Knowledge

Aperiodic tiling

Source 📝

2375: 20: 36: 733: 808: 744: 885:
the other two. Quasicrystal structures of Cd–Te appear to consist of atomic layers in which the atoms are arranged in a planar aperiodic pattern. Sometimes an energetical minimum or a maximum of entropy occur for such aperiodic structures. Steinhardt has shown that Gummelt's overlapping decagons allow the application of an extremal principle and thus provide the link between the mathematics of aperiodic tiling and the structure of quasicrystals.
643: 655: 2382: 122:). Now cut one square into two rectangles. The tiling obtained in this way is non-periodic: there is no non-zero shift that leaves this tiling fixed. But clearly this example is much less interesting than the Penrose tiling. In order to rule out such boring examples, one defines an aperiodic tiling to be one that does not contain arbitrarily large periodic parts. 884:
had already extended the Penrose construction to a three-dimensional icosahedral equivalent. In such cases the term 'tiling' is taken to mean 'filling the space'. Photonic devices are currently built as aperiodical sequences of different layers, being thus aperiodic in one direction and periodic in
604:
originally consists of four prototiles together with some matching rules. One of the four tiles is a pentagon. One can replace this pentagon prototile by three distinct pentagonal shapes that have additional protrusions and indentations at the boundary making three distinct tiles. Together with the
581:
For a tiling congruent copies of the prototiles need to pave all of the Euclidean plane without overlaps (except at boundaries) and without leaving uncovered pieces. Therefore the boundaries of the tiles forming a tiling need to match geometrically. This is generally true for all tilings, aperiodic
531:
There are a few constructions of aperiodic tilings known. Some constructions are based on infinite families of aperiodic sets of tiles. The tilings which have been found so far are mostly constructed in a few ways, primarily by forcing some sort of non-periodic hierarchical structure. Despite this,
638:
Each of these sets of tiles, in any tiling they admit, forces a particular hierarchical structure. (In many later examples, this structure can be described as a substitution tiling system; this is described below). No tiling admitted by such a set of tiles can be periodic, simply because no single
799:
Non-periodic tilings can also be obtained by projection of higher-dimensional structures into spaces with lower dimensionality and under some circumstances there can be tiles that enforce this non-periodic structure and so are aperiodic. The Penrose tiles are the first and most famous example of
911:
tiling is simply one that is not fixed by any non-trivial translation. Sometimes the term described – implicitly or explicitly – a tiling generated by an aperiodic set of prototiles. Frequently the term aperiodic was just used vaguely to describe the structures under consideration, referring to
448:
is decidable – that is, whether there exists an algorithm for deciding if a given finite set of prototiles admits a tiling of the plane. Wang found algorithms to enumerate the tilesets that cannot tile the plane, and the tilesets that tile it periodically; by this he showed that such a decision
906:
has been used in a wide variety of ways in the mathematical literature on tilings (and in other mathematical fields as well, such as dynamical systems or graph theory, with altogether different meanings). With respect to tilings the term aperiodic was sometimes used synonymously with the term
728:
the substitution structure. For example, the chair tiles shown below admit a substitution, and a portion of a substitution tiling is shown at right below. These substitution tilings are necessarily non-periodic, in precisely the same manner as described above, but the chair tile itself is not
662:
Robinson proves these tiles must form this structure inductively; in effect, the tiles must form blocks which themselves fit together as larger versions of the original tiles, and so on. This idea – of finding sets of tiles that can only admit hierarchical structures – has been used in the
605:
three other prototiles with suitably adapted boundaries one gets a set of six prototiles that essentially create the same aperiodic tilings as the original four tiles, but for the six tiles no additional matching rules are necessary, the geometric matching condition suffice.
650:
Any tiling by these tiles can only exhibit a hierarchy of square lattices: the centre of any orange square is also a corner of a larger orange square, ad infinitum. Any translation must be smaller than some size of square, and so cannot leave any such tiling invariant.
811:
Some tilings obtained by the cut and project method. The cutting planes are all parallel to the one which defines Penrose tilings (the fourth tiling on the third line). These tilings are all in different local isomorphism classes, that is, they are locally
564:
Goodman-Straus proved that all tilings generated by substitution rules and satisfying a technical condition can be generated through matching rules. The technical condition is mild and usually satisfied in practice. The tiles are required to admit a set of
453:
found an aperiodic set of prototiles from which he demonstrated that the tiling problem is in fact not decidable. This first such set, used by Berger in his proof of undecidability, required 20,426 Wang tiles. Berger later reduced his set to 104, and
608:
Also note that Robinsion's protiles below come equipped with markings to make it easier to visually recognize the structure, but these markings do not put more matching rules on the tiles as are already in place through the geometric boundaries.
919:, for example: the Penrose rhombs admit infinitely many tilings (which cannot be distinguished locally). A common solution is to try to use the terms carefully in technical writing, but recognize the widespread use of the informal terms. 879:
announced the discovery of a phase of an aluminium-manganese alloy which produced a sharp diffractogram with an unambiguous fivefold symmetry – so it had to be a crystalline substance with icosahedral symmetry. In 1975
889:
have been observed to form large patches of aperiodic patterns. The physics of this discovery has revived the interest in incommensurate structures and frequencies suggesting to link aperiodic tilings with
635:
For aperiodic tilings, whether additional matching rules are involved or not, the matching conditions forces some hierarchical structure on the tilings that in turn make period structures impossible.
508: 235: 540:
ensures that there must be infinitely many distinct principles of construction, and that in fact, there exist aperiodic sets of tiles for which there can be no proof of their aperiodicity.
612:
To date, there is not a formal definition describing when a tiling has a hierarchical structure; nonetheless, it is clear that substitution tilings have them, as do the tilings of Berger,
804:. There is yet no complete (algebraic) characterization of cut and project tilings that can be enforced by matching rules, although numerous necessary or sufficient conditions are known. 407: 162: 96:, a problem that seeks the existence of any single shape aperiodic tile. In May 2023 the same authors published a chiral aperiodic monotile with similar but stronger constraints. 283: 303: 255: 600:
In some cases it has been possible to replace matching rules by geometric matching conditions altogether by modifying the prototiles at their boundary. The
632:
tiling" is a convenient shorthand, meaning something along the lines of "a set of tiles admitting only non-periodic tilings with a hierarchical structure".
425: 429: 617: 489:. After the discovery of quasicrystals aperiodic tilings become studied intensively by physicists and mathematicians. The cut-and-project method of 455: 760: 724:
Substitution tiling systems provide a rich source of aperiodic tilings. A set of tiles that forces a substitution structure to emerge is said to
557:
For some tilings only one of the constructions is known to yield that tiling. Others can be constructed by all three classical methods, e.g. the
458:
subsequently found an aperiodic set requiring only 40 Wang tiles. A smaller set, of six aperiodic tiles (based on Wang tiles), was discovered by
126: 825:
gave an aperiodic set of Wang tiles based on multiplications by 2 or 2/3 of real numbers encoded by lines of tiles (the encoding is related to
2291: 1566: 779:
gave the first general construction, showing that every product of one-dimensional substitution systems can be enforced by matching rules.
751:
enforce the chair substitution structure—they can only admit tilings in which the chair substitution can be discerned and so are aperiodic.
706:
many different tilings unrelated by Euclidean isometries, all of them necessarily nonperiodic, that can arise from the Robinsion's tiles.
3315: 2580: 2513: 543:
However, there are three principles of construction that have been predominantly used for finite sets of prototiles up until 2023:
107:
who subsequently won the Nobel prize in 2011. However, the specific local structure of these materials is still poorly understood.
470:
discovered several new sets in 1977. The number of tiles required was reduced to one in 2023 by David Smith, Joseph Samuel Myers,
3320: 2535: 2269: 759:
several different sets of tiles, were the first example based on explicitly forcing a substitution tiling structure to emerge.
849:
has found many alternative constructions of aperiodic sets of tiles, some in more exotic settings; for example in semi-simple
424:
For well-behaved tilings (e.g. substitution tilings with finitely many local patterns) holds: if a tiling is non-periodic and
2237: 1884: 1687: 1653: 1412: 1022: 449:
algorithm exists if every finite set of prototiles that admits a tiling of the plane also admits a periodic tiling. In 1964,
54:
with the additional property that it does not contain arbitrarily large periodic regions or patches. A set of tile-types (or
3130: 2965: 1783: 791:
showed that local matching rules can be found to force any substitution tiling structure, subject to some mild conditions.
1519: 1065:
Smith, David; Myers, Joseph Samuel; Kaplan, Craig S.; Goodman-Strauss, Chaim (2023-05-28). "A chiral aperiodic monotile".
3280: 3255: 3245: 3215: 3170: 3120: 3100: 2915: 2800: 77: 2122: 729:
aperiodic – it is easy to find periodic tilings by unmarked chair tiles that satisfy the geometric matching conditions.
593:
are required to hold. These usually involve colors or markings that have to match over several tiles across boundaries.
523:, which is however not connected into one piece. In 2023 a connected tile was discovered, using a shape termed a "hat". 3290: 3285: 3225: 3220: 3175: 3125: 3110: 601: 185: 3310: 3095: 2343: 2214: 1610: 1309: 1227: 1041:
Smith, David; Myers, Joseph Samuel; Kaplan, Craig S.; Goodman-Strauss, Chaim (2023-03-19). "An aperiodic monotile".
3150: 3085: 3070: 2905: 2525: 740:
However, the tiles shown below force the chair substitution structure to emerge, and so are themselves aperiodic.
3250: 3210: 3165: 3105: 3090: 3080: 3055: 2416: 934: 891: 355: 915:
The use of the word "tiling" is problematic as well, despite its straightforward definition. There is no single
519:, one stone) is an aperiodic tiling that uses only a single shape. The first such tile was discovered in 2010 - 3115: 3035: 2890: 1902: 132: 1429: 912:
physical aperiodic solids, namely quasicrystals, or to something non-periodic with some kind of global order.
586:
is enough to force a tile set to be aperiodic, this is e.g. the case for Robinsion's tilings discussed below.
3045: 3030: 2990: 2920: 2870: 2785: 2605: 1191: 1178: 450: 3015: 2980: 2970: 2830: 833:), with the aperiodicity mainly relying on the fact that 2/3 is never equal to 1 for any positive integers 703: 3155: 2985: 2975: 2955: 2935: 2910: 2855: 2835: 2820: 2810: 2745: 2411: 699: 481:
The aperiodic Penrose tilings can be generated not only by an aperiodic set of prototiles, but also by a
59: 3349: 3305: 3300: 3295: 3200: 2960: 2925: 2885: 2865: 2840: 2825: 2815: 2775: 2262: 1679: 1673: 3240: 3235: 3145: 3140: 3135: 2930: 2900: 2895: 2875: 2860: 2850: 2845: 2765: 2406: 801: 748: 490: 1957: 1480: 1130: 260: 3275: 3270: 3265: 3195: 3190: 3185: 3180: 2880: 2760: 2755: 1992: 1935: 1245: 639:
translation can leave the entire hierarchical structure invariant. Consider Robinson's 1971 tiles:
2374: 288: 240: 2940: 2790: 2740: 2428: 1295: 1213: 853:. Block and Weinberger used homological methods to construct aperiodic sets of tiles for all non- 520: 3060: 3050: 3020: 2702: 2317: 1952: 1475: 679: 675: 40: 28: 1558: 237:
in the local topology. In the local topology (resp. the corresponding metric) two tilings are
3160: 3065: 3025: 3010: 3005: 3000: 2995: 2750: 2540: 2255: 1814: 1466: 842: 788: 772: 475: 466:
discovered three more sets in 1973 and 1974, reducing the number of tiles needed to two, and
85: 3205: 2945: 2658: 2646: 2530: 2459: 2435: 2360: 2152: 2081: 2001: 1944: 1712: 1643: 1359: 1254: 1243:
Robinson, Raphael M. (1971). "Undecidability and Nonperiodicity for Tilings of the Plane".
1102: 980: 861:. This generally leads to much smaller tile sets than the one derived from substitutions. 8: 2950: 2770: 2616: 2575: 2570: 2450: 715: 533: 482: 459: 441: 2232: 2156: 2143:
Edwards, W.; Fauve, S. (1993). "Parametrically excited quasicrystalline surface waves".
2085: 2005: 1948: 1756:
The Mathematics Long Range Aperiodic Order, NATO Adv. Sci. Inst. Ser. C. Math. Phys. Sci
1716: 1363: 1258: 1106: 984: 682:. A complete tiling of the plane constructed from Robinsion's tiles may or may not have 2735: 2504: 2302: 2099: 2017: 1972: 1831: 1583: 1536: 1493: 1377: 1270: 1066: 1042: 992: 875:
Aperiodic tilings were considered as mathematical artefacts until 1984, when physicist
2053: 2036: 1639: 1291: 1209: 3230: 2780: 2707: 2550: 2333: 2210: 2168: 2103: 2021: 1915: 1880: 1728: 1683: 1669: 1649: 1587: 1540: 1408: 1381: 1305: 1223: 1018: 1011: 285:
around the origin (possibly after shifting one of the tilings by an amount less than
1853: 1347: 1274: 3260: 3075: 3040: 2717: 2681: 2626: 2592: 2545: 2519: 2508: 2423: 2338: 2312: 2307: 2160: 2089: 2048: 2009: 1976: 1962: 1911: 1872: 1823: 1792: 1720: 1619: 1575: 1528: 1485: 1400: 1367: 1262: 1110: 988: 621: 502: 93: 89: 19: 1867:
Le, T.T.Q. (1997). "Local Rules for Quasiperiodic Tilings". In Moody, R.V. (ed.).
1461: 1091:"Metallic Phase with long-range orientational order and no translational symmetry" 2621: 2445: 2355: 1876: 1871:. NATO Adv. Sci. Inst. Ser. C. Math. Phys. Sci. Vol. 489. pp. 331–366. 1517:(1989). "Tilings, substitution systems and dynamical systems generated by them". 1404: 1299: 1217: 830: 784: 671: 512: 471: 125:
A tiling is called aperiodic if its hull contains only non-periodic tilings. The
81: 63: 1115: 1090: 1060: 1058: 440:
The first specific occurrence of aperiodic tilings arose in 1961, when logician
2558: 2471: 2440: 2329: 1006: 968: 916: 854: 695: 558: 537: 445: 70: 24: 2242: 1967: 1930: 1724: 308:
To give an even simpler example than above, consider a one-dimensional tiling
3343: 2712: 2676: 2476: 2464: 2322: 2164: 2118: 1174: 1055: 881: 876: 826: 780: 768: 764: 756: 625: 493:
for Penrose tilings eventually turned out to be an instance of the theory of
467: 463: 104: 35: 857:. Joshua Socolar also gave another way to enforce aperiodicity, in terms of 2611: 2348: 2278: 1624: 1605: 1514: 1434: 939: 886: 870: 846: 776: 613: 417:
is not an aperiodic tiling, since its hull contains the periodic tiling ...
100: 51: 39:
An aperiodic tiling using a single shape and its reflection, discovered by
2172: 2013: 1732: 1703:
Socolar, J.E.S. (1989). "Simple octagonal and dodecagonal quasicrystals".
2597: 928: 822: 409:
converges – in the local topology – to the periodic tiling consisting of
119: 2037:"Aperiodic tilings, positive scalar curvature and amenability of spaces" 1395:
Moody, R.V. (1997). "Meyer Sets and Their Duals". In Moody, R.V. (ed.).
732: 27:
is an example of an aperiodic tiling; every tiling it can produce lacks
2666: 2094: 2069: 1835: 1797: 1774: 1532: 1372: 1266: 666:
However, the tiling produced in this way is not unique, not even up to
1497: 821:
Only a few different kinds of constructions have been found. Notably,
178:, together with all tilings that can be approximated by translates of 2686: 2671: 2587: 2563: 1579: 1157: 850: 807: 743: 594: 494: 55: 1827: 497:. Today there is a large amount of literature on aperiodic tilings. 88:, announced the proof that the tile discovered by David Smith is an 2455: 1746:
Penrose, R. (1997). "Remarks on Tiling: details of a 1 + 
1489: 1430:"Mathematicians have finally discovered an elusive 'einstein' tile" 1071: 1047: 845:
to give a strongly aperiodic set of tiles in the hyperbolic plane.
719: 667: 118:
Consider a periodic tiling by unit squares (it looks like infinite
654: 628:. As with the term "aperiodic tiling" itself, the term "aperiodic 576: 945: 642: 694:
and there are additional choices that allow for the encoding of
2247: 1325: 1064: 1040: 1854:
Algebraic theory of Penrose's nonperiodic tilings of the plane
110:
Several methods for constructing aperiodic tilings are known.
663:
construction of most known aperiodic sets of tiles to date.
2381: 1900:
Kari, Jarkko (1996). "A small aperiodic set of Wang tiles".
1812:
Radin, Charles (1994). "The pinwheel tilings of the plane".
1638: 942: – Ordered chemical structure with no repeating pattern 2186:
Levy, J-C. S.; Mercier, D. (2006). "Stable quasicrystals".
1931:"A strongly aperiodic set of tiles in the hyperbolic plane" 1089:
Schechtman, D.; Blech, I.; Gratias, D.; Cahn, J.W. (1984).
1599: 1597: 1088: 1455: 1453: 1451: 1848:
N. G. de Bruijn, Nederl. Akad. Wetensch. Indag. Math.
1594: 1348:"Meyer's concept of quasicrystal and quasiregular sets" 950:
Pages displaying short descriptions of redirect targets
1448: 324:
represents an interval of length two. Thus the tiling
1632: 358: 291: 263: 243: 188: 135: 1194:(1966). "The undecidability of the domino problem". 2119:"A New Paradigm for the Structure of Quasicrystals" 2034: 829:made as the differences of consecutive elements of 99:Aperiodic tilings serve as mathematical models for 1010: 897: 432:way throughout the tiling), then it is aperiodic. 401: 297: 277: 249: 229: 156: 103:, physical solids that were discovered in 1982 by 1162:Aperiodic Order. Vol 1: A Mathematical Invitation 931: – Five tiles used in Islamic decorative art 230:{\displaystyle \{T+x\,:\,x\in \mathbb {R} ^{d}\}} 3341: 2209:. Morgan & Claypool Publishers. p. 55. 2207:Introductory Tiling Theory for Computer Graphics 1290: 1208: 73:are a well-known example of aperiodic tilings. 1928: 1603: 1509: 1507: 1459: 800:this, as first noted in the pioneering work of 577:Aperiodic hierarchical tilings through matching 1552: 1550: 702:Σ of up to four letters. In summary there are 113: 2263: 1869:The Mathematics of Long-Range Aperiodic Order 1772: 1397:The Mathematics of Long-Range Aperiodic Order 16:Form of plane tiling without repeats at scale 2142: 2041:Journal of the American Mathematical Society 1775:"A construction of inflation rules based on 1567:Notices of the American Mathematical Society 1504: 1196:Memoirs of the American Mathematical Society 1084: 1082: 336:(with centre 0, say). Now all translates of 224: 189: 2185: 1990:Mozes, Shahar (1997). "Aperiodic tilings". 1547: 486: 402:{\displaystyle 1,2,4,\ldots ,2^{n},\ldots } 62:if copies of these tiles can form only non- 2270: 2256: 1559:"Aperiodic Tilings, Order, and Randomness" 1155: 755:The Penrose tiles, and shortly thereafter 182:. Formally this is the closure of the set 2581:Dividing a square into similar rectangles 2093: 2052: 1966: 1956: 1796: 1623: 1479: 1462:"Matching rules and substitution tilings" 1371: 1304:. New York: W. H. Freeman. p. 528f. 1222:. New York: W. H. Freeman. p. 584f. 1114: 1079: 1070: 1046: 794: 658:A portion of tiling by the Robinson tiles 257:-close if they agree in a ball of radius 214: 205: 201: 157:{\displaystyle T\subset \mathbb {R} ^{d}} 144: 1668: 1662: 1345: 1242: 806: 742: 731: 653: 641: 597:usually require such additional rules. 34: 18: 2243:The Infinite Pattern That Never Repeats 2070:"Weak matching rules for quasicrystals" 2067: 1745: 1702: 1606:"A small aperiodic set of planar tiles" 1556: 1427: 1399:. NATO ASI Series C. pp. 403–441. 1036: 1034: 1005: 967: 3342: 2204: 2116: 2074:Communications in Mathematical Physics 1352:Communications in Mathematical Physics 1286: 1284: 1190: 971:(January 1977). "Mathematical Games". 690:) going off to infinity in up to four 348:s else. The sequence of tilings where 328:consists of infinitely many copies of 320:represents an interval of length one, 2643: 2493: 2393: 2289: 2251: 2125:from the original on 23 February 2007 1989: 1811: 1784:Discrete & Computational Geometry 1513: 1394: 1151: 1149: 1147: 736:The chair substitution tiling system. 569:such that the substitution tiling is 1899: 1123: 1031: 775:have found several subsequent sets. 550:substitution and expansion rules and 1773:Nischke, K.-P.; Danzer, L. (1996). 1281: 1131:"The Nobel Prize in Chemistry 2011" 841:. This method was later adapted by 816: 785:Conway-pinwheel substitution tiling 582:and periodic ones. Sometimes these 13: 2644: 2035:Block, J.; Weinberger, S. (1992). 1866: 1202: 1144: 993:10.1038/scientificamerican0177-110 14: 3361: 2226: 2054:10.1090/s0894-0347-1992-1145337-x 1611:European Journal of Combinatorics 1013:Penrose Tiles to Trapdoor Ciphers 76:In March 2023, four researchers, 2380: 2373: 2277: 1865:See, for example, the survey by 1678:(corrected paperback ed.). 709: 526: 2198: 2179: 2136: 2110: 2061: 2028: 1983: 1929:Goodman-Strauss, Chaim (2005). 1922: 1893: 1859: 1842: 1805: 1766: 1739: 1696: 1642:; Geoffrey C. Shephard (1986). 1604:Goodman-Strauss, Chaim (1999). 1460:Goodman-Strauss, Chaim (1998). 1421: 1388: 1339: 1318: 1236: 935:List of aperiodic sets of tiles 898:Confusion regarding terminology 444:tried to determine whether the 312:of the line that looks like ... 1648:. W.H. Freeman & Company. 1520:Journal d'Analyse Mathématique 1184: 1168: 999: 961: 948: – Mosaic tile decoration 278:{\displaystyle 1/\varepsilon } 1: 2606:Regular Division of the Plane 2394: 1428:Conover, Emily (2023-03-24). 1179:Mathematics Genealogy Project 1164:. Cambridge University Press. 955: 428:(i.e. each patch occurs in a 2290: 1916:10.1016/0012-365X(95)00120-L 1877:10.1007/978-94-015-8784-6_13 1405:10.1007/978-94-015-8784-6_16 584:geometric matching condition 298:{\displaystyle \varepsilon } 250:{\displaystyle \varepsilon } 7: 2514:Architectonic and catoptric 2412:Aperiodic set of prototiles 1116:10.1103/PhysRevLett.53.1951 922: 553:the cut-and-project method. 114:Definition and illustration 10: 3366: 1680:Cambridge University Press 1675:Quasicrystals and geometry 868: 864: 783:found rules enforcing the 713: 435: 92:, i.e., a solution to the 2799: 2726: 2695: 2657: 2653: 2639: 2500: 2494: 2489: 2402: 2389: 2371: 2298: 2285: 1968:10.1007/s00222-004-0384-1 1725:10.1103/PhysRevB.39.10519 1557:Treviño, Rodrigo (2023). 749:Trilobite and Cross tiles 340:are the tilings with one 2188:Acta Phys. Superficierum 2165:10.1103/PhysRevE.47.R788 2068:Socolar, Joshua (1990). 1993:Inventiones Mathematicae 1936:Inventiones Mathematicae 1296:Shephard, Geoffrey Colin 1246:Inventiones Mathematicae 1214:Shephard, Geoffrey Colin 1017:. W H Freeman & Co. 164:contains all translates 1852:, 39–52, 53–66 (1981). 1346:Lagarias, J.C. (1996). 1095:Physical Review Letters 80:, Joseph Samuel Myers, 2205:Kaplan, Craig (2009). 1625:10.1006/eujc.1998.0281 813: 795:Cut-and-project method 752: 737: 659: 647: 516: 487:cut-and-project method 403: 299: 279: 251: 231: 158: 43: 32: 29:translational symmetry 2233:The Geometry Junkyard 2014:10.1007/s002220050153 1815:Annals of Mathematics 1467:Annals of Mathematics 859:alternating condition 810: 773:Chaim Goodman-Strauss 746: 735: 657: 645: 589:Sometimes additional 476:Chaim Goodman-Strauss 404: 300: 280: 252: 232: 159: 86:Chaim Goodman-Strauss 38: 22: 2117:Steinhardt, Paul J. 1903:Discrete Mathematics 1645:Tilings and Patterns 1301:Tilings and Patterns 1219:Tilings and Patterns 571:sibling-edge-to-edge 356: 289: 261: 241: 186: 133: 2157:1993PhRvE..47..788E 2086:1990CMaPh.129..599S 2006:1997InMat.128..603M 1949:2004InMat.159..119G 1717:1989PhRvB..3910519S 1364:1996CMaPh.179..365L 1259:1971InMat..12..177R 1107:1984PhRvL..53.1951S 985:1977SciAm.236a.110G 973:Scientific American 716:Substitution tiling 602:Penrose tiling (P1) 521:Socolar–Taylor tile 460:Raphael M. Robinson 2095:10.1007/BF02097107 1798:10.1007/BF02717732 1670:Senechal, Marjorie 1533:10.1007/BF02793412 1373:10.1007/BF02102593 1267:10.1007/BF01418780 855:amenable manifolds 827:Sturmian sequences 814: 753: 738: 660: 648: 646:The Robinson Tiles 399: 295: 275: 247: 227: 154: 90:aperiodic monotile 50:is a non-periodic 44: 33: 3350:Aperiodic tilings 3337: 3336: 3333: 3332: 3329: 3328: 2635: 2634: 2526:Computer graphics 2485: 2484: 2369: 2368: 2238:Aperiodic Tilings 2145:Physical Review E 1886:978-90-481-4832-5 1754:-aperiodic set". 1689:978-0-521-57541-6 1655:978-0-7167-1194-0 1414:978-90-481-4832-5 1101:(20): 1951–1953. 1024:978-0-7167-1987-8 787:system. In 1998, 3357: 2655: 2654: 2641: 2640: 2593:Conway criterion 2520:Circle Limit III 2491: 2490: 2424:Einstein problem 2391: 2390: 2384: 2377: 2313:Schwarz triangle 2287: 2286: 2272: 2265: 2258: 2249: 2248: 2221: 2220: 2202: 2196: 2195: 2183: 2177: 2176: 2151:(2): R788–R791. 2140: 2134: 2133: 2131: 2130: 2114: 2108: 2107: 2097: 2065: 2059: 2058: 2056: 2032: 2026: 2025: 1987: 1981: 1980: 1970: 1960: 1926: 1920: 1919: 1910:(1–3): 259–264. 1897: 1891: 1890: 1863: 1857: 1846: 1840: 1839: 1809: 1803: 1802: 1800: 1770: 1764: 1763: 1743: 1737: 1736: 1711:(15): 10519–51. 1700: 1694: 1693: 1666: 1660: 1659: 1640:Grünbaum, Branko 1636: 1630: 1629: 1627: 1601: 1592: 1591: 1580:10.1090/noti2759 1563: 1554: 1545: 1544: 1511: 1502: 1501: 1483: 1457: 1446: 1445: 1443: 1442: 1425: 1419: 1418: 1392: 1386: 1385: 1375: 1343: 1337: 1336: 1334: 1332: 1326:"Bromley Tilers" 1322: 1316: 1315: 1292:Grünbaum, Branko 1288: 1279: 1278: 1240: 1234: 1233: 1210:Grünbaum, Branko 1206: 1200: 1199: 1188: 1182: 1172: 1166: 1165: 1153: 1142: 1141: 1139: 1138: 1133:. Nobelprize.org 1127: 1121: 1120: 1118: 1086: 1077: 1076: 1074: 1062: 1053: 1052: 1050: 1038: 1029: 1028: 1016: 1003: 997: 996: 965: 951: 907:non-periodic. A 831:Beatty sequences 817:Other techniques 812:distinguishable. 567:hereditary edges 511: 408: 406: 405: 400: 392: 391: 332:and one copy of 304: 302: 301: 296: 284: 282: 281: 276: 271: 256: 254: 253: 248: 236: 234: 233: 228: 223: 222: 217: 169: 163: 161: 160: 155: 153: 152: 147: 94:einstein problem 48:aperiodic tiling 3365: 3364: 3360: 3359: 3358: 3356: 3355: 3354: 3340: 3339: 3338: 3325: 2802: 2795: 2728: 2722: 2691: 2649: 2631: 2496: 2481: 2398: 2385: 2379: 2378: 2365: 2356:Wallpaper group 2294: 2281: 2276: 2229: 2224: 2217: 2203: 2199: 2184: 2180: 2141: 2137: 2128: 2126: 2115: 2111: 2066: 2062: 2033: 2029: 1988: 1984: 1958:10.1.1.477.1974 1927: 1923: 1898: 1894: 1887: 1864: 1860: 1847: 1843: 1828:10.2307/2118575 1810: 1806: 1779:-fold symmetry" 1771: 1767: 1744: 1740: 1701: 1697: 1690: 1667: 1663: 1656: 1637: 1633: 1602: 1595: 1561: 1555: 1548: 1512: 1505: 1481:10.1.1.173.8436 1458: 1449: 1440: 1438: 1426: 1422: 1415: 1393: 1389: 1344: 1340: 1330: 1328: 1324: 1323: 1319: 1312: 1289: 1282: 1241: 1237: 1230: 1207: 1203: 1189: 1185: 1173: 1169: 1154: 1145: 1136: 1134: 1129: 1128: 1124: 1087: 1080: 1063: 1056: 1039: 1032: 1025: 1007:Gardner, Martin 1004: 1000: 969:Gardner, Martin 966: 962: 958: 949: 925: 900: 873: 867: 843:Goodman-Strauss 819: 797: 789:Goodman-Strauss 722: 714:Main articles: 712: 672:Euclidean group 579: 559:Penrose tilings 547:matching rules, 529: 507: 472:Craig S. Kaplan 438: 430:uniformly dense 387: 383: 357: 354: 353: 290: 287: 286: 267: 262: 259: 258: 242: 239: 238: 218: 213: 212: 187: 184: 183: 165: 148: 143: 142: 134: 131: 130: 116: 82:Craig S. Kaplan 71:Penrose tilings 17: 12: 11: 5: 3363: 3353: 3352: 3335: 3334: 3331: 3330: 3327: 3326: 3324: 3323: 3318: 3313: 3308: 3303: 3298: 3293: 3288: 3283: 3278: 3273: 3268: 3263: 3258: 3253: 3248: 3243: 3238: 3233: 3228: 3223: 3218: 3213: 3208: 3203: 3198: 3193: 3188: 3183: 3178: 3173: 3168: 3163: 3158: 3153: 3148: 3143: 3138: 3133: 3128: 3123: 3118: 3113: 3108: 3103: 3098: 3093: 3088: 3083: 3078: 3073: 3068: 3063: 3058: 3053: 3048: 3043: 3038: 3033: 3028: 3023: 3018: 3013: 3008: 3003: 2998: 2993: 2988: 2983: 2978: 2973: 2968: 2963: 2958: 2953: 2948: 2943: 2938: 2933: 2928: 2923: 2918: 2913: 2908: 2903: 2898: 2893: 2888: 2883: 2878: 2873: 2868: 2863: 2858: 2853: 2848: 2843: 2838: 2833: 2828: 2823: 2818: 2813: 2807: 2805: 2797: 2796: 2794: 2793: 2788: 2783: 2778: 2773: 2768: 2763: 2758: 2753: 2748: 2743: 2738: 2732: 2730: 2724: 2723: 2721: 2720: 2715: 2710: 2705: 2699: 2697: 2693: 2692: 2690: 2689: 2684: 2679: 2674: 2669: 2663: 2661: 2651: 2650: 2637: 2636: 2633: 2632: 2630: 2629: 2624: 2619: 2614: 2609: 2602: 2601: 2600: 2595: 2585: 2584: 2583: 2578: 2573: 2568: 2567: 2566: 2553: 2548: 2543: 2538: 2533: 2528: 2523: 2516: 2511: 2501: 2498: 2497: 2487: 2486: 2483: 2482: 2480: 2479: 2474: 2469: 2468: 2467: 2453: 2448: 2443: 2438: 2433: 2432: 2431: 2429:Socolar–Taylor 2421: 2420: 2419: 2409: 2407:Ammann–Beenker 2403: 2400: 2399: 2387: 2386: 2372: 2370: 2367: 2366: 2364: 2363: 2358: 2353: 2352: 2351: 2346: 2341: 2330:Uniform tiling 2327: 2326: 2325: 2315: 2310: 2305: 2299: 2296: 2295: 2283: 2282: 2275: 2274: 2267: 2260: 2252: 2246: 2245: 2240: 2235: 2228: 2227:External links 2225: 2223: 2222: 2215: 2197: 2178: 2135: 2109: 2080:(3): 599–619. 2060: 2047:(4): 907–918. 2027: 2000:(3): 603–611. 1982: 1943:(1): 119–132. 1921: 1892: 1885: 1858: 1841: 1822:(3): 661–702. 1804: 1791:(2): 221–236. 1765: 1738: 1695: 1688: 1661: 1654: 1631: 1618:(5): 375–384. 1593: 1546: 1527:(1): 139–186. 1503: 1490:10.2307/120988 1474:(1): 181–223. 1447: 1420: 1413: 1387: 1358:(2): 356–376. 1338: 1317: 1310: 1280: 1253:(3): 177–209. 1235: 1228: 1201: 1192:Berger, Robert 1183: 1167: 1143: 1122: 1078: 1054: 1030: 1023: 998: 979:(1): 111–119. 959: 957: 954: 953: 952: 943: 937: 932: 924: 921: 917:Penrose tiling 899: 896: 869:Main article: 866: 863: 818: 815: 796: 793: 761:Joshua Socolar 711: 708: 698:from Σ for an 696:infinite words 591:matching rules 578: 575: 555: 554: 551: 548: 538:domino problem 534:undecidability 528: 525: 491:N.G. de Bruijn 446:domino problem 437: 434: 398: 395: 390: 386: 382: 379: 376: 373: 370: 367: 364: 361: 352:is centred at 344:somewhere and 294: 274: 270: 266: 246: 226: 221: 216: 211: 208: 204: 200: 197: 194: 191: 151: 146: 141: 138: 115: 112: 25:Penrose tiling 15: 9: 6: 4: 3: 2: 3362: 3351: 3348: 3347: 3345: 3322: 3319: 3317: 3314: 3312: 3309: 3307: 3304: 3302: 3299: 3297: 3294: 3292: 3289: 3287: 3284: 3282: 3279: 3277: 3274: 3272: 3269: 3267: 3264: 3262: 3259: 3257: 3254: 3252: 3249: 3247: 3244: 3242: 3239: 3237: 3234: 3232: 3229: 3227: 3224: 3222: 3219: 3217: 3214: 3212: 3209: 3207: 3204: 3202: 3199: 3197: 3194: 3192: 3189: 3187: 3184: 3182: 3179: 3177: 3174: 3172: 3169: 3167: 3164: 3162: 3159: 3157: 3154: 3152: 3149: 3147: 3144: 3142: 3139: 3137: 3134: 3132: 3129: 3127: 3124: 3122: 3119: 3117: 3114: 3112: 3109: 3107: 3104: 3102: 3099: 3097: 3094: 3092: 3089: 3087: 3084: 3082: 3079: 3077: 3074: 3072: 3069: 3067: 3064: 3062: 3059: 3057: 3054: 3052: 3049: 3047: 3044: 3042: 3039: 3037: 3034: 3032: 3029: 3027: 3024: 3022: 3019: 3017: 3014: 3012: 3009: 3007: 3004: 3002: 2999: 2997: 2994: 2992: 2989: 2987: 2984: 2982: 2979: 2977: 2974: 2972: 2969: 2967: 2964: 2962: 2959: 2957: 2954: 2952: 2949: 2947: 2944: 2942: 2939: 2937: 2934: 2932: 2929: 2927: 2924: 2922: 2919: 2917: 2914: 2912: 2909: 2907: 2904: 2902: 2899: 2897: 2894: 2892: 2889: 2887: 2884: 2882: 2879: 2877: 2874: 2872: 2869: 2867: 2864: 2862: 2859: 2857: 2854: 2852: 2849: 2847: 2844: 2842: 2839: 2837: 2834: 2832: 2829: 2827: 2824: 2822: 2819: 2817: 2814: 2812: 2809: 2808: 2806: 2804: 2798: 2792: 2789: 2787: 2784: 2782: 2779: 2777: 2774: 2772: 2769: 2767: 2764: 2762: 2759: 2757: 2754: 2752: 2749: 2747: 2744: 2742: 2739: 2737: 2734: 2733: 2731: 2725: 2719: 2716: 2714: 2711: 2709: 2706: 2704: 2701: 2700: 2698: 2694: 2688: 2685: 2683: 2680: 2678: 2675: 2673: 2670: 2668: 2665: 2664: 2662: 2660: 2656: 2652: 2648: 2642: 2638: 2628: 2625: 2623: 2620: 2618: 2615: 2613: 2610: 2608: 2607: 2603: 2599: 2596: 2594: 2591: 2590: 2589: 2586: 2582: 2579: 2577: 2574: 2572: 2569: 2565: 2562: 2561: 2560: 2557: 2556: 2554: 2552: 2549: 2547: 2544: 2542: 2539: 2537: 2534: 2532: 2529: 2527: 2524: 2522: 2521: 2517: 2515: 2512: 2510: 2506: 2503: 2502: 2499: 2492: 2488: 2478: 2475: 2473: 2470: 2466: 2463: 2462: 2461: 2457: 2454: 2452: 2449: 2447: 2444: 2442: 2439: 2437: 2434: 2430: 2427: 2426: 2425: 2422: 2418: 2415: 2414: 2413: 2410: 2408: 2405: 2404: 2401: 2397: 2392: 2388: 2383: 2376: 2362: 2359: 2357: 2354: 2350: 2347: 2345: 2342: 2340: 2337: 2336: 2335: 2331: 2328: 2324: 2321: 2320: 2319: 2316: 2314: 2311: 2309: 2306: 2304: 2301: 2300: 2297: 2293: 2288: 2284: 2280: 2273: 2268: 2266: 2261: 2259: 2254: 2253: 2250: 2244: 2241: 2239: 2236: 2234: 2231: 2230: 2218: 2216:9781608450183 2212: 2208: 2201: 2193: 2189: 2182: 2174: 2170: 2166: 2162: 2158: 2154: 2150: 2146: 2139: 2124: 2120: 2113: 2105: 2101: 2096: 2091: 2087: 2083: 2079: 2075: 2071: 2064: 2055: 2050: 2046: 2042: 2038: 2031: 2023: 2019: 2015: 2011: 2007: 2003: 1999: 1995: 1994: 1986: 1978: 1974: 1969: 1964: 1959: 1954: 1950: 1946: 1942: 1938: 1937: 1932: 1925: 1917: 1913: 1909: 1905: 1904: 1896: 1888: 1882: 1878: 1874: 1870: 1862: 1855: 1851: 1845: 1837: 1833: 1829: 1825: 1821: 1817: 1816: 1808: 1799: 1794: 1790: 1786: 1785: 1780: 1778: 1769: 1761: 1757: 1753: 1750: +  1749: 1742: 1734: 1730: 1726: 1722: 1718: 1714: 1710: 1706: 1699: 1691: 1685: 1681: 1677: 1676: 1671: 1665: 1657: 1651: 1647: 1646: 1641: 1635: 1626: 1621: 1617: 1613: 1612: 1607: 1600: 1598: 1589: 1585: 1581: 1577: 1573: 1569: 1568: 1560: 1553: 1551: 1542: 1538: 1534: 1530: 1526: 1522: 1521: 1516: 1515:Mozes, Shahar 1510: 1508: 1499: 1495: 1491: 1487: 1482: 1477: 1473: 1469: 1468: 1463: 1456: 1454: 1452: 1437: 1436: 1431: 1424: 1416: 1410: 1406: 1402: 1398: 1391: 1383: 1379: 1374: 1369: 1365: 1361: 1357: 1353: 1349: 1342: 1327: 1321: 1313: 1311:0-7167-1193-1 1307: 1303: 1302: 1297: 1293: 1287: 1285: 1276: 1272: 1268: 1264: 1260: 1256: 1252: 1248: 1247: 1239: 1231: 1229:0-7167-1193-1 1225: 1221: 1220: 1215: 1211: 1205: 1197: 1193: 1187: 1180: 1176: 1175:Robert Berger 1171: 1163: 1159: 1152: 1150: 1148: 1132: 1126: 1117: 1112: 1108: 1104: 1100: 1096: 1092: 1085: 1083: 1073: 1068: 1061: 1059: 1049: 1044: 1037: 1035: 1026: 1020: 1015: 1014: 1008: 1002: 994: 990: 986: 982: 978: 974: 970: 964: 960: 947: 944: 941: 938: 936: 933: 930: 927: 926: 920: 918: 913: 910: 905: 895: 893: 888: 887:Faraday waves 883: 882:Robert Ammann 878: 877:Dan Shechtman 872: 862: 860: 856: 852: 848: 844: 840: 836: 832: 828: 824: 809: 805: 803: 792: 790: 786: 782: 781:Charles Radin 778: 774: 770: 769:Ludwig Danzer 766: 765:Roger Penrose 762: 758: 750: 745: 741: 734: 730: 727: 721: 717: 710:Substitutions 707: 705: 701: 697: 693: 689: 686:(also called 685: 681: 677: 673: 669: 664: 656: 652: 644: 640: 636: 633: 631: 627: 623: 619: 615: 610: 606: 603: 598: 596: 592: 587: 585: 574: 572: 568: 562: 560: 552: 549: 546: 545: 544: 541: 539: 535: 527:Constructions 524: 522: 518: 514: 510: 505: 504: 498: 496: 492: 488: 484: 479: 477: 473: 469: 468:Robert Ammann 465: 464:Roger Penrose 461: 457: 452: 451:Robert Berger 447: 443: 433: 431: 427: 422: 420: 416: 413:s only. Thus 412: 396: 393: 388: 384: 380: 377: 374: 371: 368: 365: 362: 359: 351: 347: 343: 339: 335: 331: 327: 323: 319: 315: 311: 306: 292: 272: 268: 264: 244: 219: 209: 206: 202: 198: 195: 192: 181: 177: 173: 168: 149: 139: 136: 128: 123: 121: 111: 108: 106: 105:Dan Shechtman 102: 101:quasicrystals 97: 95: 91: 87: 83: 79: 74: 72: 67: 65: 61: 57: 53: 49: 42: 37: 30: 26: 21: 2617:Substitution 2612:Regular grid 2604: 2518: 2451:Quaquaversal 2395: 2349:Kisrhombille 2279:Tessellation 2206: 2200: 2191: 2187: 2181: 2148: 2144: 2138: 2127:. Retrieved 2112: 2077: 2073: 2063: 2044: 2040: 2030: 1997: 1991: 1985: 1940: 1934: 1924: 1907: 1901: 1895: 1868: 1861: 1849: 1844: 1819: 1813: 1807: 1788: 1782: 1776: 1768: 1759: 1755: 1751: 1747: 1741: 1708: 1705:Phys. Rev. B 1704: 1698: 1674: 1664: 1644: 1634: 1615: 1609: 1571: 1565: 1524: 1518: 1471: 1465: 1439:. Retrieved 1435:Science News 1433: 1423: 1396: 1390: 1355: 1351: 1341: 1329:. Retrieved 1320: 1300: 1250: 1244: 1238: 1218: 1204: 1195: 1186: 1170: 1161: 1135:. Retrieved 1125: 1098: 1094: 1012: 1001: 976: 972: 963: 940:Quasicrystal 914: 909:non-periodic 908: 903: 901: 892:interference 874: 871:Quasicrystal 858: 847:Shahar Mozes 838: 834: 820: 798: 777:Shahar Mozes 754: 739: 725: 723: 691: 687: 683: 676:translations 665: 661: 649: 637: 634: 630:hierarchical 629: 611: 607: 599: 590: 588: 583: 580: 570: 566: 563: 556: 542: 530: 501: 499: 483:substitution 480: 456:Hans Läuchli 439: 423: 418: 414: 410: 349: 345: 341: 337: 333: 329: 325: 321: 317: 314:aaaaaabaaaaa 313: 309: 307: 179: 175: 171: 166: 129:of a tiling 124: 117: 109: 98: 75: 68: 47: 45: 2647:vertex type 2505:Anisohedral 2460:Self-tiling 2303:Pythagorean 1574:(8): 1183. 1198:(66): 1–72. 1156:Baake, M.; 929:Girih tiles 894:phenomena. 823:Jarkko Kari 704:uncountably 120:graph paper 78:David Smith 66:tilings. 41:David Smith 2551:Pentagonal 2129:2007-03-26 1762:: 467–497. 1441:2023-03-25 1158:Grimm, Uwe 1137:2011-10-06 1072:2305.17743 1048:2303.10798 956:References 851:Lie groups 668:isometries 595:Wang tiles 495:Meyer sets 426:repetitive 316:... where 56:prototiles 2659:Spherical 2627:Voderberg 2588:Prototile 2555:Problems 2531:Honeycomb 2509:Isohedral 2396:Aperiodic 2334:honeycomb 2318:Rectangle 2308:Rhombille 2104:123629334 2022:189819776 1953:CiteSeerX 1672:(1996) . 1588:260818304 1541:121775031 1476:CiteSeerX 1382:122753893 904:aperiodic 902:The term 802:de Bruijn 688:corridors 680:rotations 517:ein Stein 509:‹See Tfd› 485:and by a 462:in 1971. 397:… 378:… 293:ε 273:ε 245:ε 210:∈ 140:⊂ 60:aperiodic 3344:Category 2741:V3.4.3.4 2576:Squaring 2571:Heesch's 2536:Isotoxal 2456:Rep-tile 2446:Pinwheel 2339:Coloring 2292:Periodic 2123:Archived 1298:(1987). 1275:14259496 1216:(1987). 1160:(2013). 1009:(1988). 923:See also 720:L-system 700:alphabet 622:Robinson 503:einstein 442:Hao Wang 64:periodic 3201:6.4.8.4 3156:5.4.6.4 3116:4.12.16 3106:4.10.12 3076:V4.8.10 3051:V4.6.16 3041:V4.6.14 2941:3.6.4.6 2936:3.4.∞.4 2931:3.4.8.4 2926:3.4.7.4 2921:3.4.6.4 2871:3.∞.3.∞ 2866:3.4.3.4 2861:3.8.3.8 2856:3.7.3.7 2851:3.6.3.8 2846:3.6.3.6 2841:3.5.3.6 2836:3.5.3.5 2831:3.4.3.∞ 2826:3.4.3.8 2821:3.4.3.7 2816:3.4.3.6 2811:3.4.3.5 2766:3.4.6.4 2736:3.4.3.4 2729:regular 2696:Regular 2622:Voronoi 2546:Packing 2477:Truchet 2472:Socolar 2441:Penrose 2436:Gilbert 2361:Wythoff 2173:9960162 2153:Bibcode 2082:Bibcode 2002:Bibcode 1977:5348203 1945:Bibcode 1856:, I, II 1836:2118575 1733:9947860 1713:Bibcode 1360:Bibcode 1331:26 July 1255:Bibcode 1177:at the 1103:Bibcode 981:Bibcode 946:Zellige 865:Physics 757:Amman's 726:enforce 674:, e.g. 670:of the 618:Läuchli 536:of the 436:History 3091:4.8.16 3086:4.8.14 3081:4.8.12 3071:4.8.10 3046:4.6.16 3036:4.6.14 3031:4.6.12 2801:Hyper- 2786:4.6.12 2559:Domino 2465:Sphinx 2344:Convex 2323:Domino 2213:  2194:: 115. 2171:  2102:  2020:  1975:  1955:  1883:  1834:  1731:  1686:  1652:  1586:  1539:  1498:120988 1496:  1478:  1411:  1380:  1308:  1273:  1226:  1021:  771:, and 684:faults 626:Ammann 513:German 474:, and 419:aaaaaa 84:, and 52:tiling 3206:(6.8) 3161:(5.6) 3096:4.8.∞ 3066:(4.8) 3061:(4.7) 3056:4.6.∞ 3026:(4.6) 3021:(4.5) 2991:4.∞.4 2986:4.8.4 2981:4.7.4 2976:4.6.4 2971:4.5.4 2951:(3.8) 2946:(3.7) 2916:(3.4) 2911:(3.4) 2803:bolic 2771:(3.6) 2727:Semi- 2598:Girih 2495:Other 2100:S2CID 2018:S2CID 1973:S2CID 1832:JSTOR 1584:S2CID 1562:(PDF) 1537:S2CID 1494:JSTOR 1378:S2CID 1271:S2CID 1067:arXiv 1043:arXiv 614:Knuth 421:.... 58:) is 3291:8.16 3286:8.12 3256:7.14 3226:6.16 3221:6.12 3216:6.10 3176:5.12 3171:5.10 3126:4.16 3121:4.14 3111:4.12 3101:4.10 2961:3.16 2956:3.14 2776:3.12 2761:V3.6 2687:V4.n 2677:V3.n 2564:Wang 2541:List 2507:and 2458:and 2417:List 2332:and 2211:ISBN 2169:PMID 1881:ISBN 1729:PMID 1684:ISBN 1650:ISBN 1409:ISBN 1333:2023 1306:ISBN 1224:ISBN 1019:ISBN 837:and 747:The 718:and 692:arms 678:and 624:and 532:the 127:hull 69:The 23:The 3321:∞.8 3316:∞.6 3281:8.6 3251:7.8 3246:7.6 3211:6.8 3166:5.8 3131:4.∞ 2966:3.∞ 2891:3.4 2886:3.∞ 2881:3.8 2876:3.7 2791:4.8 2781:4.∞ 2756:3.6 2751:3.∞ 2746:3.4 2682:4.n 2672:3.n 2645:By 2161:doi 2090:doi 2078:129 2049:doi 2010:doi 1998:128 1963:doi 1941:159 1912:doi 1908:160 1873:doi 1824:doi 1820:139 1793:doi 1760:489 1721:doi 1620:doi 1576:doi 1529:doi 1486:doi 1472:147 1401:doi 1368:doi 1356:179 1263:doi 1111:doi 989:doi 977:236 561:. 500:An 305:). 174:of 46:An 3346:: 2190:. 2167:. 2159:. 2149:47 2147:. 2121:. 2098:. 2088:. 2076:. 2072:. 2043:. 2039:. 2016:. 2008:. 1996:. 1971:. 1961:. 1951:. 1939:. 1933:. 1906:. 1879:. 1850:43 1830:. 1818:. 1789:15 1787:. 1781:. 1758:. 1727:. 1719:. 1709:39 1707:. 1682:. 1616:20 1614:. 1608:. 1596:^ 1582:. 1572:70 1570:. 1564:. 1549:^ 1535:. 1525:53 1523:. 1506:^ 1492:. 1484:. 1470:. 1464:. 1450:^ 1432:. 1407:. 1376:. 1366:. 1354:. 1350:. 1294:; 1283:^ 1269:. 1261:. 1251:12 1249:. 1212:; 1146:^ 1109:. 1099:53 1097:. 1093:. 1081:^ 1057:^ 1033:^ 987:. 975:. 767:, 763:, 620:, 616:, 573:. 515:: 478:. 170:+ 3311:∞ 3306:∞ 3301:∞ 3296:∞ 3276:8 3271:8 3266:8 3261:8 3241:7 3236:7 3231:7 3196:6 3191:6 3186:6 3181:6 3151:5 3146:5 3141:5 3136:5 3016:4 3011:4 3006:4 3001:4 2996:4 2906:3 2901:3 2896:3 2718:6 2713:4 2708:3 2703:2 2667:2 2271:e 2264:t 2257:v 2219:. 2192:8 2175:. 2163:: 2155:: 2132:. 2106:. 2092:: 2084:: 2057:. 2051:: 2045:5 2024:. 2012:: 2004:: 1979:. 1965:: 1947:: 1918:. 1914:: 1889:. 1875:: 1838:. 1826:: 1801:. 1795:: 1777:n 1752:ε 1748:ε 1735:. 1723:: 1715:: 1692:. 1658:. 1628:. 1622:: 1590:. 1578:: 1543:. 1531:: 1500:. 1488:: 1444:. 1417:. 1403:: 1384:. 1370:: 1362:: 1335:. 1314:. 1277:. 1265:: 1257:: 1232:. 1181:. 1140:. 1119:. 1113:: 1105:: 1075:. 1069:: 1051:. 1045:: 1027:. 995:. 991:: 983:: 839:m 835:n 506:( 415:T 411:a 394:, 389:n 385:2 381:, 375:, 372:4 369:, 366:2 363:, 360:1 350:b 346:a 342:b 338:T 334:b 330:a 326:T 322:b 318:a 310:T 269:/ 265:1 225:} 220:d 215:R 207:x 203:: 199:x 196:+ 193:T 190:{ 180:T 176:T 172:x 167:T 150:d 145:R 137:T 31:.

Index


Penrose tiling
translational symmetry

David Smith
tiling
prototiles
aperiodic
periodic
Penrose tilings
David Smith
Craig S. Kaplan
Chaim Goodman-Strauss
aperiodic monotile
einstein problem
quasicrystals
Dan Shechtman
graph paper
hull
repetitive
uniformly dense
Hao Wang
domino problem
Robert Berger
Hans Läuchli
Raphael M. Robinson
Roger Penrose
Robert Ammann
Craig S. Kaplan
Chaim Goodman-Strauss

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.