Knowledge

Aftershock

Source đź“ť

667: 65: 427: 633:
earthquake. Also, previously Utsu-Omori law was obtained from a nucleation process. Results show that the spatial and temporal distribution of aftershocks is separable into a dependence on space and a dependence on time. And more recently, through the application of a fractional solution of the reactive differential equation, a double power law model shows the number density decay in several possible ways, among which is a particular case the Utsu-Omori Law.
434: 655: 853:
Aftershocks are dangerous because they are usually unpredictable, can be of a large magnitude, and can collapse buildings that are damaged from the main shock. Bigger earthquakes have more and larger aftershocks and the sequences can last for years or even longer especially when a large event occurs
440:
Most aftershocks are located over the full area of fault rupture and either occur along the fault plane itself or along other faults within the volume affected by the strain associated with the main shock. Typically, aftershocks are found up to a distance equal to the rupture length away from the
620:
According to these equations, the rate of aftershocks decreases quickly with time. The rate of aftershocks is proportional to the inverse of time since the mainshock and this relationship can be used to estimate the probability of future aftershock occurrence. Thus whatever the probability of an
632:
The Utsu-Omori law has also been obtained theoretically, as the solution of a differential equation describing the evolution of the aftershock activity, where the interpretation of the evolution equation is based on the idea of deactivation of the faults in the vicinity of the main shock of the
858:, where events still follow Omori's law from the main shocks of 1811–1812. An aftershock sequence is deemed to have ended when the rate of seismicity drops back to a background level; i.e., no further decay in the number of events with time can be detected. 641:
The other main law describing aftershocks is known as Båth's Law and this states that the difference in magnitude between a main shock and its largest aftershock is approximately constant, independent of the main shock magnitude, typically 1.1–1.2 on the
1431:
As part of an effort to develop a systematic methodology for earthquake forecasting, we use a simple model of seismicity based on interacting events which may trigger a cascade of earthquakes, known as the Epidemic-Type Aftershock Sequence model
865:
which averages up to 37 mm (1.5 in) a year across California. Aftershocks on the San Andreas are now believed to top out at 10 years while earthquakes in New Madrid were considered aftershocks nearly 200 years after the
900:
show quite predictable foreshock behaviour before the main seismic event. Reviews of data of past events and their foreshocks showed that they have a low number of aftershocks and high foreshock rates compared to continental
629:, while tending to follow these patterns. As this is an empirical law, values of the parameters are obtained by fitting to data after a mainshock has occurred, and they imply no specific physical mechanism in any given case. 924:
Following a large earthquake and aftershocks, many people have reported feeling "phantom earthquakes" when in fact no earthquake was taking place. This condition, known as "earthquake sickness" is thought to be related to
684:
Aftershock sequences also typically follow the Gutenberg–Richter law of size scaling, which refers to the relationship between the magnitude and total number of earthquakes in a region in a given time period.
1038: 406:
adjusts to the effects of the main shock. Large earthquakes can have hundreds to thousands of instrumentally detectable aftershocks, which steadily decrease in magnitude and frequency according to
608: 621:
aftershock are on the first day, the second day will have 1/2 the probability of the first day and the tenth day will have approximately 1/10 the probability of the first day (when
527: 730: 1046: 946: 839: 819: 797: 776: 756: 625:
is equal to 1). These patterns describe only the statistical behavior of aftershocks; the actual times, numbers and locations of the aftershocks are
271: 1524: 1329:
McGuire JJ, Boettcher MS, Jordan TH (2005). "Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults".
472:
The frequency of aftershocks decreases roughly with the reciprocal of time after the main shock. This empirical relation was first described by
1486: 1504: 1308: 1271: 1122: 1165:
Sánchez, Ewin; Vega, Pedro (2018). "Modelling temporal decay of aftershocks by a solution of the fractional reactive equation".
1301:"Earthquakes Actually Aftershocks Of 19th Century Quakes; Repercussions Of 1811 And 1812 New Madrid Quakes Continue To Be Felt" 540:
are constants, which vary between earthquake sequences. A modified version of Omori's law, now commonly used, was proposed by
373: 861:
Land movement around the New Madrid is reported to be no more than 0.2 mm (0.0079 in) a year, in contrast to the
671: 410:. In some earthquakes the main rupture happens in two or more steps, resulting in multiple main shocks. These are known as 456:(where the rupture initiated) lay to one end of the final area of slip, implying strongly asymmetric rupture propagation. 1387:(October 2003). "Predictability in the Epidemic-Type Aftershock Sequence model of interacting triggered seismicity". 1039:"New Science update on 2011 Christchurch Earthquake for press and public: Seismic fearmongering or time to jump ship" 961: 916:
use tools such as the Epidemic-Type Aftershock Sequence model (ETAS) to study cascading aftershocks and foreshocks.
550: 414:, and in general can be distinguished from aftershocks in having similar magnitudes and nearly identical seismic 121: 302: 1545: 482: 445: 444:
The pattern of aftershocks helps confirm the size of area that slipped during the main shock. In both the
169: 38: 17: 867: 691: 679: 366: 347: 307: 889: 250: 245: 1300: 855: 449: 96: 643: 312: 279: 1279: 885: 335: 263: 136: 116: 111: 106: 666: 617:
is a third constant which modifies the decay rate and typically falls in the range 0.7–1.5.
1406: 1340: 1222: 1137: 1087: 359: 342: 297: 131: 48: 31: 8: 1540: 197: 74: 1410: 1344: 1226: 1141: 1091: 1447:"Testing of the foreshock hypothesis within an epidemic like description of seismicity" 1422: 1396: 1364: 1182: 1103: 1077: 824: 804: 782: 761: 741: 411: 174: 141: 101: 1468: 1356: 1234: 1107: 902: 893: 862: 1426: 1186: 1458: 1414: 1368: 1348: 1331: 1230: 1174: 1145: 1095: 1017: 146: 1384: 926: 897: 473: 464:
Aftershocks rates and magnitudes follow several well-established empirical laws.
403: 164: 126: 674:(red dot) and aftershocks (which continued to occur after the period shown here) 64: 1178: 1099: 1534: 1472: 1304: 1123:"Generalized Omori law for aftershocks and foreshocks from a simple dynamics" 1249: 37:
This article is about the geological event. For other uses of the term, see
1360: 1006:"The centenary of the Omori formula for a decay law of aftershock activity" 913: 426: 212: 1487:"Japanese researchers diagnose hundreds of cases of 'earthquake sickness'" 1463: 1446: 845:
In summary, there are more small aftershocks and fewer large aftershocks.
1418: 1401: 1203:(San Francisco, California, USA: W. H. Freeman & Co., 1958), page 69. 1022: 1005: 985:
Utsu, T. (1961). "A statistical study of the occurrence of aftershocks".
541: 240: 207: 1352: 1272:"Present-Day Crustal Movements and the Mechanics of Cyclic Deformation" 626: 395: 387: 322: 202: 56: 1150: 879: 453: 399: 192: 86: 81: 1213:
BĂĄth, Markus (1965). "Lateral inhomogeneities in the upper mantle".
1082: 415: 317: 433: 30:"Aftershocks" redirects here. For the memoir by Nadia Owusu, see 954:
Journal of the College of Science, Imperial University of Tokyo
654: 222: 217: 27:
Smaller earthquake which follows a larger one in the same area
407: 1068:
Guglielmi, A.V. (2016). "Interpretation of the Omori law".
452:, the aftershock distribution in each case showed that the 1505:"After the earthquake: why the brain gives phantom quakes" 459: 476:
in 1894 and is known as Omori's law. It is expressed as
1445:
Petrillo, Giuseppe; Lippiello, Eugenio (December 2020).
929:, and usually goes away as seismic activity tails off. 1328: 1003: 884:
Some scientists have tried to use foreshocks to help
827: 807: 785: 764: 744: 694: 553: 485: 1247: 1382: 854:in a seismically quiet area; see, for example, the 833: 813: 791: 770: 750: 724: 602: 521: 1444: 695: 1532: 1250:"New Madrid fault system may be shutting down" 421: 1004:Utsu, T.; Ogata, Y.; Matsu'ura, R.S. (1995). 888:, having one of their few successes with the 367: 1389:Journal of Geophysical Research: Solid Earth 758:is the number of events greater or equal to 1525:Earthquake Aftershocks Not What They Seemed 1164: 603:{\displaystyle n(t)={\frac {k}{(c+t)^{p}}}} 402:of the main shock, caused as the displaced 374: 360: 1462: 1400: 1149: 1081: 1067: 1021: 696: 1276:The San Andreas Fault System, California 848: 665: 653: 649: 432: 425: 672:Central Italy earthquake of August 2016 460:Aftershock size and frequency with time 14: 1533: 1030: 1070:Izvestiya, Physics of the Solid Earth 944: 522:{\displaystyle n(t)={\frac {k}{c+t}}} 398:that follows a larger earthquake, in 1311:from the original on 8 November 2009 1212: 1120: 984: 1269: 1248:Elizabeth K. Gardner (2009-03-13). 1167:Applied Mathematics and Computation 1036: 947:"On the aftershocks of earthquakes" 24: 25: 1557: 1518: 1451:Geophysical Journal International 63: 1497: 1479: 1437: 1375: 1322: 1293: 1263: 1241: 1043:Christchurch Earthquake Journal 1010:Journal of Physics of the Earth 725:{\displaystyle \!\,N=10^{a-bM}} 1206: 1193: 1158: 1114: 1061: 997: 978: 938: 588: 575: 563: 557: 495: 489: 467: 13: 1: 932: 919: 873: 636: 1235:10.1016/0040-1951(65)90003-X 1130:Geophysical Research Letters 886:predict upcoming earthquakes 446:2004 Indian Ocean earthquake 7: 908: 422:Distribution of aftershocks 39:Aftershock (disambiguation) 10: 1562: 877: 868:1812 New Madrid earthquake 677: 658:Gutenberg–Richter law for 272:Coordinating Committee for 36: 29: 1179:10.1016/j.amc.2018.08.022 1100:10.1134/S1069351316050165 960:: 111–200. Archived from 303:Adams–Williamson equation 890:1975 Haicheng earthquake 251:Seismic intensity scales 246:Seismic magnitude scales 856:New Madrid Seismic Zone 450:2008 Sichuan earthquake 835: 815: 793: 772: 752: 726: 675: 663: 644:Moment magnitude scale 604: 523: 437: 430: 313:Earthquake engineering 1201:Elementary seismology 1199:Richter, Charles F., 849:Effect of aftershocks 836: 816: 794: 773: 753: 727: 680:Gutenberg–Richter law 669: 657: 650:Gutenberg–Richter law 605: 524: 436: 429: 336:Earth Sciences Portal 308:Flinn–Engdahl regions 274:Earthquake Prediction 1419:10.1029/2003JB002485 1383:Helmstetter, Agnès; 1121:Shaw, Bruce (1993). 1023:10.4294/jpe1952.43.1 987:Geophysical Magazine 825: 805: 783: 762: 742: 692: 551: 483: 408:a consistent pattern 298:Shear wave splitting 32:Aftershocks (memoir) 1546:Types of earthquake 1491:The Daily Telegraph 1464:10.1093/gji/ggaa611 1411:2003JGRB..108.2482H 1353:10.1038/nature03377 1345:2005Natur.434..457M 1270:Wallace, Robert E. 1227:1965Tectp...2..483B 1142:1993GeoRL..20..907S 1092:2016IzPSE..52..785G 412:doublet earthquakes 198:Epicentral distance 1511:. 6 November 2016. 1049:on 29 January 2012 945:Omori, F. (1894). 903:strike-slip faults 831: 811: 789: 768: 748: 722: 676: 664: 600: 519: 438: 431: 175:Induced seismicity 122:Remotely triggered 1151:10.1029/93GL01058 894:East Pacific Rise 892:in China. On the 863:San Andreas Fault 834:{\displaystyle b} 814:{\displaystyle a} 792:{\displaystyle M} 771:{\displaystyle M} 751:{\displaystyle N} 670:Magnitude of the 598: 517: 384: 383: 16:(Redirected from 1553: 1513: 1512: 1501: 1495: 1494: 1483: 1477: 1476: 1466: 1457:(2): 1236–1257. 1441: 1435: 1434: 1404: 1402:cond-mat/0208597 1385:Sornette, Didier 1379: 1373: 1372: 1326: 1320: 1319: 1317: 1316: 1297: 1291: 1290: 1288: 1287: 1278:. Archived from 1267: 1261: 1260: 1258: 1257: 1245: 1239: 1238: 1210: 1204: 1197: 1191: 1190: 1162: 1156: 1155: 1153: 1127: 1118: 1112: 1111: 1085: 1065: 1059: 1058: 1056: 1054: 1045:. Archived from 1034: 1028: 1027: 1025: 1001: 995: 994: 982: 976: 975: 973: 972: 966: 951: 942: 898:transform faults 840: 838: 837: 832: 820: 818: 817: 812: 798: 796: 795: 790: 777: 775: 774: 769: 757: 755: 754: 749: 731: 729: 728: 723: 721: 720: 609: 607: 606: 601: 599: 597: 596: 595: 570: 528: 526: 525: 520: 518: 516: 502: 376: 369: 362: 147:Earthquake swarm 67: 44: 43: 21: 1561: 1560: 1556: 1555: 1554: 1552: 1551: 1550: 1531: 1530: 1527:at Live Science 1521: 1516: 1503: 1502: 1498: 1493:. 20 June 2016. 1485: 1484: 1480: 1442: 1438: 1395:(B10): 2482ff. 1380: 1376: 1339:(7032): 445–7. 1327: 1323: 1314: 1312: 1299: 1298: 1294: 1285: 1283: 1268: 1264: 1255: 1253: 1246: 1242: 1211: 1207: 1198: 1194: 1163: 1159: 1136:(10): 907–910. 1125: 1119: 1115: 1066: 1062: 1052: 1050: 1035: 1031: 1002: 998: 983: 979: 970: 968: 964: 949: 943: 939: 935: 927:motion sickness 922: 911: 882: 876: 851: 826: 823: 822: 806: 803: 802: 784: 781: 780: 763: 760: 759: 743: 740: 739: 707: 703: 693: 690: 689: 682: 652: 639: 591: 587: 574: 569: 552: 549: 548: 506: 501: 484: 481: 480: 474:Fusakichi Omori 470: 462: 424: 380: 328: 327: 293: 285: 284: 276: 273: 266: 256: 255: 236: 228: 227: 188: 187:Characteristics 180: 179: 160: 152: 151: 77: 42: 35: 28: 23: 22: 15: 12: 11: 5: 1559: 1549: 1548: 1543: 1529: 1528: 1520: 1519:External links 1517: 1515: 1514: 1496: 1478: 1436: 1374: 1321: 1292: 1262: 1240: 1221:(6): 483–514. 1215:Tectonophysics 1205: 1192: 1157: 1113: 1076:(5): 785–786. 1060: 1029: 996: 977: 936: 934: 931: 921: 918: 910: 907: 878:Main article: 875: 872: 850: 847: 843: 842: 830: 810: 800: 788: 778: 767: 747: 733: 732: 719: 716: 713: 710: 706: 702: 699: 678:Main article: 662: = 1 651: 648: 638: 635: 611: 610: 594: 590: 586: 583: 580: 577: 573: 568: 565: 562: 559: 556: 530: 529: 515: 512: 509: 505: 500: 497: 494: 491: 488: 469: 466: 461: 458: 423: 420: 382: 381: 379: 378: 371: 364: 356: 353: 352: 351: 350: 348:Related topics 345: 339: 338: 330: 329: 326: 325: 320: 315: 310: 305: 300: 294: 291: 290: 287: 286: 283: 282: 277: 270: 267: 262: 261: 258: 257: 254: 253: 248: 243: 237: 234: 233: 230: 229: 226: 225: 220: 215: 210: 205: 200: 195: 189: 186: 185: 182: 181: 178: 177: 172: 167: 165:Fault movement 161: 158: 157: 154: 153: 150: 149: 144: 139: 134: 129: 124: 119: 114: 109: 104: 99: 94: 89: 84: 78: 73: 72: 69: 68: 60: 59: 53: 52: 26: 9: 6: 4: 3: 2: 1558: 1547: 1544: 1542: 1539: 1538: 1536: 1526: 1523: 1522: 1510: 1506: 1500: 1492: 1488: 1482: 1474: 1470: 1465: 1460: 1456: 1452: 1448: 1443:For example: 1440: 1433: 1428: 1424: 1420: 1416: 1412: 1408: 1403: 1398: 1394: 1390: 1386: 1381:For example: 1378: 1370: 1366: 1362: 1358: 1354: 1350: 1346: 1342: 1338: 1334: 1333: 1325: 1310: 1306: 1305:Science Daily 1302: 1296: 1282:on 2006-12-16 1281: 1277: 1273: 1266: 1252:. physorg.com 1251: 1244: 1236: 1232: 1228: 1224: 1220: 1216: 1209: 1202: 1196: 1188: 1184: 1180: 1176: 1172: 1168: 1161: 1152: 1147: 1143: 1139: 1135: 1131: 1124: 1117: 1109: 1105: 1101: 1097: 1093: 1089: 1084: 1079: 1075: 1071: 1064: 1048: 1044: 1040: 1033: 1024: 1019: 1015: 1011: 1007: 1000: 992: 988: 981: 967:on 2015-07-16 963: 959: 955: 948: 941: 937: 930: 928: 917: 915: 914:Seismologists 906: 904: 899: 895: 891: 887: 881: 871: 869: 864: 859: 857: 846: 841:are constants 828: 808: 801: 786: 779: 765: 745: 738: 737: 736: 717: 714: 711: 708: 704: 700: 697: 688: 687: 686: 681: 673: 668: 661: 656: 647: 645: 634: 630: 628: 624: 618: 616: 592: 584: 581: 578: 571: 566: 560: 554: 547: 546: 545: 543: 539: 535: 513: 510: 507: 503: 498: 492: 486: 479: 478: 477: 475: 465: 457: 455: 451: 447: 442: 441:fault plane. 435: 428: 419: 417: 413: 409: 405: 401: 400:the same area 397: 394:is a smaller 393: 389: 377: 372: 370: 365: 363: 358: 357: 355: 354: 349: 346: 344: 341: 340: 337: 334: 333: 332: 331: 324: 321: 319: 316: 314: 311: 309: 306: 304: 301: 299: 296: 295: 289: 288: 281: 278: 275: 269: 268: 265: 260: 259: 252: 249: 247: 244: 242: 239: 238: 232: 231: 224: 221: 219: 216: 214: 213:Seismic waves 211: 209: 206: 204: 201: 199: 196: 194: 191: 190: 184: 183: 176: 173: 171: 168: 166: 163: 162: 156: 155: 148: 145: 143: 140: 138: 135: 133: 130: 128: 125: 123: 120: 118: 115: 113: 110: 108: 105: 103: 100: 98: 95: 93: 90: 88: 85: 83: 80: 79: 76: 71: 70: 66: 62: 61: 58: 55: 54: 50: 46: 45: 40: 33: 19: 1509:The Guardian 1508: 1499: 1490: 1481: 1454: 1450: 1439: 1430: 1392: 1388: 1377: 1336: 1330: 1324: 1313:. Retrieved 1295: 1284:. Retrieved 1280:the original 1275: 1265: 1254:. Retrieved 1243: 1218: 1214: 1208: 1200: 1195: 1170: 1166: 1160: 1133: 1129: 1116: 1073: 1069: 1063: 1051:. Retrieved 1047:the original 1042: 1037:Quigley, M. 1032: 1013: 1009: 999: 990: 986: 980: 969:. Retrieved 962:the original 957: 953: 940: 923: 912: 883: 860: 852: 844: 799:is magnitude 734: 683: 659: 640: 631: 622: 619: 614: 612: 537: 533: 531: 471: 468:Omori's law 463: 443: 439: 391: 385: 292:Other topics 97:Blind thrust 91: 280:Forecasting 241:Seismometer 235:Measurement 208:Shadow zone 57:Earthquakes 18:Aftershocks 1541:Seismology 1535:Categories 1315:2009-11-04 1286:2007-10-26 1256:2011-03-25 1083:1604.07017 1053:25 January 993:: 521–605. 971:2015-07-15 933:References 920:Psychology 874:Foreshocks 637:BĂĄth's law 627:stochastic 396:earthquake 392:aftershock 388:seismology 323:Seismology 264:Prediction 203:Hypocenter 137:Supershear 117:Megathrust 112:Intraplate 107:Interplate 92:Aftershock 1473:0956-540X 1173:: 24–49. 1108:119256791 896:however, 880:Foreshock 712:− 544:in 1961. 454:epicenter 416:waveforms 193:Epicenter 170:Volcanism 132:Submarine 87:Foreshock 82:Mainshock 1427:14327777 1361:15791246 1309:Archived 1187:52813333 1016:: 1–33. 909:Modeling 448:and the 343:Category 318:Seismite 49:a series 47:Part of 1432:(ETAS). 1407:Bibcode 1369:4337369 1341:Bibcode 1223:Bibcode 1138:Bibcode 1088:Bibcode 735:Where: 142:Tsunami 102:Doublet 1471:  1425:  1367:  1359:  1332:Nature 1185:  1106:  613:where 532:where 223:S wave 218:P wave 159:Causes 1423:S2CID 1397:arXiv 1365:S2CID 1183:S2CID 1126:(PDF) 1104:S2CID 1078:arXiv 965:(PDF) 950:(PDF) 404:crust 390:, an 75:Types 1469:ISSN 1357:PMID 1055:2012 821:and 542:Utsu 536:and 127:Slow 1459:doi 1455:225 1415:doi 1393:108 1349:doi 1337:434 1231:doi 1175:doi 1171:340 1146:doi 1096:doi 1018:doi 386:In 1537:: 1507:. 1489:. 1467:. 1453:. 1449:. 1429:. 1421:. 1413:. 1405:. 1391:. 1363:. 1355:. 1347:. 1335:. 1307:. 1303:. 1274:. 1229:. 1217:. 1181:. 1169:. 1144:. 1134:20 1132:. 1128:. 1102:. 1094:. 1086:. 1074:52 1072:. 1041:. 1014:43 1012:. 1008:. 991:30 989:. 956:. 952:. 905:. 870:. 705:10 646:. 418:. 51:on 1475:. 1461:: 1417:: 1409:: 1399:: 1371:. 1351:: 1343:: 1318:. 1289:. 1259:. 1237:. 1233:: 1225:: 1219:2 1189:. 1177:: 1154:. 1148:: 1140:: 1110:. 1098:: 1090:: 1080:: 1057:. 1026:. 1020:: 974:. 958:7 829:b 809:a 787:M 766:M 746:N 718:M 715:b 709:a 701:= 698:N 660:b 623:p 615:p 593:p 589:) 585:t 582:+ 579:c 576:( 572:k 567:= 564:) 561:t 558:( 555:n 538:c 534:k 514:t 511:+ 508:c 504:k 499:= 496:) 493:t 490:( 487:n 375:e 368:t 361:v 41:. 34:. 20:)

Index

Aftershocks
Aftershocks (memoir)
Aftershock (disambiguation)
a series
Earthquakes

Types
Mainshock
Foreshock
Aftershock
Blind thrust
Doublet
Interplate
Intraplate
Megathrust
Remotely triggered
Slow
Submarine
Supershear
Tsunami
Earthquake swarm
Fault movement
Volcanism
Induced seismicity
Epicenter
Epicentral distance
Hypocenter
Shadow zone
Seismic waves
P wave

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑