Knowledge

Aftershock

Source đź“ť

656: 54: 416: 622:
earthquake. Also, previously Utsu-Omori law was obtained from a nucleation process. Results show that the spatial and temporal distribution of aftershocks is separable into a dependence on space and a dependence on time. And more recently, through the application of a fractional solution of the reactive differential equation, a double power law model shows the number density decay in several possible ways, among which is a particular case the Utsu-Omori Law.
423: 644: 842:
Aftershocks are dangerous because they are usually unpredictable, can be of a large magnitude, and can collapse buildings that are damaged from the main shock. Bigger earthquakes have more and larger aftershocks and the sequences can last for years or even longer especially when a large event occurs
429:
Most aftershocks are located over the full area of fault rupture and either occur along the fault plane itself or along other faults within the volume affected by the strain associated with the main shock. Typically, aftershocks are found up to a distance equal to the rupture length away from the
609:
According to these equations, the rate of aftershocks decreases quickly with time. The rate of aftershocks is proportional to the inverse of time since the mainshock and this relationship can be used to estimate the probability of future aftershock occurrence. Thus whatever the probability of an
621:
The Utsu-Omori law has also been obtained theoretically, as the solution of a differential equation describing the evolution of the aftershock activity, where the interpretation of the evolution equation is based on the idea of deactivation of the faults in the vicinity of the main shock of the
847:, where events still follow Omori's law from the main shocks of 1811–1812. An aftershock sequence is deemed to have ended when the rate of seismicity drops back to a background level; i.e., no further decay in the number of events with time can be detected. 630:
The other main law describing aftershocks is known as Båth's Law and this states that the difference in magnitude between a main shock and its largest aftershock is approximately constant, independent of the main shock magnitude, typically 1.1–1.2 on the
1420:
As part of an effort to develop a systematic methodology for earthquake forecasting, we use a simple model of seismicity based on interacting events which may trigger a cascade of earthquakes, known as the Epidemic-Type Aftershock Sequence model
854:
which averages up to 37 mm (1.5 in) a year across California. Aftershocks on the San Andreas are now believed to top out at 10 years while earthquakes in New Madrid were considered aftershocks nearly 200 years after the
889:
show quite predictable foreshock behaviour before the main seismic event. Reviews of data of past events and their foreshocks showed that they have a low number of aftershocks and high foreshock rates compared to continental
618:, while tending to follow these patterns. As this is an empirical law, values of the parameters are obtained by fitting to data after a mainshock has occurred, and they imply no specific physical mechanism in any given case. 913:
Following a large earthquake and aftershocks, many people have reported feeling "phantom earthquakes" when in fact no earthquake was taking place. This condition, known as "earthquake sickness" is thought to be related to
673:
Aftershock sequences also typically follow the Gutenberg–Richter law of size scaling, which refers to the relationship between the magnitude and total number of earthquakes in a region in a given time period.
1027: 395:
adjusts to the effects of the main shock. Large earthquakes can have hundreds to thousands of instrumentally detectable aftershocks, which steadily decrease in magnitude and frequency according to
597: 610:
aftershock are on the first day, the second day will have 1/2 the probability of the first day and the tenth day will have approximately 1/10 the probability of the first day (when
516: 719: 1035: 935: 828: 808: 786: 765: 745: 614:
is equal to 1). These patterns describe only the statistical behavior of aftershocks; the actual times, numbers and locations of the aftershocks are
260: 1513: 1318:
McGuire JJ, Boettcher MS, Jordan TH (2005). "Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults".
461:
The frequency of aftershocks decreases roughly with the reciprocal of time after the main shock. This empirical relation was first described by
1475: 1493: 1297: 1260: 1111: 1154:
Sánchez, Ewin; Vega, Pedro (2018). "Modelling temporal decay of aftershocks by a solution of the fractional reactive equation".
1290:"Earthquakes Actually Aftershocks Of 19th Century Quakes; Repercussions Of 1811 And 1812 New Madrid Quakes Continue To Be Felt" 529:
are constants, which vary between earthquake sequences. A modified version of Omori's law, now commonly used, was proposed by
362: 850:
Land movement around the New Madrid is reported to be no more than 0.2 mm (0.0079 in) a year, in contrast to the
660: 399:. In some earthquakes the main rupture happens in two or more steps, resulting in multiple main shocks. These are known as 445:(where the rupture initiated) lay to one end of the final area of slip, implying strongly asymmetric rupture propagation. 1376:(October 2003). "Predictability in the Epidemic-Type Aftershock Sequence model of interacting triggered seismicity". 1028:"New Science update on 2011 Christchurch Earthquake for press and public: Seismic fearmongering or time to jump ship" 950: 905:
use tools such as the Epidemic-Type Aftershock Sequence model (ETAS) to study cascading aftershocks and foreshocks.
539: 403:, and in general can be distinguished from aftershocks in having similar magnitudes and nearly identical seismic 110: 291: 1534: 471: 434: 433:
The pattern of aftershocks helps confirm the size of area that slipped during the main shock. In both the
158: 27: 856: 680: 668: 355: 336: 296: 878: 239: 234: 1289: 844: 438: 85: 632: 301: 268: 1268: 874: 324: 252: 125: 105: 100: 95: 655: 606:
is a third constant which modifies the decay rate and typically falls in the range 0.7–1.5.
1395: 1329: 1211: 1126: 1076: 348: 331: 286: 120: 37: 20: 8: 1529: 186: 63: 1399: 1333: 1215: 1130: 1080: 1436:"Testing of the foreshock hypothesis within an epidemic like description of seismicity" 1411: 1385: 1353: 1171: 1092: 1066: 813: 793: 771: 750: 730: 400: 163: 130: 90: 1457: 1345: 1223: 1096: 891: 882: 851: 1415: 1175: 1447: 1403: 1357: 1337: 1320: 1219: 1163: 1134: 1084: 1006: 135: 1373: 915: 886: 462: 453:
Aftershocks rates and magnitudes follow several well-established empirical laws.
392: 153: 115: 663:(red dot) and aftershocks (which continued to occur after the period shown here) 53: 1167: 1088: 1523: 1461: 1293: 1112:"Generalized Omori law for aftershocks and foreshocks from a simple dynamics" 1238: 26:
This article is about the geological event. For other uses of the term, see
1349: 995:"The centenary of the Omori formula for a decay law of aftershock activity" 902: 415: 201: 1476:"Japanese researchers diagnose hundreds of cases of 'earthquake sickness'" 1452: 1435: 834:
In summary, there are more small aftershocks and fewer large aftershocks.
1407: 1390: 1192:(San Francisco, California, USA: W. H. Freeman & Co., 1958), page 69. 1011: 994: 974:
Utsu, T. (1961). "A statistical study of the occurrence of aftershocks".
530: 229: 196: 1341: 1261:"Present-Day Crustal Movements and the Mechanics of Cyclic Deformation" 615: 384: 376: 311: 191: 45: 1139: 868: 442: 388: 181: 75: 70: 1202:
BĂĄth, Markus (1965). "Lateral inhomogeneities in the upper mantle".
1071: 404: 306: 422: 19:"Aftershocks" redirects here. For the memoir by Nadia Owusu, see 943:
Journal of the College of Science, Imperial University of Tokyo
643: 211: 206: 16:
Smaller earthquake which follows a larger one in the same area
396: 1057:
Guglielmi, A.V. (2016). "Interpretation of the Omori law".
441:, the aftershock distribution in each case showed that the 1494:"After the earthquake: why the brain gives phantom quakes" 448: 465:
in 1894 and is known as Omori's law. It is expressed as
1434:
Petrillo, Giuseppe; Lippiello, Eugenio (December 2020).
918:, and usually goes away as seismic activity tails off. 1317: 992: 873:
Some scientists have tried to use foreshocks to help
816: 796: 774: 753: 733: 683: 542: 474: 1236: 1371: 843:in a seismically quiet area; see, for example, the 822: 802: 780: 759: 739: 713: 591: 510: 1433: 684: 1521: 1239:"New Madrid fault system may be shutting down" 410: 993:Utsu, T.; Ogata, Y.; Matsu'ura, R.S. (1995). 877:, having one of their few successes with the 356: 1378:Journal of Geophysical Research: Solid Earth 747:is the number of events greater or equal to 1514:Earthquake Aftershocks Not What They Seemed 1153: 592:{\displaystyle n(t)={\frac {k}{(c+t)^{p}}}} 391:of the main shock, caused as the displaced 363: 349: 1451: 1389: 1138: 1070: 1056: 1010: 685: 1265:The San Andreas Fault System, California 837: 654: 642: 638: 421: 414: 661:Central Italy earthquake of August 2016 449:Aftershock size and frequency with time 1522: 1019: 1059:Izvestiya, Physics of the Solid Earth 933: 511:{\displaystyle n(t)={\frac {k}{c+t}}} 387:that follows a larger earthquake, in 1300:from the original on 8 November 2009 1201: 1109: 973: 1258: 1237:Elizabeth K. Gardner (2009-03-13). 1156:Applied Mathematics and Computation 1025: 936:"On the aftershocks of earthquakes" 13: 14: 1546: 1507: 1440:Geophysical Journal International 52: 1486: 1468: 1426: 1364: 1311: 1282: 1252: 1230: 1032:Christchurch Earthquake Journal 999:Journal of Physics of the Earth 714:{\displaystyle \!\,N=10^{a-bM}} 1195: 1182: 1147: 1103: 1050: 986: 967: 927: 577: 564: 552: 546: 484: 478: 456: 1: 921: 908: 862: 625: 1224:10.1016/0040-1951(65)90003-X 1119:Geophysical Research Letters 875:predict upcoming earthquakes 435:2004 Indian Ocean earthquake 7: 897: 411:Distribution of aftershocks 28:Aftershock (disambiguation) 10: 1551: 866: 857:1812 New Madrid earthquake 666: 647:Gutenberg–Richter law for 261:Coordinating Committee for 25: 18: 1168:10.1016/j.amc.2018.08.022 1089:10.1134/S1069351316050165 949:: 111–200. Archived from 292:Adams–Williamson equation 879:1975 Haicheng earthquake 240:Seismic intensity scales 235:Seismic magnitude scales 845:New Madrid Seismic Zone 439:2008 Sichuan earthquake 824: 804: 782: 761: 741: 715: 664: 652: 633:Moment magnitude scale 593: 512: 426: 419: 302:Earthquake engineering 1190:Elementary seismology 1188:Richter, Charles F., 838:Effect of aftershocks 825: 805: 783: 762: 742: 716: 669:Gutenberg–Richter law 658: 646: 639:Gutenberg–Richter law 594: 513: 425: 418: 325:Earth Sciences Portal 297:Flinn–Engdahl regions 263:Earthquake Prediction 1408:10.1029/2003JB002485 1372:Helmstetter, Agnès; 1110:Shaw, Bruce (1993). 1012:10.4294/jpe1952.43.1 976:Geophysical Magazine 814: 794: 772: 751: 731: 681: 540: 472: 397:a consistent pattern 287:Shear wave splitting 21:Aftershocks (memoir) 1535:Types of earthquake 1480:The Daily Telegraph 1453:10.1093/gji/ggaa611 1400:2003JGRB..108.2482H 1342:10.1038/nature03377 1334:2005Natur.434..457M 1259:Wallace, Robert E. 1216:1965Tectp...2..483B 1131:1993GeoRL..20..907S 1081:2016IzPSE..52..785G 401:doublet earthquakes 187:Epicentral distance 1500:. 6 November 2016. 1038:on 29 January 2012 934:Omori, F. (1894). 892:strike-slip faults 820: 800: 778: 757: 737: 711: 665: 653: 589: 508: 427: 420: 164:Induced seismicity 111:Remotely triggered 1140:10.1029/93GL01058 883:East Pacific Rise 881:in China. On the 852:San Andreas Fault 823:{\displaystyle b} 803:{\displaystyle a} 781:{\displaystyle M} 760:{\displaystyle M} 740:{\displaystyle N} 659:Magnitude of the 587: 506: 373: 372: 1542: 1502: 1501: 1490: 1484: 1483: 1472: 1466: 1465: 1455: 1446:(2): 1236–1257. 1430: 1424: 1423: 1393: 1391:cond-mat/0208597 1374:Sornette, Didier 1368: 1362: 1361: 1315: 1309: 1308: 1306: 1305: 1286: 1280: 1279: 1277: 1276: 1267:. Archived from 1256: 1250: 1249: 1247: 1246: 1234: 1228: 1227: 1199: 1193: 1186: 1180: 1179: 1151: 1145: 1144: 1142: 1116: 1107: 1101: 1100: 1074: 1054: 1048: 1047: 1045: 1043: 1034:. Archived from 1023: 1017: 1016: 1014: 990: 984: 983: 971: 965: 964: 962: 961: 955: 940: 931: 887:transform faults 829: 827: 826: 821: 809: 807: 806: 801: 787: 785: 784: 779: 766: 764: 763: 758: 746: 744: 743: 738: 720: 718: 717: 712: 710: 709: 598: 596: 595: 590: 588: 586: 585: 584: 559: 517: 515: 514: 509: 507: 505: 491: 365: 358: 351: 136:Earthquake swarm 56: 33: 32: 1550: 1549: 1545: 1544: 1543: 1541: 1540: 1539: 1520: 1519: 1516:at Live Science 1510: 1505: 1492: 1491: 1487: 1482:. 20 June 2016. 1474: 1473: 1469: 1431: 1427: 1384:(B10): 2482ff. 1369: 1365: 1328:(7032): 445–7. 1316: 1312: 1303: 1301: 1288: 1287: 1283: 1274: 1272: 1257: 1253: 1244: 1242: 1235: 1231: 1200: 1196: 1187: 1183: 1152: 1148: 1125:(10): 907–910. 1114: 1108: 1104: 1055: 1051: 1041: 1039: 1024: 1020: 991: 987: 972: 968: 959: 957: 953: 938: 932: 928: 924: 916:motion sickness 911: 900: 871: 865: 840: 815: 812: 811: 795: 792: 791: 773: 770: 769: 752: 749: 748: 732: 729: 728: 696: 692: 682: 679: 678: 671: 641: 628: 580: 576: 563: 558: 541: 538: 537: 495: 490: 473: 470: 469: 463:Fusakichi Omori 459: 451: 413: 369: 317: 316: 282: 274: 273: 265: 262: 255: 245: 244: 225: 217: 216: 177: 176:Characteristics 169: 168: 149: 141: 140: 66: 31: 24: 17: 12: 11: 5: 1548: 1538: 1537: 1532: 1518: 1517: 1509: 1508:External links 1506: 1504: 1503: 1485: 1467: 1425: 1363: 1310: 1281: 1251: 1229: 1210:(6): 483–514. 1204:Tectonophysics 1194: 1181: 1146: 1102: 1065:(5): 785–786. 1049: 1018: 985: 966: 925: 923: 920: 910: 907: 899: 896: 867:Main article: 864: 861: 839: 836: 832: 831: 819: 799: 789: 777: 767: 756: 736: 722: 721: 708: 705: 702: 699: 695: 691: 688: 667:Main article: 651: = 1 640: 637: 627: 624: 600: 599: 583: 579: 575: 572: 569: 566: 562: 557: 554: 551: 548: 545: 519: 518: 504: 501: 498: 494: 489: 486: 483: 480: 477: 458: 455: 450: 447: 412: 409: 371: 370: 368: 367: 360: 353: 345: 342: 341: 340: 339: 337:Related topics 334: 328: 327: 319: 318: 315: 314: 309: 304: 299: 294: 289: 283: 280: 279: 276: 275: 272: 271: 266: 259: 256: 251: 250: 247: 246: 243: 242: 237: 232: 226: 223: 222: 219: 218: 215: 214: 209: 204: 199: 194: 189: 184: 178: 175: 174: 171: 170: 167: 166: 161: 156: 154:Fault movement 150: 147: 146: 143: 142: 139: 138: 133: 128: 123: 118: 113: 108: 103: 98: 93: 88: 83: 78: 73: 67: 62: 61: 58: 57: 49: 48: 42: 41: 15: 9: 6: 4: 3: 2: 1547: 1536: 1533: 1531: 1528: 1527: 1525: 1515: 1512: 1511: 1499: 1495: 1489: 1481: 1477: 1471: 1463: 1459: 1454: 1449: 1445: 1441: 1437: 1432:For example: 1429: 1422: 1417: 1413: 1409: 1405: 1401: 1397: 1392: 1387: 1383: 1379: 1375: 1370:For example: 1367: 1359: 1355: 1351: 1347: 1343: 1339: 1335: 1331: 1327: 1323: 1322: 1314: 1299: 1295: 1294:Science Daily 1291: 1285: 1271:on 2006-12-16 1270: 1266: 1262: 1255: 1241:. physorg.com 1240: 1233: 1225: 1221: 1217: 1213: 1209: 1205: 1198: 1191: 1185: 1177: 1173: 1169: 1165: 1161: 1157: 1150: 1141: 1136: 1132: 1128: 1124: 1120: 1113: 1106: 1098: 1094: 1090: 1086: 1082: 1078: 1073: 1068: 1064: 1060: 1053: 1037: 1033: 1029: 1022: 1013: 1008: 1004: 1000: 996: 989: 981: 977: 970: 956:on 2015-07-16 952: 948: 944: 937: 930: 926: 919: 917: 906: 904: 903:Seismologists 895: 893: 888: 884: 880: 876: 870: 860: 858: 853: 848: 846: 835: 830:are constants 817: 797: 790: 775: 768: 754: 734: 727: 726: 725: 706: 703: 700: 697: 693: 689: 686: 677: 676: 675: 670: 662: 657: 650: 645: 636: 634: 623: 619: 617: 613: 607: 605: 581: 573: 570: 567: 560: 555: 549: 543: 536: 535: 534: 532: 528: 524: 502: 499: 496: 492: 487: 481: 475: 468: 467: 466: 464: 454: 446: 444: 440: 436: 431: 430:fault plane. 424: 417: 408: 406: 402: 398: 394: 390: 389:the same area 386: 383:is a smaller 382: 378: 366: 361: 359: 354: 352: 347: 346: 344: 343: 338: 335: 333: 330: 329: 326: 323: 322: 321: 320: 313: 310: 308: 305: 303: 300: 298: 295: 293: 290: 288: 285: 284: 278: 277: 270: 267: 264: 258: 257: 254: 249: 248: 241: 238: 236: 233: 231: 228: 227: 221: 220: 213: 210: 208: 205: 203: 202:Seismic waves 200: 198: 195: 193: 190: 188: 185: 183: 180: 179: 173: 172: 165: 162: 160: 157: 155: 152: 151: 145: 144: 137: 134: 132: 129: 127: 124: 122: 119: 117: 114: 112: 109: 107: 104: 102: 99: 97: 94: 92: 89: 87: 84: 82: 79: 77: 74: 72: 69: 68: 65: 60: 59: 55: 51: 50: 47: 44: 43: 39: 35: 34: 29: 22: 1498:The Guardian 1497: 1488: 1479: 1470: 1443: 1439: 1428: 1419: 1381: 1377: 1366: 1325: 1319: 1313: 1302:. Retrieved 1284: 1273:. Retrieved 1269:the original 1264: 1254: 1243:. Retrieved 1232: 1207: 1203: 1197: 1189: 1184: 1159: 1155: 1149: 1122: 1118: 1105: 1062: 1058: 1052: 1040:. Retrieved 1036:the original 1031: 1026:Quigley, M. 1021: 1002: 998: 988: 979: 975: 969: 958:. Retrieved 951:the original 946: 942: 929: 912: 901: 872: 849: 841: 833: 788:is magnitude 723: 672: 648: 629: 620: 611: 608: 603: 601: 526: 522: 520: 460: 457:Omori's law 452: 432: 428: 380: 374: 281:Other topics 86:Blind thrust 80: 269:Forecasting 230:Seismometer 224:Measurement 197:Shadow zone 46:Earthquakes 1530:Seismology 1524:Categories 1304:2009-11-04 1275:2007-10-26 1245:2011-03-25 1072:1604.07017 1042:25 January 982:: 521–605. 960:2015-07-15 922:References 909:Psychology 863:Foreshocks 626:BĂĄth's law 616:stochastic 385:earthquake 381:aftershock 377:seismology 312:Seismology 253:Prediction 192:Hypocenter 126:Supershear 106:Megathrust 101:Intraplate 96:Interplate 81:Aftershock 1462:0956-540X 1162:: 24–49. 1097:119256791 885:however, 869:Foreshock 701:− 533:in 1961. 443:epicenter 405:waveforms 182:Epicenter 159:Volcanism 121:Submarine 76:Foreshock 71:Mainshock 1416:14327777 1350:15791246 1298:Archived 1176:52813333 1005:: 1–33. 898:Modeling 437:and the 332:Category 307:Seismite 38:a series 36:Part of 1421:(ETAS). 1396:Bibcode 1358:4337369 1330:Bibcode 1212:Bibcode 1127:Bibcode 1077:Bibcode 724:Where: 131:Tsunami 91:Doublet 1460:  1414:  1356:  1348:  1321:Nature 1174:  1095:  602:where 521:where 212:S wave 207:P wave 148:Causes 1412:S2CID 1386:arXiv 1354:S2CID 1172:S2CID 1115:(PDF) 1093:S2CID 1067:arXiv 954:(PDF) 939:(PDF) 393:crust 379:, an 64:Types 1458:ISSN 1346:PMID 1044:2012 810:and 531:Utsu 525:and 116:Slow 1448:doi 1444:225 1404:doi 1382:108 1338:doi 1326:434 1220:doi 1164:doi 1160:340 1135:doi 1085:doi 1007:doi 375:In 1526:: 1496:. 1478:. 1456:. 1442:. 1438:. 1418:. 1410:. 1402:. 1394:. 1380:. 1352:. 1344:. 1336:. 1324:. 1296:. 1292:. 1263:. 1218:. 1206:. 1170:. 1158:. 1133:. 1123:20 1121:. 1117:. 1091:. 1083:. 1075:. 1063:52 1061:. 1030:. 1003:43 1001:. 997:. 980:30 978:. 945:. 941:. 894:. 859:. 694:10 635:. 407:. 40:on 1464:. 1450:: 1406:: 1398:: 1388:: 1360:. 1340:: 1332:: 1307:. 1278:. 1248:. 1226:. 1222:: 1214:: 1208:2 1178:. 1166:: 1143:. 1137:: 1129:: 1099:. 1087:: 1079:: 1069:: 1046:. 1015:. 1009:: 963:. 947:7 818:b 798:a 776:M 755:M 735:N 707:M 704:b 698:a 690:= 687:N 649:b 612:p 604:p 582:p 578:) 574:t 571:+ 568:c 565:( 561:k 556:= 553:) 550:t 547:( 544:n 527:c 523:k 503:t 500:+ 497:c 493:k 488:= 485:) 482:t 479:( 476:n 364:e 357:t 350:v 30:. 23:.

Index

Aftershocks (memoir)
Aftershock (disambiguation)
a series
Earthquakes

Types
Mainshock
Foreshock
Aftershock
Blind thrust
Doublet
Interplate
Intraplate
Megathrust
Remotely triggered
Slow
Submarine
Supershear
Tsunami
Earthquake swarm
Fault movement
Volcanism
Induced seismicity
Epicenter
Epicentral distance
Hypocenter
Shadow zone
Seismic waves
P wave
S wave

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑