 2364: 2359: 2341: 2338: 2336: 2333: 2331: 2328: 2326: 2323: 2321: 2318: 2316: 2313: 2311: 2308: 2306: 2305:Free category 2303: 2302: 2300: 2296: 2289: 2288:Vector spaces 2285: 2282: 2279: 2275: 2272: 2270: 2267: 2265: 2262: 2260: 2257: 2255: 2252: 2250: 2247: 2246: 2244: 2242: 2238: 2228: 2225: 2223: 2220: 2216: 2213: 2212: 2211: 2208: 2206: 2203: 2201: 2198: 2197: 2195: 2193: 2189: 2183: 2182:Inverse limit 2180: 2178: 2175: 2171: 2168: 2167: 2166: 2163: 2161: 2158: 2156: 2153: 2152: 2150: 2148: 2144: 2141: 2139: 2135: 2129: 2126: 2124: 2121: 2119: 2116: 2114: 2111: 2109: 2108:Kan extension 2106: 2104: 2101: 2099: 2096: 2094: 2091: 2089: 2086: 2084: 2081: 2079: 2076: 2072: 2069: 2067: 2064: 2062: 2059: 2057: 2054: 2052: 2049: 2047: 2044: 2043: 2042: 2039: 2038: 2036: 2032: 2028: 2021: 2017: 2013: 2006: 2001: 1999: 1994: 1992: 1987: 1986: 1983: 1976: 1974: 1969: 1966: 1962: 1961: 1956: 1955:Lawvere, F.W. 1952: 1948: 1946:0-387-98403-8 1942: 1938: 1934: 1930: 1926: 1922: 1921: 1916: 1912: 1911: 1902: 1899: 1897: 1894: 1893: 1889: 1883: 1878: 1871: 1869: 1865: 1861: 1857: 1853: 1849: 1841: 1837: 1833: 1829: 1823: 1818: 1814: 1810: 1791: 1783: 1777: 1773: 1769: 1764: 1760: 1756: 1751: 1748: 1744: 1736: 1735: 1734: 1728: 1724: 1721: 1717: 1715: 1711: 1707: 1703: 1699: 1695: 1691: 1687: 1683: 1679: 1675: 1671: 1665: 1661: 1657: 1653: 1649: 1645: 1642:an object of 1641: 1637: 1633: 1629: 1625: 1621: 1617: 1613: 1609: 1604: 1602: 1598: 1588: 1586: 1582: 1578: 1574: 1570: 1566: 1562: 1558: 1554: 1550: 1537: 1533: 1529: 1525: 1521: 1518:over a given 1517: 1516:vector spaces 1513: 1509: 1505: 1501: 1497: 1493: 1490:The category 1489: 1486: 1482: 1478: 1474: 1470: 1469:smash product 1466: 1462: 1458: 1457: 1451: 1447: 1443: 1440: 1436: 1432: 1428: 1424: 1420: 1416: 1415: 1414: 1413: 1409: 1405: 1399: 1395: 1391: 1386: 1382: 1378: 1374: 1369: 1364: 1360: 1356: 1353: 1352: 1348: 1344: 1340: 1336: 1332:(reflexivity) 1331: 1327: 1323: 1320: 1317: 1313: 1309: 1305: 1301: 1297: 1294: 1293: 1292: 1291: 1287: 1282: 1278: 1273: 1269: 1265: 1261: 1257: 1253: 1249: 1245: 1241: 1237: 1234: 1231: 1227: 1223: 1219: 1216: 1212: 1208: 1205: 1202: 1198: 1194: 1191: 1188: 1184: 1180: 1176: 1172: 1168: 1164: 1160: 1157: 1154: 1150: 1146: 1142: 1141: 1132: 1129: 1125: 1121: 1117: 1111: 1107: 1103: 1099: 1094: 1088: 1084: 1081: 1075: 1071: 1067: 1063: 1059: 1055: 1049: 1045: 1041: 1035: 1031: 1026: 1022: 1016: 1012: 1005: 1001: 1000: 999: 996: 994: 990: 986: 980: 976: 972: 967: 963: 957: 953: 949: 945: 940: 933: 925: 921: 920: 919: 913: 909: 908: 907: 905: 900: 898: 894: 888: 884: 880: 875: 872:, and not in 871: 867: 862: 858: 854: 850: 843: 839: 835: 828: 824: 820: 814: 810: 806: 802: 795: 791: 787: 782: 776: 772: 768: 763: 760:given by the 758:(×, {•}, ...) 753: 749: 745: 741: 735: 731: 726: 724: 720: 712: 708: 707: 706: 685: 682: 679: 671: 668: 665: 658: 655: 649: 646: 635: 631: 623: 607: 601: 598: 595: 575: 569: 566: 563: 555: 551: 547: 543: 539: 535: 529: 525: 521: 517: 513: 509: 505: 501: 497: 492: 485: 482: 478: 474: 470: 464: 460: 456: 452: 447: 440: 437: 418: 415: 412: 406: 400: 397: 394: 386: 370: 364: 361: 358: 350: 346: 342: 338: 332: 328: 324: 319: 316: 312: 308: 304: 301: 297: 296: 295: 293: 289: 285: 282: 278: 275: 271: 265: 261: 257: 253: 249: 237: 235: 231: 227: 223: 219: 214: 212: 204: 200: 196: 193: 189: 184: 183: 182: 179: 177: 173: 169: 168:right adjoint 165: 160: 156: 152: 148: 144: 140: 137:by replacing 136: 132: 128: 124: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: –  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 2553: 2534:Categorified 2438:n-categories 2399: 2389:Key concepts 2227:Direct limit 2210:Coequalizers 2128:Yoneda lemma 2034:Key concepts 2024:Key concepts 1972: 1959: 1932: 1919: 1867: 1863: 1859: 1855: 1851: 1847: 1845: 1831: 1827: 1821: 1816: 1812: 1808: 1806: 1732: 1722: 1718: 1713: 1709: 1705: 1701: 1697: 1693: 1689: 1685: 1681: 1677: 1673: 1666: 1663: 1655: 1651: 1647: 1643: 1639: 1635: 1631: 1627: 1623: 1619: 1615: 1611: 1607: 1605: 1596: 1594: 1584: 1576: 1572: 1568: 1564: 1560: 1556: 1552: 1546: 1535: 1527: 1511: 1499: 1491: 1484: 1480: 1476: 1472: 1464: 1449: 1445: 1438: 1434: 1430: 1426: 1422: 1418: 1407: 1403: 1397: 1393: 1389: 1384: 1380: 1376: 1372: 1367: 1346: 1342: 1338: 1329: 1325: 1321: 1315: 1311: 1307: 1303: 1299: 1295: 1285: 1280: 1276: 1271: 1267: 1263: 1259: 1255: 1251: 1247: 1243: 1239: 1229: 1221: 1210: 1196: 1186: 1182: 1178: 1174: 1170: 1162: 1159:2-Categories 1144: 1130: 1127: 1123: 1119: 1115: 1109: 1105: 1101: 1097: 1092: 1086: 1079: 1073: 1069: 1065: 1061: 1057: 1053: 1047: 1043: 1039: 1033: 1024: 1020: 1010: 1003: 997: 992: 988: 984: 978: 974: 970: 965: 961: 955: 951: 947: 943: 938: 931: 929: 917: 901: 896: 892: 886: 882: 878: 873: 869: 865: 863: 856: 852: 848: 841: 837: 833: 826: 822: 818: 812: 808: 804: 800: 793: 789: 785: 780: 774: 770: 766: 751: 747: 743: 739: 729: 727: 722: 716: 704: 621: 553: 549: 545: 541: 537: 533: 527: 523: 519: 515: 511: 507: 503: 499: 495: 490: 480: 476: 472: 468: 462: 458: 454: 450: 445: 435: 387:as an arrow 384: 348: 344: 340: 336: 330: 326: 322: 314: 310: 306: 302: 291: 287: 283: 280: 276: 273: 263: 259: 255: 251: 247: 243: 234:V-categories 233: 229: 225: 221: 217: 215: 208: 180: 147:vector space 130: 120: 105: 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 2502:-categories 2478:Kan complex 2468:Tricategory 2450:-categories 2340:Subcategory 2098:Exponential 2066:Preadditive 2061:Pre-abelian 1915:Kelly, G.M. 1658:provides a 1215:finite sets 538:composition 127:mathematics 99:August 2019 2644:Categories 2520:3-category 2510:2-category 2483:∞-groupoid 2458:Bicategory 2205:Coproducts 2165:Equalizers 2071:Bicategory 1907:References 1538:-modules). 1530:, ⊗) with 1201:small sets 719:associator 320:an object 272:. Then an 240:Definition 230:M-category 188:2-category 69:newspapers 2569:Symmetric 2514:2-functor 2254:Relations 2177:Pullbacks 1957:(2002) . 1917:(2005) . 1757:∘ 683:⊗ 659:∘ 636:∘ 605:→ 573:→ 486:an arrow 441:an arrow 404:→ 368:→ 199:preorders 151:morphisms 2629:Glossary 2609:Category 2583:n-monoid 2536:concepts 2192:Colimits 2160:Products 2113:Morphism 2056:Concrete 2051:Additive 2041:Category 1874:See also 1672: : 1660:morphism 1581:faithful 1475:,  1448:,  1437:,  1429:,  1421:,  1406:,  1270:,  1262:,  1185:,  1096: : 1052: : 494: : 473:identity 449: : 292:category 174:or even 139:hom-sets 135:category 2619:Outline 2578:n-group 2543:2-group 2498:Strict 2488:∞-topos 2284:Modules 2222:Pushout 2170:Kernels 2103:Functor 2046:Abelian 1970:at the 1601:functor 1506:over a 1504:modules 904:unitors 732:is the 311:objects 153:, or a 83:scholar 2565:Traced 2548:2-ring 2278:Fields 2264:Groups 2259:Magmas 2147:Limits 1943:  1825:) = id 1807:where 1622:), an 1444:0 ≥ d( 1433:) ≥ d( 1425:) + d( 1211:FinSet 1165:, the 1015:monoid 224:or an 159:object 85:  78:  71:  64:  56:  2559:-ring 2446:Weak 2430:Topos 2274:Rings 1520:field 1500:R-Mod 1244:FALSE 1228:then 1224:is a 1197:SmSet 1151:with 1078:that 483:, and 309:) of 300:class 286:, or 268:be a 250:, ⊗, 129:, an 90:JSTOR 76:books 2249:Sets 1941:ISBN 1708:and 1684:) → 1650:and 1614:are 1610:and 1512:Vect 1465:Set* 1379:iff 1343:sole 1322:TRUE 1302:and 1252:TRUE 1248:TRUE 1085:the 1064:) → 1032:the 1002:the 918:and 897:have 846:and 738:(⊗, 736:and 588:and 518:) → 506:) ⊗ 244:Let 62:news 2093:End 2083:CCC 1975:Lab 1819:(id 1696:), 1662:in 1654:in 1606:If 1595:An 1514:of 1502:of 1494:of 1483:to 1357:'s 1220:If 1163:Cat 1145:Set 1118:in 1009:of 987:in 624:as 620:in 552:in 532:in 491:abc 479:in 467:in 434:in 383:in 347:in 335:of 313:of 149:of 121:In 45:by 2646:: 2571:) 2567:)( 1935:. 1854:)= 1852:fg 1774:id 1761:id 1680:, 1669:ab 1634:→ 1630:: 1528:Ab 1492:Ab 1417:d( 1396:, 1383:≥ 1375:→ 1328:≤ 1324:⇒ 1314:≤ 1310:⇒ 1306:≤ 1298:≤ 1279:≤ 1246:→ 1173:→ 1131:is 1108:, 1100:→ 1090:id 1072:, 1060:, 1046:, 1023:, 977:, 954:, 946:→ 942:: 936:id 906:: 885:, 855:, 840:, 831:, 825:, 811:→ 807:→ 803:→ 792:, 773:, 750:, 746:, 742:, 725:. 548:, 544:, 526:, 514:, 502:, 461:, 453:→ 443:id 343:, 329:, 303:ob 298:a 262:, 258:, 254:, 236:. 2563:( 2556:n 2554:E 2516:) 2512:( 2500:n 2464:) 2460:( 2448:n 2290:) 2286:( 2280:) 2276:( 2004:e 1997:t 1990:v 1973:n 1949:. 1868:g 1866:( 1864:F 1862:) 1860:f 1858:( 1856:F 1850:( 1848:F 1834:) 1832:a 1830:( 1828:F 1822:a 1817:F 1813:M 1809:I 1792:, 1787:) 1784:a 1781:( 1778:T 1770:= 1765:a 1752:a 1749:a 1745:T 1714:M 1710:D 1706:C 1702:b 1700:( 1698:T 1694:a 1692:( 1690:T 1688:( 1686:D 1682:b 1678:a 1676:( 1674:C 1667:T 1664:M 1656:C 1652:b 1648:a 1644:D 1640:C 1636:D 1632:C 1628:T 1624:M 1620:M 1616:M 1612:D 1608:C 1585:M 1577:I 1575:( 1573:M 1569:M 1565:N 1561:M 1557:N 1553:M 1536:Z 1487:. 1485:B 1481:A 1477:B 1473:A 1452:) 1450:a 1446:a 1439:c 1435:a 1431:b 1427:a 1423:c 1419:b 1408:b 1404:a 1400:) 1398:b 1394:a 1392:( 1390:R 1385:s 1381:r 1377:s 1373:r 1368:R 1349:. 1347:2 1339:2 1330:a 1326:a 1316:c 1312:a 1308:b 1304:a 1300:c 1296:b 1286:2 1281:b 1277:a 1272:b 1268:a 1264:b 1260:a 1258:( 1256:2 1240:2 1230:C 1222:C 1187:b 1183:a 1181:( 1179:C 1175:b 1171:a 1128:C 1124:M 1120:C 1116:a 1112:) 1110:a 1106:a 1104:( 1102:C 1098:I 1093:a 1080:M 1076:) 1074:b 1070:a 1068:( 1066:C 1062:b 1058:a 1056:( 1054:C 1050:) 1048:b 1044:a 1042:( 1040:C 1037:1 1029:. 1027:) 1025:ρ 1021:λ 1019:( 1011:M 1007:I 993:C 989:C 985:a 981:) 979:a 975:a 973:( 971:C 966:a 962:I 958:) 956:a 952:a 950:( 948:C 944:I 939:a 932:M 893:C 889:) 887:b 883:a 881:( 879:C 874:C 870:M 866:C 859:) 857:d 853:c 851:( 849:C 844:) 842:c 838:b 836:( 834:C 829:) 827:b 823:a 821:( 819:C 813:d 809:c 805:b 801:a 796:) 794:d 790:a 788:( 786:C 781:C 777:) 775:b 771:a 769:( 767:C 754:) 752:ρ 748:λ 744:α 740:I 730:M 723:M 689:) 686:f 680:g 677:( 672:c 669:b 666:a 650:= 647:f 641:C 632:g 622:C 608:c 602:b 599:: 596:g 576:b 570:a 567:: 564:f 554:C 550:c 546:b 542:a 534:M 530:) 528:c 524:a 522:( 520:C 516:b 512:a 510:( 508:C 504:c 500:b 498:( 496:C 488:° 481:C 477:a 469:M 465:) 463:a 459:a 457:( 455:C 451:I 446:a 438:, 436:M 422:) 419:b 416:, 413:a 410:( 407:C 401:I 398:: 395:f 385:C 371:b 365:a 362:: 359:f 349:C 345:b 341:a 337:M 333:) 331:b 327:a 325:( 323:C 317:, 315:C 307:C 305:( 290:- 288:M 284:M 277:C 266:) 264:ρ 260:λ 256:α 252:I 248:M 246:( 218:M 194:) 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Enriched category"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
category theory
mathematics
category
hom-sets
monoidal category
vector space
morphisms
topological space
object
monoidal category
right adjoint
symmetric monoidal
symmetric closed monoidal
2-category
abelian category
preorders
Lawvere's metric spaces
category of sets
monoidal category

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.