Knowledge

Alkaline water electrolysis

Source 📝

247:
equipped with a four-wheel design, utilised an internal combustion engine (ICE) fuelled by a mixture of hydrogen and oxygen gases. The hydrogen fuel was stored in a balloon, and ignition was achieved through an electrical starter known as a Volta starter. The combustion process propelled the piston within the cylinder, which, upon descending, activated a wheel through a ratchet mechanism. This invention could be viewed as an early embodiment of a system comprising hydrogen storage, conduits, valves, and a conversion device.
260: 228:(NaOH) at 25-40 wt% is used. These electrodes are separated by a diaphragm, separating the product gases and transporting the hydroxide ions (OH) from one electrode to the other. A recent comparison showed that state-of-the-art nickel based water electrolysers with alkaline electrolytes lead to competitive or even better efficiencies than acidic 299:. In cell tests the best performing electrodes thus far reported consisted of plasma vacuum sprayed Ni alloys on Ni meshes and hot dip galvanized Ni meshes. The latter approach might be interesting for large scale industrial manufacturing as it is cheap and easily scalable, but unfortunately, all the strategies show some degradation. 1064: 267:
The electrodes are typically separated by a thin porous foil, commonly referred to as diaphragm or separator. The diaphragm is non-conductive to electrons, thus avoiding electrical shorts between the electrodes while allowing small distances between the electrodes. The ionic conductivity is supplied
1608: 246:
Hydrogen-based technologies have evolved significantly since the initial discovery of hydrogen and its early application as a buoyant gas approximately 250 years ago. In 1804, the Swiss inventor Francois Isaac de Rivaz secured a patent for the inaugural hydrogen-powered vehicle. This prototype,
250:
Approximately four decades after the military scientist Ritter developed the first electrolyser, the chemists Schoenbein and Sir Grove independently identified and showcased the fuel cell concept. This technology operates in reverse to electrolysis around the year 1839. This discovery marked a
287:
Typically, Nickel based metals are used as the electrodes for alkaline water electrolysis. Considering pure metals, Ni is the least active non-noble metal. The high price of good noble metal electrocatalysts such as platinum group metals and their dissolution during the oxygen evolution is a
1673:
One disadvantage of alkaline water electrolysers is the low-performance profiles caused by the commonly-used thick diaphragms that increase ohmic resistance, the lower intrinsic conductivity of OH− compared to H+, and the higher gas crossover observed for highly porous diaphragms.
517: 1426: 312:
In alkaline media oxygen evolution reactions, multiple adsorbent species (O, OH, OOH, and OO) and multiple steps are involved. Steps 4 and 5 often occur in a single step, but there is evidence that suggests steps 4 and 5 occur separately at pH 11 and higher.
1207: 766: 636: 1932:
Chatenet, Marian; Pollet, Bruno G.; Dekel, Dario R.; Dionigi, Fabio; Deseure, Jonathan; Millet, Pierre; Braatz, Richard D.; Bazant, Martin Z.; Eikerling, Michael; Staffell, Iain; Balcombe, Paul; Shao-Horn, Yang; Schäfer, Helmut (2022).
919: 284:. The diaphragm further avoids the mixing of the produced hydrogen and oxygen at the cathode and anode, respectively. The thickness of asbestos diaphragms ranges from 2 to 5 mm, while Zirfon diaphragms range from 0.2 to 0.5 mm. 876: 1470: 381: 2374:
Cherevko, S; et al. (2016). "Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability".
1291: 422: 1334: 1109:
The hydrogen evolution reaction in alkaline conditions starts with water adsorption and dissociation in the Volmer step and either hydrogen desorption in the Tafel step or Heyrovsky step.
288:
drawback. Ni is considered as more stable during the oxygen evolution, but stainless steel has shown good stability and better catalytic activity than Ni at high temperatures during the
1118: 677: 2507:
Esfandiari, N; et al. (2024). "Metal-based cathodes for hydrogen production by alkaline water electrolysis: Review of materials, degradation mechanism, and durability tests".
1638: 1456: 1320: 1236: 1094: 905: 795: 665: 546: 410: 558: 1059:{\displaystyle 2\mathrm {OH} ^{-}\rightarrow \mathrm {H} _{2}\mathrm {O} +{\frac {1}{2}}\mathrm {O} _{2}+2\mathrm {e} ^{-}\quad (E^{0}=+0.40\,\mathrm {V\;vs.\;SHE} )} 272:
diaphragms have been used for a long time due to their effective gas separation, low cost, and high chemical stability; however, their use is restricted by the
2148: 2445:
Schiller, G; Henne R; Mohr P; Peinecke V (1998). "High Performance Electrodes for an Advanced Intermittently Operated 10-kW Alkaline Water Electrolyzer".
1603:{\displaystyle 2\mathrm {H} _{2}\mathrm {O} +2\mathrm {e} ^{-}\rightarrow \mathrm {H} _{2}+2\mathrm {OH} ^{-}\quad (E^{0}=-0.83\,\mathrm {V\;vs.\;SHE} )} 807: 321: 295:
High surface area Ni catalysts can be achieved by dealloying of Nickel-Zinc or Nickel-Aluminium alloys in alkaline solution, commonly referred to as
2472:
Schalenbach, M; et al. (2018). "An alkaline water electrolyzer with nickel electrodes enables efficient high current density operation".
235:
The technology has a long history in the chemical industry. The first large-scale demand for hydrogen emerged in late 19th century for
229: 1249: 2093:
Zeng, Kai; Zhang, Dongke (June 2010). "Recent progress in alkaline water electrolysis for hydrogen production and applications".
1767:
David, Martín; Ocampo-Martínez, Carlos; Sánchez-Peña, Ricardo (June 2019). "Advances in alkaline water electrolyzers: A review".
251:
significant milestone in the field of hydrogen technology, demonstrating the potential for hydrogen as a source of clean energy.
2402:
Schiller, G; Henne R; Borock V (1995). "Vacuum Plasma Spraying of High-Performance Electrodes for Alkaline Water Electrolysis".
2543: 2132: 2072: 1651: 512:{\displaystyle \mathrm {OH} ^{*}+\mathrm {OH} ^{-}\rightarrow \mathrm {O} ^{*}+\mathrm {H} _{2}\mathrm {O} +\mathrm {e} ^{-}} 17: 1421:{\displaystyle \mathrm {H} _{2}\mathrm {O} +\mathrm {H} ^{*}+\mathrm {e} ^{-}\rightarrow \mathrm {H} _{2}+\mathrm {OH} ^{-}} 263:
Scheme of alkaline water electrolyzers. The catalysts are added to the anode and cathode to reduce the overpotential.
2152: 2125:
Electrochemical Power Sources: Fundamentals, Systems, and Applications: Hydrogen Production by Water Electrolysis
2216:
Haug, P; Koj M; Turek T (2017). "Influence of process conditions on gas purity in alkaline water electrolysis".
2176:"Hydrogen Diffusivity and Electrolyte Permeability of the Zirfon PERL Separator for Alkaline Water Electrolysis" 1202:{\displaystyle 2\mathrm {H} _{2}\mathrm {O} +2\mathrm {e} ^{-}\rightarrow 2\mathrm {H} ^{*}+2\mathrm {OH} ^{-}} 761:{\displaystyle \mathrm {OOH} ^{*}+\mathrm {OH} ^{-}\rightarrow \mathrm {OO} ^{-*}+\mathrm {H} _{2}\mathrm {O} } 2561:"The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation" 1935:"Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments" 289: 2706: 1658:
Cheaper catalysts with respect to the platinum metal group based catalysts used for PEM water electrolysis.
2686: 2339:
Schalenbach, M; et al. (2018). "The electrochemical dissolution of noble metals in alkaline media".
1691:
Divisek, J.; Schmitz, H. (1 January 1982). "A bipolar cell for advanced alkaline water electrolysis".
2701: 2691: 1615: 1433: 1297: 1213: 1071: 882: 772: 642: 523: 387: 1839:
Carmo, M; Fritz D; Mergel J; Stolten D (2013). "A comprehensive review on PEM water electrolysis".
631:{\displaystyle \mathrm {O} ^{*}+\mathrm {OH} ^{-}\rightarrow \mathrm {OOH} ^{*}+\mathrm {e} ^{-}} 1661:
Higher durability due to an exchangeable electrolyte and lower dissolution of anodic catalyst.
2696: 2244: 2626: 2411: 1982: 1886: 1731: 273: 8: 221: 2630: 2415: 2245:"Recent Advances in Non-Precious Metal-Based Electrodes for Alkaline Water Electrolysis" 1890: 1735: 2657: 2614: 2587: 2560: 2489: 2427: 2356: 2316: 2291: 2272: 2198: 2064: 2030: 2009:"Acidic or Alkaline? Towards a New Perspective on the Efficiency of Water Electrolysis" 1959: 1934: 1909: 1874: 1794: 1749: 2615:"Comparative Analysis of Energy and Exergy Performance of Hydrogen Production Methods" 2458: 2662: 2644: 2592: 2539: 2493: 2431: 2360: 2321: 2276: 2264: 2175: 2128: 2068: 2052: 1964: 1914: 1798: 1753: 1704: 2202: 2034: 2008: 2652: 2634: 2582: 2572: 2516: 2485: 2481: 2454: 2419: 2384: 2348: 2311: 2303: 2256: 2229: 2225: 2190: 2102: 2060: 2020: 1954: 1946: 1904: 1894: 1852: 1848: 1784: 1776: 1739: 1700: 225: 2520: 871:{\displaystyle \mathrm {OO} ^{-*}\rightarrow \mathrm {O} _{2(g)}+\mathrm {e} ^{-}} 268:
by the aqueous alkaline solution, which penetrates in the pores of the diaphragm.
236: 2388: 240: 2106: 1744: 1719: 376:{\displaystyle \mathrm {OH} ^{-}\rightarrow \mathrm {OH} ^{*}+\mathrm {e} ^{-}} 2352: 1780: 1720:"An overview of water electrolysis technologies for green hydrogen production" 259: 2680: 2648: 2268: 2666: 2596: 2325: 2260: 1968: 1918: 296: 213: 2194: 2025: 2007:
Schalenbach, M; Tjarks G; Carmo M; Lueke W; Mueller M; Stolten D (2016).
281: 2307: 1664:
Higher gas purity due to lower gas diffusivity in alkaline electrolytes.
2577: 2559:
Diaz-Morales, Oscar; Ferrus-Suspedra, David; Koper, Marc T. M. (2016).
2423: 1950: 1899: 1789: 217: 2639: 1101:
Where the * indicate species adsorbed to the surface of the catalyst.
276:. The state-of-the-art diaphragm is Zirfon, a composite material of 220:
operating in a liquid alkaline electrolyte. Commonly, a solution of
54:
NiO/Asbestos/polysulfone matrix and ZrO2 (Zirfon)/polyphenil sulfide
1875:"Non-Precious Electrodes for Practical Alkaline Water Electrolysis" 277: 269: 2289: 2006: 2558: 1766: 1645: 2444: 2613:
Martínez-Rodríguez, Angel; Abánades, Alberto (November 2020).
1838: 1654:, the advantages of alkaline water electrolysis are mainly: 1286:{\displaystyle 2\mathrm {H} ^{*}\rightarrow \mathrm {H} _{2}} 2292:"Volcano plots in hydrogen electrocatalysis–uses and abuses" 2173: 2612: 1931: 2401: 2332: 2167: 1618: 1473: 1436: 1337: 1300: 1252: 1216: 1121: 1074: 922: 885: 810: 775: 680: 645: 561: 526: 425: 390: 324: 2290:
Quaino, P; Juarez F; Santos E; Schmickler W (2014).
1632: 1602: 1450: 1420: 1314: 1285: 1230: 1201: 1088: 1058: 899: 870: 789: 760: 659: 630: 540: 511: 404: 375: 232:with platinum group metal based electrocatalysts. 2500: 2465: 2678: 2243:Zhou, Daojin; Li, Pengsong; et al. (2020). 2215: 2536:Electrochemical methods for hydrogen production 2118: 2116: 1718:Shiva Kumar, S.; Lim, Hankwon (November 2022). 230:polymer electrolyte membrane water electrolysis 2000: 1868: 1866: 1864: 1862: 1717: 1690: 1834: 1832: 1830: 1828: 1646:Advantages compared to PEM water electrolysis 243:in the 1930s, the technique was competitive. 2438: 2395: 2367: 2113: 1826: 1824: 1822: 1820: 1818: 1816: 1814: 1812: 1810: 1808: 2471: 2338: 2174:Schalenbach, M; Lueke W; Stolten D (2016). 1859: 2506: 2283: 1586: 1576: 1042: 1032: 254: 2656: 2638: 2586: 2576: 2538:. Cambridge: Royal Society of Chemistry. 2527: 2315: 2095:Progress in Energy and Combustion Science 2092: 2024: 1958: 1925: 1908: 1898: 1805: 1788: 1743: 1571: 1027: 2474:International Journal of Hydrogen Energy 2447:International Journal of Hydrogen Energy 2373: 2218:International Journal of Hydrogen Energy 2209: 2149:"AGFA Zirfon Perl Product Specification" 2122: 2086: 1988:. Energy Carriers and Conversion Systems 1693:International Journal of Hydrogen Energy 258: 2057:Hydrogen Safety for Energy Applications 14: 2679: 2242: 2183:Journal of the Electrochemical Society 2050: 2013:Journal of the Electrochemical Society 2608: 2606: 2533: 1872: 1652:Proton exchange membrane electrolysis 2046: 2044: 216:that is characterized by having two 2404:Journal of Thermal Spray Technology 2296:Beilstein Journal of Nanotechnology 1104: 302: 24: 2603: 2065:10.1016/b978-0-12-820492-4.00005-1 1593: 1590: 1587: 1580: 1577: 1573: 1538: 1535: 1517: 1502: 1490: 1479: 1408: 1405: 1390: 1375: 1360: 1351: 1340: 1273: 1258: 1189: 1186: 1168: 1150: 1138: 1127: 1049: 1046: 1043: 1036: 1033: 1029: 994: 976: 957: 946: 931: 928: 858: 834: 816: 813: 754: 743: 725: 722: 707: 704: 689: 686: 683: 618: 603: 600: 597: 582: 579: 564: 499: 490: 479: 464: 449: 446: 431: 428: 363: 348: 345: 330: 327: 160:Specific energy consumption system 25: 2718: 2041: 1873:Colli, A.N.; et al. (2019). 307: 152:Specific energy consumption stack 99:State-of-the-art Operating Ranges 75:Catalyst material on the cathode 59:Bipolar/separator plate material 2552: 2236: 2141: 1668: 1633:{\displaystyle \left(10\right)} 1548: 1004: 290:Oxygen Evolution Reaction (OER) 176:System hydrogen production rate 2486:10.1016/j.ijhydene.2018.04.219 2230:10.1016/j.ijhydene.2016.12.111 1975: 1853:10.1016/j.ijhydene.2013.01.151 1760: 1711: 1684: 1597: 1549: 1512: 1451:{\displaystyle \left(9\right)} 1385: 1315:{\displaystyle \left(8\right)} 1268: 1231:{\displaystyle \left(7\right)} 1160: 1089:{\displaystyle \left(6\right)} 1053: 1005: 941: 900:{\displaystyle \left(5\right)} 848: 842: 829: 790:{\displaystyle \left(4\right)} 717: 660:{\displaystyle \left(3\right)} 592: 541:{\displaystyle \left(2\right)} 459: 405:{\displaystyle \left(1\right)} 340: 67:Catalyst material on the anode 13: 1: 2521:10.1016/j.pmatsci.2024.101254 2509:Progress in Materials Science 2459:10.1016/S0360-3199(97)00122-5 2059:, Elsevier, pp. 25–115, 1983:"Alkaline Water Electrolysis" 1677: 2389:10.1016/j.cattod.2015.08.014 1705:10.1016/0360-3199(82)90018-0 7: 239:, and before the advent of 210:Alkaline water electrolysis 192:Acceptable degradation rate 51:Style of membrane/diaphragm 46:Alkaline Water Electrolysis 33:Alkaline water electrolysis 10: 2723: 2107:10.1016/j.pecs.2009.11.002 1841:Journal of Hydrogen Energy 1745:10.1016/j.egyr.2022.10.127 1467:Overall cathode reaction: 2353:10.1007/s12678-017-0438-y 1781:10.1016/j.est.2019.03.001 1769:Journal of Energy Storage 237:lighter-than-air aircraft 199: 191: 183: 175: 167: 159: 151: 143: 135: 127: 119: 111: 103: 98: 90: 82: 74: 66: 58: 50: 42: 37: 32: 1939:Chemical Society Reviews 916:Overall anode reaction: 2053:"Hydrogen technologies" 2051:Jordan, Thomas (2022), 255:Structure and materials 168:Cell voltage efficiency 2261:10.1002/cnma.202000010 2123:Smolinka, Tom (2021). 1634: 1604: 1452: 1422: 1316: 1287: 1232: 1203: 1090: 1060: 901: 872: 791: 762: 661: 632: 542: 513: 406: 377: 264: 2534:Scott, Keith (2020). 1635: 1605: 1453: 1423: 1317: 1288: 1233: 1204: 1091: 1061: 902: 873: 792: 763: 662: 633: 543: 514: 407: 378: 262: 43:Type of Electrolysis: 18:Alkaline electrolysis 2195:10.1149/2.1251613jes 2026:10.1149/2.0271611jes 1616: 1471: 1434: 1335: 1298: 1250: 1214: 1119: 1072: 920: 883: 808: 773: 678: 643: 559: 524: 423: 388: 322: 274:Rotterdam Convention 94:Stainless steel mesh 91:Cathode PTL material 27:Type of electrolyzer 2707:Hydrogen production 2631:2020Entrp..22.1286M 2480:(27): 11932–11938. 2416:1995JTST....4..185S 2308:10.3762/bjnano.5.96 2189:(14): F1480–F1488. 1891:2019Mate...12.1336C 1736:2022EnRep...813793S 222:potassium hydroxide 2687:Chemical processes 2578:10.1039/C5SC04486C 2424:10.1007/BF02646111 1951:10.1039/d0cs01079k 1900:10.3390/ma12081336 1630: 1600: 1448: 1418: 1312: 1283: 1228: 1199: 1086: 1056: 897: 868: 787: 758: 657: 628: 538: 509: 402: 373: 265: 83:Anode PTL material 2640:10.3390/e22111286 2545:978-1-78801-378-9 2224:(15): 9406–9418. 2134:978-0-12-819424-9 2074:978-0-12-820492-4 1945:(11): 4583–4762. 1650:In comparison to 1643: 1642: 1461: 1460: 1325: 1324: 1241: 1240: 1099: 1098: 972: 910: 909: 800: 799: 670: 669: 551: 550: 415: 414: 207: 206: 38:Typical Materials 16:(Redirected from 2714: 2702:Industrial gases 2692:Electrochemistry 2671: 2670: 2660: 2642: 2610: 2601: 2600: 2590: 2580: 2571:(4): 2639–2645. 2565:Chemical Science 2556: 2550: 2549: 2531: 2525: 2524: 2504: 2498: 2497: 2469: 2463: 2462: 2442: 2436: 2435: 2399: 2393: 2392: 2371: 2365: 2364: 2341:Electrocatalysis 2336: 2330: 2329: 2319: 2287: 2281: 2280: 2240: 2234: 2233: 2213: 2207: 2206: 2180: 2171: 2165: 2164: 2162: 2160: 2151:. Archived from 2145: 2139: 2138: 2120: 2111: 2110: 2090: 2084: 2083: 2082: 2081: 2048: 2039: 2038: 2028: 2004: 1998: 1997: 1995: 1993: 1987: 1979: 1973: 1972: 1962: 1929: 1923: 1922: 1912: 1902: 1870: 1857: 1856: 1836: 1803: 1802: 1792: 1764: 1758: 1757: 1747: 1715: 1709: 1708: 1688: 1639: 1637: 1636: 1631: 1629: 1609: 1607: 1606: 1601: 1596: 1561: 1560: 1547: 1546: 1541: 1526: 1525: 1520: 1511: 1510: 1505: 1493: 1488: 1487: 1482: 1463: 1462: 1457: 1455: 1454: 1449: 1447: 1427: 1425: 1424: 1419: 1417: 1416: 1411: 1399: 1398: 1393: 1384: 1383: 1378: 1369: 1368: 1363: 1354: 1349: 1348: 1343: 1331:Heyrovsky step: 1327: 1326: 1321: 1319: 1318: 1313: 1311: 1292: 1290: 1289: 1284: 1282: 1281: 1276: 1267: 1266: 1261: 1243: 1242: 1237: 1235: 1234: 1229: 1227: 1208: 1206: 1205: 1200: 1198: 1197: 1192: 1177: 1176: 1171: 1159: 1158: 1153: 1141: 1136: 1135: 1130: 1112: 1111: 1105:Cathode reaction 1095: 1093: 1092: 1087: 1085: 1065: 1063: 1062: 1057: 1052: 1017: 1016: 1003: 1002: 997: 985: 984: 979: 973: 965: 960: 955: 954: 949: 940: 939: 934: 912: 911: 906: 904: 903: 898: 896: 877: 875: 874: 869: 867: 866: 861: 852: 851: 837: 828: 827: 819: 802: 801: 796: 794: 793: 788: 786: 767: 765: 764: 759: 757: 752: 751: 746: 737: 736: 728: 716: 715: 710: 698: 697: 692: 672: 671: 666: 664: 663: 658: 656: 637: 635: 634: 629: 627: 626: 621: 612: 611: 606: 591: 590: 585: 573: 572: 567: 553: 552: 547: 545: 544: 539: 537: 518: 516: 515: 510: 508: 507: 502: 493: 488: 487: 482: 473: 472: 467: 458: 457: 452: 440: 439: 434: 417: 416: 411: 409: 408: 403: 401: 382: 380: 379: 374: 372: 371: 366: 357: 356: 351: 339: 338: 333: 316: 315: 303:Electrochemistry 226:sodium hydroxide 104:Cell temperature 30: 29: 21: 2722: 2721: 2717: 2716: 2715: 2713: 2712: 2711: 2677: 2676: 2675: 2674: 2611: 2604: 2557: 2553: 2546: 2532: 2528: 2505: 2501: 2470: 2466: 2443: 2439: 2400: 2396: 2377:Catalysis Today 2372: 2368: 2337: 2333: 2288: 2284: 2241: 2237: 2214: 2210: 2178: 2172: 2168: 2158: 2156: 2147: 2146: 2142: 2135: 2121: 2114: 2091: 2087: 2079: 2077: 2075: 2049: 2042: 2005: 2001: 1991: 1989: 1985: 1981: 1980: 1976: 1930: 1926: 1871: 1860: 1837: 1806: 1765: 1761: 1730:: 13793–13813. 1716: 1712: 1689: 1685: 1680: 1671: 1648: 1619: 1617: 1614: 1613: 1572: 1556: 1552: 1542: 1534: 1533: 1521: 1516: 1515: 1506: 1501: 1500: 1489: 1483: 1478: 1477: 1472: 1469: 1468: 1437: 1435: 1432: 1431: 1412: 1404: 1403: 1394: 1389: 1388: 1379: 1374: 1373: 1364: 1359: 1358: 1350: 1344: 1339: 1338: 1336: 1333: 1332: 1301: 1299: 1296: 1295: 1277: 1272: 1271: 1262: 1257: 1256: 1251: 1248: 1247: 1217: 1215: 1212: 1211: 1193: 1185: 1184: 1172: 1167: 1166: 1154: 1149: 1148: 1137: 1131: 1126: 1125: 1120: 1117: 1116: 1107: 1075: 1073: 1070: 1069: 1028: 1012: 1008: 998: 993: 992: 980: 975: 974: 964: 956: 950: 945: 944: 935: 927: 926: 921: 918: 917: 886: 884: 881: 880: 862: 857: 856: 838: 833: 832: 820: 812: 811: 809: 806: 805: 776: 774: 771: 770: 753: 747: 742: 741: 729: 721: 720: 711: 703: 702: 693: 682: 681: 679: 676: 675: 646: 644: 641: 640: 622: 617: 616: 607: 596: 595: 586: 578: 577: 568: 563: 562: 560: 557: 556: 527: 525: 522: 521: 503: 498: 497: 489: 483: 478: 477: 468: 463: 462: 453: 445: 444: 435: 427: 426: 424: 421: 420: 391: 389: 386: 385: 367: 362: 361: 352: 344: 343: 334: 326: 325: 323: 320: 319: 310: 305: 257: 241:steam reforming 200:System lifetime 144:Part-load range 120:Current density 86:Ti/Ni/zirconium 62:Stainless steel 28: 23: 22: 15: 12: 11: 5: 2720: 2710: 2709: 2704: 2699: 2694: 2689: 2673: 2672: 2602: 2551: 2544: 2526: 2499: 2464: 2453:(9): 761–765. 2437: 2394: 2366: 2347:(2): 153–161. 2331: 2282: 2255:(3): 336–355. 2235: 2208: 2166: 2140: 2133: 2112: 2101:(3): 307–326. 2085: 2073: 2040: 1999: 1974: 1924: 1858: 1804: 1759: 1724:Energy Reports 1710: 1699:(9): 703–710. 1682: 1681: 1679: 1676: 1670: 1667: 1666: 1665: 1662: 1659: 1647: 1644: 1641: 1640: 1628: 1625: 1622: 1611: 1599: 1595: 1592: 1589: 1585: 1582: 1579: 1575: 1570: 1567: 1564: 1559: 1555: 1551: 1545: 1540: 1537: 1532: 1529: 1524: 1519: 1514: 1509: 1504: 1499: 1496: 1492: 1486: 1481: 1476: 1459: 1458: 1446: 1443: 1440: 1429: 1415: 1410: 1407: 1402: 1397: 1392: 1387: 1382: 1377: 1372: 1367: 1362: 1357: 1353: 1347: 1342: 1323: 1322: 1310: 1307: 1304: 1293: 1280: 1275: 1270: 1265: 1260: 1255: 1239: 1238: 1226: 1223: 1220: 1209: 1196: 1191: 1188: 1183: 1180: 1175: 1170: 1165: 1162: 1157: 1152: 1147: 1144: 1140: 1134: 1129: 1124: 1106: 1103: 1097: 1096: 1084: 1081: 1078: 1067: 1055: 1051: 1048: 1045: 1041: 1038: 1035: 1031: 1026: 1023: 1020: 1015: 1011: 1007: 1001: 996: 991: 988: 983: 978: 971: 968: 963: 959: 953: 948: 943: 938: 933: 930: 925: 908: 907: 895: 892: 889: 878: 865: 860: 855: 850: 847: 844: 841: 836: 831: 826: 823: 818: 815: 798: 797: 785: 782: 779: 768: 756: 750: 745: 740: 735: 732: 727: 724: 719: 714: 709: 706: 701: 696: 691: 688: 685: 668: 667: 655: 652: 649: 638: 625: 620: 615: 610: 605: 602: 599: 594: 589: 584: 581: 576: 571: 566: 549: 548: 536: 533: 530: 519: 506: 501: 496: 492: 486: 481: 476: 471: 466: 461: 456: 451: 448: 443: 438: 433: 430: 413: 412: 400: 397: 394: 383: 370: 365: 360: 355: 350: 347: 342: 337: 332: 329: 309: 308:Anode reaction 306: 304: 301: 256: 253: 205: 204: 201: 197: 196: 193: 189: 188: 185: 184:Lifetime stack 181: 180: 177: 173: 172: 169: 165: 164: 163:4.5-7.0 kWh/Nm 161: 157: 156: 155:4.2-5.9 kWh/Nm 153: 149: 148: 145: 141: 140: 137: 133: 132: 129: 125: 124: 121: 117: 116: 113: 112:Stack pressure 109: 108: 105: 101: 100: 96: 95: 92: 88: 87: 84: 80: 79: 76: 72: 71: 68: 64: 63: 60: 56: 55: 52: 48: 47: 44: 40: 39: 35: 34: 26: 9: 6: 4: 3: 2: 2719: 2708: 2705: 2703: 2700: 2698: 2695: 2693: 2690: 2688: 2685: 2684: 2682: 2668: 2664: 2659: 2654: 2650: 2646: 2641: 2636: 2632: 2628: 2624: 2620: 2616: 2609: 2607: 2598: 2594: 2589: 2584: 2579: 2574: 2570: 2566: 2562: 2555: 2547: 2541: 2537: 2530: 2522: 2518: 2514: 2510: 2503: 2495: 2491: 2487: 2483: 2479: 2475: 2468: 2460: 2456: 2452: 2448: 2441: 2433: 2429: 2425: 2421: 2417: 2413: 2409: 2405: 2398: 2390: 2386: 2382: 2378: 2370: 2362: 2358: 2354: 2350: 2346: 2342: 2335: 2327: 2323: 2318: 2313: 2309: 2305: 2301: 2297: 2293: 2286: 2278: 2274: 2270: 2266: 2262: 2258: 2254: 2250: 2246: 2239: 2231: 2227: 2223: 2219: 2212: 2204: 2200: 2196: 2192: 2188: 2184: 2177: 2170: 2155:on 2018-04-23 2154: 2150: 2144: 2136: 2130: 2126: 2119: 2117: 2108: 2104: 2100: 2096: 2089: 2076: 2070: 2066: 2062: 2058: 2054: 2047: 2045: 2036: 2032: 2027: 2022: 2019:(11): F3197. 2018: 2014: 2010: 2003: 1984: 1978: 1970: 1966: 1961: 1956: 1952: 1948: 1944: 1940: 1936: 1928: 1920: 1916: 1911: 1906: 1901: 1896: 1892: 1888: 1884: 1880: 1876: 1869: 1867: 1865: 1863: 1854: 1850: 1846: 1842: 1835: 1833: 1831: 1829: 1827: 1825: 1823: 1821: 1819: 1817: 1815: 1813: 1811: 1809: 1800: 1796: 1791: 1786: 1782: 1778: 1774: 1770: 1763: 1755: 1751: 1746: 1741: 1737: 1733: 1729: 1725: 1721: 1714: 1706: 1702: 1698: 1694: 1687: 1683: 1675: 1663: 1660: 1657: 1656: 1655: 1653: 1626: 1623: 1620: 1612: 1610: 1583: 1568: 1565: 1562: 1557: 1553: 1543: 1530: 1527: 1522: 1507: 1497: 1494: 1484: 1474: 1465: 1464: 1444: 1441: 1438: 1430: 1428: 1413: 1400: 1395: 1380: 1370: 1365: 1355: 1345: 1329: 1328: 1308: 1305: 1302: 1294: 1278: 1263: 1253: 1245: 1244: 1224: 1221: 1218: 1210: 1194: 1181: 1178: 1173: 1163: 1155: 1145: 1142: 1132: 1122: 1115:Volmer step: 1114: 1113: 1110: 1102: 1082: 1079: 1076: 1068: 1066: 1039: 1024: 1021: 1018: 1013: 1009: 999: 989: 986: 981: 969: 966: 961: 951: 936: 923: 914: 913: 893: 890: 887: 879: 863: 853: 845: 839: 824: 821: 804: 803: 783: 780: 777: 769: 748: 738: 733: 730: 712: 699: 694: 674: 673: 653: 650: 647: 639: 623: 613: 608: 587: 574: 569: 555: 554: 534: 531: 528: 520: 504: 494: 484: 474: 469: 454: 441: 436: 419: 418: 398: 395: 392: 384: 368: 358: 353: 335: 318: 317: 314: 300: 298: 293: 291: 285: 283: 279: 275: 271: 261: 252: 248: 244: 242: 238: 233: 231: 227: 223: 219: 215: 212:is a type of 211: 202: 198: 194: 190: 186: 182: 178: 174: 170: 166: 162: 158: 154: 150: 146: 142: 138: 136:Power density 134: 130: 126: 122: 118: 114: 110: 107:60-80 °C 106: 102: 97: 93: 89: 85: 81: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 36: 31: 19: 2697:Electrolysis 2625:(11): 1286. 2622: 2618: 2568: 2564: 2554: 2535: 2529: 2512: 2508: 2502: 2477: 2473: 2467: 2450: 2446: 2440: 2407: 2403: 2397: 2380: 2376: 2369: 2344: 2340: 2334: 2299: 2295: 2285: 2252: 2248: 2238: 2221: 2217: 2211: 2186: 2182: 2169: 2157:. Retrieved 2153:the original 2143: 2127:. Elsevier. 2124: 2098: 2094: 2088: 2078:, retrieved 2056: 2016: 2012: 2002: 1990:. Retrieved 1977: 1942: 1938: 1927: 1882: 1878: 1847:(12): 4901. 1844: 1840: 1772: 1768: 1762: 1727: 1723: 1713: 1696: 1692: 1686: 1672: 1669:Disadvantage 1649: 1466: 1330: 1246:Tafel step: 1108: 1100: 915: 311: 297:Raney nickel 294: 286: 266: 249: 245: 234: 214:electrolyser 209: 208: 187:<90,000 h 179:<760 Nm/h 171:62–82% (HHV) 128:Cell voltage 123:0.2-0.4 A/cm 2383:: 170–180. 2302:: 846–854. 2249:ChemNanoMat 1885:(8): 1336. 1790:2117/178519 1775:: 392–403. 282:Polysulfone 203:20-30 years 139:to 1.0 W/cm 2681:Categories 2515:: 101254. 2410:(2): 185. 2159:29 January 2080:2024-04-27 1992:19 October 1678:References 218:electrodes 195:<3 μV/h 131:1.8-2.40 V 115:<30 bar 2649:1099-4300 2494:103477803 2432:137144045 2361:104106046 2277:213442277 2269:2199-692X 1879:Materials 1799:140072936 1754:253141292 1566:− 1544:− 1513:→ 1508:− 1414:− 1386:→ 1381:− 1366:∗ 1269:→ 1264:∗ 1195:− 1174:∗ 1161:→ 1156:− 1000:− 942:→ 937:− 864:− 830:→ 825:∗ 822:− 734:∗ 731:− 718:→ 713:− 695:∗ 624:− 609:∗ 593:→ 588:− 570:∗ 505:− 470:∗ 460:→ 455:− 437:∗ 369:− 354:∗ 341:→ 336:− 224:(KOH) or 2667:33287054 2597:28660036 2326:24991521 2203:55017229 2035:35846371 1969:35575644 1919:31022944 278:zirconia 270:Asbestos 70:Ni/Co/Fe 2658:7712718 2627:Bibcode 2619:Entropy 2588:5477031 2412:Bibcode 2317:4077405 1960:9332215 1910:6515460 1887:Bibcode 1732:Bibcode 78:Ni/C-Pt 2665:  2655:  2647:  2595:  2585:  2542:  2492:  2430:  2359:  2324:  2314:  2275:  2267:  2201:  2131:  2071:  2033:  1967:  1957:  1917:  1907:  1797:  1752:  147:20-40% 2490:S2CID 2428:S2CID 2357:S2CID 2273:S2CID 2199:S2CID 2179:(PDF) 2031:S2CID 1986:(PDF) 1795:S2CID 1750:S2CID 2663:PMID 2645:ISSN 2593:PMID 2540:ISBN 2322:PMID 2265:ISSN 2161:2019 2129:ISBN 2069:ISBN 1994:2014 1965:PMID 1915:PMID 1569:0.83 1025:0.40 280:and 2653:PMC 2635:doi 2583:PMC 2573:doi 2517:doi 2513:143 2482:doi 2455:doi 2420:doi 2385:doi 2381:262 2349:doi 2312:PMC 2304:doi 2257:doi 2226:doi 2191:doi 2187:163 2103:doi 2061:doi 2021:doi 2017:163 1955:PMC 1947:doi 1905:PMC 1895:doi 1849:doi 1785:hdl 1777:doi 1740:doi 1701:doi 2683:: 2661:. 2651:. 2643:. 2633:. 2623:22 2621:. 2617:. 2605:^ 2591:. 2581:. 2567:. 2563:. 2511:. 2488:. 2478:43 2476:. 2451:23 2449:. 2426:. 2418:. 2406:. 2379:. 2355:. 2343:. 2320:. 2310:. 2300:42 2298:. 2294:. 2271:. 2263:. 2251:. 2247:. 2222:42 2220:. 2197:. 2185:. 2181:. 2115:^ 2099:36 2097:. 2067:, 2055:, 2043:^ 2029:. 2015:. 2011:. 1963:. 1953:. 1943:51 1941:. 1937:. 1913:. 1903:. 1893:. 1883:12 1881:. 1877:. 1861:^ 1845:38 1843:. 1807:^ 1793:. 1783:. 1773:23 1771:. 1748:. 1738:. 1726:. 1722:. 1695:. 1624:10 292:. 2669:. 2637:: 2629:: 2599:. 2575:: 2569:7 2548:. 2523:. 2519:: 2496:. 2484:: 2461:. 2457:: 2434:. 2422:: 2414:: 2408:4 2391:. 2387:: 2363:. 2351:: 2345:9 2328:. 2306:: 2279:. 2259:: 2253:6 2232:. 2228:: 2205:. 2193:: 2163:. 2137:. 2109:. 2105:: 2063:: 2037:. 2023:: 1996:. 1971:. 1949:: 1921:. 1897:: 1889:: 1855:. 1851:: 1801:. 1787:: 1779:: 1756:. 1742:: 1734:: 1728:8 1707:. 1703:: 1697:7 1627:) 1621:( 1598:) 1594:E 1591:H 1588:S 1584:. 1581:s 1578:v 1574:V 1563:= 1558:0 1554:E 1550:( 1539:H 1536:O 1531:2 1528:+ 1523:2 1518:H 1503:e 1498:2 1495:+ 1491:O 1485:2 1480:H 1475:2 1445:) 1442:9 1439:( 1409:H 1406:O 1401:+ 1396:2 1391:H 1376:e 1371:+ 1361:H 1356:+ 1352:O 1346:2 1341:H 1309:) 1306:8 1303:( 1279:2 1274:H 1259:H 1254:2 1225:) 1222:7 1219:( 1190:H 1187:O 1182:2 1179:+ 1169:H 1164:2 1151:e 1146:2 1143:+ 1139:O 1133:2 1128:H 1123:2 1083:) 1080:6 1077:( 1054:) 1050:E 1047:H 1044:S 1040:. 1037:s 1034:v 1030:V 1022:+ 1019:= 1014:0 1010:E 1006:( 995:e 990:2 987:+ 982:2 977:O 970:2 967:1 962:+ 958:O 952:2 947:H 932:H 929:O 924:2 894:) 891:5 888:( 859:e 854:+ 849:) 846:g 843:( 840:2 835:O 817:O 814:O 784:) 781:4 778:( 755:O 749:2 744:H 739:+ 726:O 723:O 708:H 705:O 700:+ 690:H 687:O 684:O 654:) 651:3 648:( 619:e 614:+ 604:H 601:O 598:O 583:H 580:O 575:+ 565:O 535:) 532:2 529:( 500:e 495:+ 491:O 485:2 480:H 475:+ 465:O 450:H 447:O 442:+ 432:H 429:O 399:) 396:1 393:( 364:e 359:+ 349:H 346:O 331:H 328:O 20:)

Index

Alkaline electrolysis
electrolyser
electrodes
potassium hydroxide
sodium hydroxide
polymer electrolyte membrane water electrolysis
lighter-than-air aircraft
steam reforming

Asbestos
Rotterdam Convention
zirconia
Polysulfone
Oxygen Evolution Reaction (OER)
Raney nickel
Proton exchange membrane electrolysis
doi
10.1016/0360-3199(82)90018-0
"An overview of water electrolysis technologies for green hydrogen production"
Bibcode
2022EnRep...813793S
doi
10.1016/j.egyr.2022.10.127
S2CID
253141292
doi
10.1016/j.est.2019.03.001
hdl
2117/178519
S2CID

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.