Knowledge

Aromaticity

Source 📝

246: 125: 33: 1714: 195: 180: 1708: 1720: 446:: The π systems form two parallel rings overlap in a "face-to-face" orientation. Aromatic molecules are also able to interact with each other in an "edge-to-face" orientation: The slight positive charge of the substituents on the ring atoms of one molecule are attracted to the slight negative charge of the aromatic system on another molecule. 462:
was discovered to adopt an asymmetric, rectangular configuration in which single and double bonds indeed alternate; there is no resonance and the single bonds are markedly longer than the double bonds, reducing unfavorable p-orbital overlap. This reduction of symmetry lifts the degeneracy of the two
403:
is not, since the number of π delocalized electrons is 4, which of course is a multiple of 4. The cyclobutadienide (2−) ion, however, is aromatic (6 electrons). An atom in an aromatic system can have other electrons that are not part of the system, and are therefore ignored for the 4n + 2 rule. In
185:
Since they are out of the plane of the atoms, these orbitals can interact with each other freely, and become delocalized. This means that, instead of being tied to one atom of carbon, each electron is shared by all six in the ring. Thus, there are not enough electrons to form double bonds on all the
467:
forces the two unpaired electrons into a new, weakly bonding orbital (and also creates a weakly antibonding orbital). Hence, cyclobutadiene is non-aromatic; the strain of the asymmetric configuration outweighs the anti-aromatic destabilization that would afflict the symmetric, square configuration.
411:
Aromatic molecules typically display enhanced chemical stability, compared to similar non-aromatic molecules. A molecule that can be aromatic will tend to alter its electronic or conformational structure to be in this situation. This extra stability changes the chemistry of the molecule. Aromatic
439:. The NMR signal of protons in the plane of an aromatic ring are shifted substantially further down-field than those on non-aromatic spÂČ carbons. This is an important way of detecting aromaticity. By the same mechanism, the signals of protons located near the ring axis are shifted up-field. 427:
Many of the earliest-known examples of aromatic compounds, such as benzene and toluene, have distinctive pleasant smells. This property led to the term "aromatic" for this class of compounds, and hence the term "aromaticity" for the eventually discovered electronic property.
876:. A π system with 4n electrons in a flat (non-twisted) ring would be anti-aromatic, and therefore highly unstable, due to the symmetry of the combinations of p atomic orbitals. By twisting the ring, the symmetry of the system changes and becomes allowed (see also 1248:
Alexander Kuhn, Puravankara Sreeraj, Rainer Pöttgen, Hans-Dieter Wiemhöfer, Martin Wilkening,Paul Heitjans (2011). "Li NMR Spectroscopy on Crystalline Li12Si7: Experimental Evidence for the Aromaticity of the Planar Cyclopentadienyl-Analogous Si56− Rings".
561:. About 35 million tonnes are produced worldwide every year. They are extracted from complex mixtures obtained by the refining of oil or by distillation of coal tar, and are used to produce a range of important chemicals and polymers, including 140:
compound, which is best represented by a hybrid (average) of these structures, which can be seen at right. A C=C bond is shorter than a C−C bond, but benzene is perfectly hexagonal—all six carbon-carbon bonds have the same
837:) are structurally analogous to benzene, with the carbon atoms replaced by another element or elements. In borazine, the boron and nitrogen atoms alternate around the ring. Quite recently, the aromaticity of planar Si 115:
forms, which corresponds to the double and single bonds superimposing to give rise to six one-and-a-half bonds. Benzene is a more stable molecule than would be expected without accounting for charge delocalization.
453:
and are, in general, destabilized. Molecules that could be antiaromatic will tend to alter their electronic or conformational structure to avoid this situation, thereby becoming non-aromatic. For example,
920:
cation. Guanidinium does not have a ring structure but has six π-electrons which are delocalized over the molecule. However, this concept is controversial and some authors have stressed different effects.
294:) ... and when an additive compound is formed, the inner cycle of affinity suffers disruption, the contiguous carbon-atoms to which nothing has been attached of necessity acquire the ethylenic condition". 408:, the oxygen atom is spÂČ hybridized. One lone pair is in the π system and the other in the plane of the ring (analogous to C-H bond on the other positions). There are 6 π electrons, so furan is aromatic. 329:, since he recognized that his affinities had direction, not merely being point particles, and collectively having a distribution that could be altered by introducing substituents onto the benzene ring ( 99:
to one another. These bonds may be seen as a hybrid of a single bond and a double bond, each bond in the ring identical to every other. This commonly seen model of aromatic rings, namely the idea that
1338: 253:
In the 19th century chemists found it puzzling that benzene could be so unreactive toward addition reactions, given its presumed high degree of unsaturation. The cyclohexatriene structure for
809:
the aromaticity is still retained. Aromaticity also occurs in compounds that are not carbon-based at all. Inorganic 6-membered-ring compounds analogous to benzene have been synthesized.
1474:
R. Caminiti, A. Pieretti, L. Bencivenni, F. Ramondo, N. Sanna (1996). "Amidine N−C(N)−N Skeleton:  Its Structure in Isolated and Hydrogen-Bonded Guanidines from ab Initio Calculations".
3005: 1420:
Alberto Gobbi, Gemot Frenking (1993). "Y-Conjugated compounds: the equilibrium geometries and electronic structures of guanidine, guanidinium cation, urea, and 1,1-diaminoethylene".
136:, a double-headed arrow is used to indicate that the two structures are not distinct entities, but merely hypothetical possibilities. Neither is an accurate representation of the 233:, which are not aromatic in the chemical sense. But terpenes and benzenoid substances do have a chemical characteristic in common, namely higher unsaturation indices than many 261:
in 1865. Over the next few decades, most chemists readily accepted this structure, since it accounted for most of the known isomeric relationships of aromatic chemistry.
5220: 229:
character to apply to a group of chemical substances only some of which have notable aromas. Also, many of the most odoriferous organic substances known are
2019: 225:
in 1855. If this is indeed the earliest introduction of the term, it is curious that Hofmann says nothing about why he introduced an adjective indicating
636:), one or more of the atoms in the aromatic ring is of an element other than carbon. This can lessen the ring's aromaticity, and thus (as in the case of 68:
exhibits a stabilization stronger than would be expected by the stabilization of conjugation alone. The earliest use of the term was in an article by
4336: 4281: 810: 5049: 1807: 1501: 1371: 1325: 1276: 1339:
Claire Castro, Zhongfang Chen, Chaitanya S. Wannere, Haijun Jiao, William L. Karney, Michael Mauksch, Ralph Puchta, Nico J. R. van Eikema Hommes,
4391: 4541: 3175: 5270: 5044: 2870: 897: 1247: 4146: 2067: 1963: 4716: 3916: 2660: 896:. As of 2012, there is no proof that a Möbius aromatic molecule was synthesized. Aromatics with two half-twists corresponding to the 4881: 4811: 4791: 4286: 3453: 2915: 104: 3334: 2890: 1925: 1852: 1533: 950: 2103: 1999: 4636: 1343:(2005). "Investigation of a Putative Möbius Aromatic Hydrocarbon. The Effect of Benzannelation on Möbius Annulene Aromaticity". 1139:
Armit, James Wilson; Robinson, Robert (1925). "CCXI.?Polynuclear heterocyclic aromatic types. Part II. Some anhydronium bases".
5114: 5064: 3468: 1050:
A. T. Balaban, P. v. R. Schleyer and H. S. Rzepa (2005). "Crocker, Not Armit and Robinson, Begat the Six Aromatic Electrons".
4571: 5210: 5019: 4676: 4656: 4616: 3423: 2366: 683:
are molecules containing two or more simple aromatic rings fused together by sharing two neighboring carbon atoms (see also
5205: 5135: 5034: 4691: 4546: 4176: 4021: 3631: 3258: 3035: 164:
above and below the ring. This model more correctly represents the location of electron density within the aromatic ring.
5369: 5285: 5069: 4381: 3871: 3546: 1847: 413: 302: 4091: 103:
was formed from a six-membered carbon ring with alternating single and double bonds (cyclohexatriene), was developed by
5280: 4994: 4856: 4646: 4611: 417: 5170: 5109: 4641: 4556: 4526: 4506: 4371: 4366: 3741: 3666: 3309: 3263: 3130: 2391: 272: 5275: 5235: 5185: 4861: 4661: 4411: 4341: 2830: 2401: 1772: 297:
Here, Armstrong is describing at least four modern concepts. First, his "affinity" is better known nowadays as the
4476: 3369: 3090: 5029: 4871: 4741: 4736: 4551: 4026: 3936: 3526: 3458: 3349: 2925: 2680: 2605: 2060: 1956: 1596: 945: 680: 4786: 1787: 5315: 5200: 5099: 5039: 4686: 4481: 4441: 4416: 4326: 3786: 2820: 2750: 2386: 2316: 1623: 1584: 1574: 916:
Y-aromaticity is a concept which was developed to explain the extraordinary stability and high basicity of the
877: 458:(COT) distorts itself out of planarity, breaking π overlap between adjacent double bonds. Relatively recently, 3906: 5305: 4891: 4781: 4401: 4126: 3911: 3856: 3701: 3661: 3493: 3248: 2965: 2815: 1579: 124: 5265: 4826: 4271: 1221:
Merino, Gabriel; Heine, Thomas; Seifert, Gotthard (2004). "The Induced Magnetic Field in Cyclic Molecules".
589:
The overwhelming majority of aromatic compounds are compounds of carbon, but they need not be hydrocarbons.
5300: 5215: 5190: 5165: 5150: 5074: 4989: 4886: 4846: 4711: 4666: 4431: 3976: 3961: 3826: 3616: 3284: 3040: 2720: 2695: 2665: 2256: 1526: 1447:
Kenneth B. Wiberg (1990). "Resonance interactions in acyclic systems. 2. Y-Conjugated anions and cations".
476:
Aromatic compounds play key roles in the biochemistry of all living things. The four aromatic amino acids
268:, the discoverer of the electron, proposed three equivalent electrons between each carbon atom in benzene. 194: 5364: 5250: 5195: 5140: 4851: 4771: 4671: 4386: 4351: 4196: 4086: 3801: 3796: 3621: 3581: 3478: 3289: 3253: 3105: 3095: 2950: 2810: 2670: 2620: 2615: 2590: 2550: 2496: 2261: 2251: 2226: 331:
much as the distribution of the electric charge in a body is altered by bringing it near to another body
286:, who in 1890 wrote "the (six) centric affinities act within a cycle...benzene may be represented by a 5225: 4926: 4731: 4166: 4051: 3731: 3706: 3646: 3503: 3238: 2945: 2725: 2690: 2595: 2286: 2221: 2053: 1949: 186:
carbon atoms, but the "extra" electrons strengthen all of the bonds on the ring equally. The resulting
4516: 2780: 175:
above and below the plane of the ring. The following diagram shows the positions of these p-orbitals:
5325: 5230: 5084: 4964: 4936: 4906: 4821: 4751: 4706: 4681: 4601: 4501: 4461: 4156: 3776: 3766: 3691: 3215: 3075: 3070: 3050: 2735: 2532: 2511: 2471: 2396: 2034: 1842: 1832: 1822: 1797: 1767: 179: 2216: 5290: 5180: 5160: 5024: 4866: 4776: 4746: 4726: 4621: 4576: 4406: 4316: 4246: 4131: 4121: 3951: 3508: 3448: 3413: 3220: 3200: 3160: 2935: 2805: 2770: 2730: 2481: 2321: 2311: 2241: 1613: 245: 4756: 5260: 5119: 4969: 4911: 4836: 4816: 4536: 4486: 4346: 4311: 4251: 4181: 3736: 3483: 3463: 3195: 3115: 3010: 2970: 2940: 2875: 2760: 2745: 2655: 2645: 2306: 2231: 2186: 1874: 1777: 1749: 1519: 1340: 901: 2521: 1290:
D. Ajami, O. Oeckler, A. Simon, R. Herges (2003). "Synthesis of a Möbius aromatic hydrocarbon".
301:, which was to be discovered only seven years later by J. J. Thomson. Second, he is describing 167:
The single bonds are formed with electrons in line between the carbon nuclei — these are called
4999: 4721: 4471: 4451: 4426: 4376: 4291: 4266: 4221: 4191: 4171: 4141: 4106: 4061: 4036: 4011: 3896: 3821: 3601: 3294: 3230: 3030: 2755: 2675: 2361: 2336: 2113: 2108: 1166:
Ernest C. Crocker (1922). "Application Of The Octet Theory To Single-Ring Aromatic Compounds".
617: 421: 283: 222: 69: 72:
in 1855. There is no general relationship between aromaticity as a chemical property and the
5335: 4921: 4876: 4591: 4561: 4531: 4466: 4446: 4361: 4356: 4321: 4276: 4261: 4256: 4236: 4226: 4161: 4151: 4081: 4031: 3551: 3354: 2930: 2885: 2715: 2705: 2451: 2376: 2171: 2133: 1918: 1879: 1495: 1473: 1365: 1319: 1270: 893: 779: 629: 432: 133: 112: 84: 37: 2381: 1913: 858: 5104: 5054: 5004: 4984: 4974: 4831: 4806: 4521: 4511: 4396: 4211: 4206: 4136: 3921: 3721: 3681: 3611: 3576: 3531: 3498: 3364: 3339: 3319: 3140: 3100: 3060: 3025: 2955: 2710: 2580: 2555: 2093: 1837: 1728: 1591: 1550: 955: 930: 759:
dianion (10e). Aromatic properties have been attributed to non-benzenoid compounds such as
684: 536: 443: 391:. That is, 4n + 2 number of π electrons, where n=0, 1, 2, 3, and so on. This is known as 365: 306: 8: 5310: 5295: 4941: 4916: 4901: 4896: 4626: 4581: 4566: 4456: 4436: 4331: 4216: 4201: 4046: 3991: 3981: 3946: 3711: 3586: 3561: 3473: 3329: 3314: 3299: 3120: 3065: 2835: 2685: 2630: 2501: 2416: 2276: 2201: 1739: 1603: 1569: 344:
in 1931. He was the first to separate the bonding electrons into sigma and pi electrons.
218: 5320: 3971: 3155: 2346: 1903: 392: 271:
An explanation for the exceptional stability of benzene is conventionally attributed to
171:. Double bonds consist of a σ-bond and a π-bond. The π-bonds are formed from overlap of 5059: 5009: 4979: 4841: 4631: 4421: 4306: 4241: 4231: 3996: 3926: 3891: 3886: 3866: 3861: 3806: 3716: 3566: 3428: 3418: 3324: 3110: 3055: 2985: 2905: 2800: 2700: 2635: 2560: 2406: 2271: 2206: 2191: 1658: 337: 234: 4796: 4116: 4001: 3966: 3931: 3876: 3831: 3746: 3726: 3676: 3671: 3641: 3626: 3536: 3443: 3379: 3344: 3170: 3045: 2920: 2845: 2825: 2740: 2575: 2570: 2516: 2426: 2331: 2291: 2246: 2128: 2123: 2088: 2014: 1973: 1889: 1678: 1638: 1628: 1402: 1345: 1307: 1168: 1032: 852: 756: 708: 605: 455: 310: 187: 53: 45: 3791: 5330: 5175: 5145: 5089: 5014: 4946: 4701: 4651: 4496: 4301: 4076: 4071: 4016: 4006: 3781: 3591: 3571: 3541: 3438: 3374: 3359: 3190: 3145: 3135: 3125: 3020: 3000: 2995: 2980: 2975: 2855: 2850: 2790: 2775: 2765: 2610: 2600: 2466: 2456: 2356: 2351: 2326: 2266: 2118: 2077: 2009: 2004: 1994: 1930: 1670: 1643: 1483: 1456: 1429: 1394: 1385:
Rzepa, Henry S. (2005). "A Double-Twist Möbius-Aromatic Conformation of Annulene".
1353: 1299: 1258: 1230: 1203: 1176: 1148: 1121: 1092: 1061: 1052: 1024: 997: 965: 872:
by 4n (n is an integer) electrons, is given a single half-twist to correspond to a
748: 712: 57: 2446: 282:
In fact, this concept can be traced further back, via Ernest Crocker in 1922, to
258: 5240: 4931: 4766: 4761: 4056: 4041: 3986: 3941: 3901: 3851: 3816: 3811: 3756: 3751: 3686: 3636: 3556: 3384: 3268: 3243: 3205: 3180: 3165: 3150: 3085: 2960: 2910: 2900: 2880: 2840: 2650: 2640: 2625: 2421: 2341: 2211: 2181: 2166: 2161: 2029: 1908: 1782: 1653: 940: 865: 771: 716: 450: 237:, and Hofmann may not have been making a distinction between the two categories. 1941: 1049: 873: 5245: 5155: 5094: 4186: 4096: 4066: 3841: 3696: 3433: 3210: 3080: 2895: 2865: 2565: 2461: 2236: 2098: 1817: 1618: 960: 935: 794: 492:
each serve as one of the 20 basic building-blocks of proteins. Further, all 5
464: 459: 400: 172: 80: 32: 20: 2045: 5358: 5255: 4956: 4801: 4696: 4491: 3881: 3846: 3836: 3771: 3761: 3651: 3488: 3304: 3015: 2990: 2860: 2506: 2491: 2476: 2371: 2301: 2281: 2196: 1989: 1866: 1826: 1759: 1713: 1688: 1561: 1542: 1125: 905: 806: 798: 763:. Aromatic properties are tested to the limit in a class of compounds called 744: 669: 665: 481: 373: 357: 265: 96: 65: 516:) that make up the sequence of the genetic code in DNA and RNA are aromatic 4296: 3656: 3408: 3185: 2785: 2585: 2436: 2431: 2296: 2151: 2024: 1812: 1406: 1311: 1262: 1234: 1036: 1001: 885: 869: 696: 341: 2795: 2441: 2411: 1289: 1207: 1152: 1112:
August Kekulé (1872). "Ueber einige Condensationsproducte des Aldehyds".
881: 802: 790: 786: 724: 688: 529: 521: 388: 369: 150: 146: 142: 1460: 1433: 1303: 1180: 5079: 4606: 3956: 1194:
Henry Edward Armstrong (1890). "The structure of cycloid hydrocarbon".
764: 692: 493: 485: 322: 168: 40:
forms of benzene (top) combine to produce an average structure (bottom)
1487: 1398: 1357: 1097: 1080: 1065: 1028: 372:
system, most commonly an arrangement of alternating single and double
1633: 1608: 917: 752: 661: 649: 574: 477: 442:
Aromatic molecules are able to interact with each other in so-called
226: 73: 61: 24: 156:
A better representation is that of the circular π bond (Armstrong's
2486: 2156: 1707: 822: 653: 645: 641: 601: 505: 489: 378: 340:
origins of this stability, or aromaticity, were first modelled by
298: 230: 88: 2146: 1511: 861:
occurs when a cyclic system of molecular orbitals, formed from p
760: 720: 657: 597: 570: 562: 544: 540: 517: 509: 501: 497: 449:
Planar monocyclic molecules containing 4n π electrons are called
325:'s notation. It is argued that he also anticipated the nature of 254: 161: 160:), in which the electron density is evenly distributed through a 100: 399:
Whereas benzene is aromatic (6 electrons, from 3 double bonds),
566: 555: 548: 513: 347: 215: 1015:
Schleyer, Paul von Ragué (2001). "Introduction: Aromaticity".
1419: 855:
is believed to exist in certain metal clusters of aluminium.
637: 578: 405: 79:
Aromaticity can also be considered a manifestation of cyclic
19:"Aromatic" redirects here. For meanings related to odor, see 431:
The circulating π electrons in an aromatic molecule produce
381:
structure, with all the contributing atoms in the same plane
908:
the ring bonds are extended with alkyne and allene groups.
525: 353: 326: 92: 1719: 275:, who was apparently the first (in 1925) to coin the term 740: 728: 436: 785:
When carbon in benzene is replaced by other elements in
1193: 424:
reactions as happens with carbon-carbon double bonds.
214:
term — namely, to apply to compounds that contain the
111:
section below). The model for benzene consists of two
279:
as a group of six electrons that resists disruption.
52:
is a chemical property describing the way in which a
5221:
Erlenmeyer–Plöchl azlactone and amino-acid synthesis
849:
was experimentally evidenced by Li solid state NMR.
240: 535:Aromatic compounds are important in industry. Key 471: 1220: 640:) increase its reactivity. Other examples include 463:formerly non-bonding molecular orbitals, which by 91:are free to cycle around circular arrangements of 4282:Divinylcyclopropane-cycloheptadiene rearrangement 1971: 1446: 1165: 528:contains an aromatic system with 22 π electrons. 5356: 384:Contributing atoms arranged in one or more rings 313:of the ring is broken. He introduced the symbol 249:Historic benzene formulae as proposed by KekulĂ©. 210:The first known use of the word "aromatic" as a 205: 2075: 4542:Thermal rearrangement of aromatic hydrocarbons 3176:Thermal rearrangement of aromatic hydrocarbons 734: 584: 5271:Lectka enantioselective beta-lactam synthesis 2531: 2061: 1957: 1527: 1141:Journal of the Chemical Society, Transactions 1138: 1111: 987: 983: 981: 774:where conjugation is interrupted by a single 5050:Inverse electron-demand Diels–Alder reaction 2871:Heterogeneous metal catalyzed cross-coupling 1500:: CS1 maint: multiple names: authors list ( 1370:: CS1 maint: multiple names: authors list ( 1324:: CS1 maint: multiple names: authors list ( 1275:: CS1 maint: multiple names: authors list ( 1196:Proceedings of the Chemical Society (London) 1105: 616:where n ≄ 4 and is an even number, such as 387:A number of π delocalized electrons that is 348:Characteristics of aromatic (aryl) compounds 317:centered on the ring as a shorthand for the 4392:Lobry de Bruyn–Van Ekenstein transformation 1081:"Introduction: Delocalization Pi and Sigma" 988:A. W. Hofmann (1855). "On Insolinic Acid". 87:. This is usually considered to be because 23:. For the lack of romantic attraction, see 2068: 2054: 1964: 1950: 1534: 1520: 978: 770:A special case of aromaticity is found in 435:that oppose the applied magnetic field in 4882:Petrenko-Kritschenko piperidone synthesis 4337:Fritsch–Buttenberg–Wiechell rearrangement 1096: 5045:Intramolecular Diels–Alder cycloaddition 1926:Polyhedral skeletal electron pair theory 1449:Journal of the American Chemical Society 1422:Journal of the American Chemical Society 1078: 1014: 702: 244: 95:that are alternately single- and double- 31: 880:for details). Because the twist can be 5357: 5065:Metal-centered cycloaddition reactions 4717:Debus–Radziszewski imidazole synthesis 2661:Bodroux–Chichibabin aldehyde synthesis 888:, the resulting Möbius aromatics are 592: 5211:Diazoalkane 1,3-dipolar cycloaddition 5115:Vinylcyclopropane (5+2) cycloaddition 5020:Diazoalkane 1,3-dipolar cycloaddition 4792:Hurd–Mori 1,2,3-thiadiazole synthesis 4287:Dowd–Beckwith ring-expansion reaction 3454:Hurd–Mori 1,2,3-thiadiazole synthesis 2530: 2367:LFER solvent coefficients (data page) 2049: 1945: 1515: 1384: 841:rings occurring in the Zintl phase Li 360:atoms with specific characteristics: 4022:Sharpless asymmetric dihydroxylation 3259:Methoxymethylenetriphenylphosphorane 900:topologies were first suggested by 532:also has a similar aromatic system. 4147:Allen–Millar–Trippett rearrangement 414:electrophilic aromatic substitution 303:electrophilic aromatic substitution 13: 5286:Nitrone-olefin (3+2) cycloaddition 5281:Niementowski quinazoline synthesis 5070:Nitrone-olefin (3+2) cycloaddition 4995:Azide-alkyne Huisgen cycloaddition 4857:Niementowski quinazoline synthesis 4612:Azide-alkyne Huisgen cycloaddition 3917:Meerwein–Ponndorf–Verley reduction 3469:Leimgruber–Batcho indole synthesis 1541: 418:nucleophilic aromatic substitution 123: 14: 5381: 5110:Trimethylenemethane cycloaddition 4812:Johnson–Corey–Chaykovsky reaction 4677:Cadogan–Sundberg indole synthesis 4657:Bohlmann–Rahtz pyridine synthesis 4617:Baeyer–Emmerling indole synthesis 3424:Cadogan–Sundberg indole synthesis 2916:Johnson–Corey–Chaykovsky reaction 1476:The Journal of Physical Chemistry 1079:Schleyer, Paul von RaguĂ© (2005). 305:, proceeding (third) through a 241:The structure of the benzene ring 145:, intermediate between that of a 5206:Cook–Heilbron thiazole synthesis 5035:Hexadehydro Diels–Alder reaction 4862:Niementowski quinoline synthesis 4692:Cook–Heilbron thiazole synthesis 4637:Bischler–Möhlau indole synthesis 4547:Tiffeneau–Demjanov rearrangement 4177:Baker–Venkataraman rearrangement 3335:Horner–Wadsworth–Emmons reaction 3006:Mizoroki-Heck vs. Reductive Heck 2891:Horner–Wadsworth–Emmons reaction 2402:Neighbouring group participation 1718: 1712: 1706: 990:Proceedings of the Royal Society 911: 681:Polycyclic aromatic hydrocarbons 623: 472:Importance of aromatic compounds 193: 178: 4742:Fiesselmann thiophene synthesis 4572:Westphalen–LettrĂ© rearrangement 4552:Vinylcyclopropane rearrangement 4382:Kornblum–DeLaMare rearrangement 4027:Epoxidation of allylic alcohols 3937:Noyori asymmetric hydrogenation 3872:Kornblum–DeLaMare rearrangement 3547:Gallagher–Hollander degradation 1467: 1440: 1413: 1378: 1332: 1283: 1241: 5201:Chichibabin pyridine synthesis 4687:Chichibabin pyridine synthesis 4647:Blum–Ittah aziridine synthesis 4482:Ring expansion and contraction 2751:Cross dehydrogenative coupling 1223:Chemistry – A European Journal 1214: 1187: 1159: 1132: 1072: 1043: 1008: 711:are aromatic rings with other 675: 76:properties of such compounds. 1: 5171:Bischler–Napieralski reaction 5129:Heterocycle forming reactions 4782:Hemetsberger indole synthesis 4642:Bischler–Napieralski reaction 4557:Wagner–Meerwein rearrangement 4527:Sommelet–Hauser rearrangement 4507:Seyferth–Gilbert homologation 4372:Ireland–Claisen rearrangement 4367:Hofmann–Martius rearrangement 4127:2,3-sigmatropic rearrangement 3742:Corey–Winter olefin synthesis 3667:Barton–McCombie deoxygenation 3310:Corey–Winter olefin synthesis 3264:Seyferth–Gilbert homologation 3131:Seyferth–Gilbert homologation 971: 389:even, but not a multiple of 4 356:) compound contains a set of 5276:Lehmstedt–Tanasescu reaction 5236:Gabriel–Colman rearrangement 5191:Bucherer carbazole synthesis 5186:Borsche–Drechsel cyclization 5166:Bernthsen acridine synthesis 5151:Bamberger triazine synthesis 5136:Algar–Flynn–Oyamada reaction 4847:Nazarov cyclization reaction 4712:De Kimpe aziridine synthesis 4667:Bucherer carbazole synthesis 4662:Borsche–Drechsel cyclization 4432:Nazarov cyclization reaction 4412:Meyer–Schuster rearrangement 4342:Gabriel–Colman rearrangement 4092:Wolffenstein–Böters reaction 3977:Reduction of nitro compounds 3827:Grundmann aldehyde synthesis 3632:Algar–Flynn–Oyamada reaction 3041:Olefin conversion technology 3036:Nozaki–Hiyama–Kishi reaction 2831:Gabriel–Colman rearrangement 2721:Claisen-Schmidt condensation 2666:Bouveault aldehyde synthesis 715:attached. Examples include 608:excepted) with the formula C 108: 7: 5251:Hantzsch pyridine synthesis 5030:Enone–alkene cycloadditions 4852:Nenitzescu indole synthesis 4772:Hantzsch pyridine synthesis 4737:Ferrario–Ackermann reaction 4387:Kowalski ester homologation 4352:Halogen dance rearrangement 4197:Benzilic acid rearrangement 3622:Akabori amino-acid reaction 3582:Von Braun amide degradation 3527:Barbier–Wieland degradation 3479:Nenitzescu indole synthesis 3459:Kharasch–Sosnovsky reaction 3350:Julia–Kocienski olefination 3254:Kowalski ester homologation 2951:Kowalski ester homologation 2926:Julia–Kocienski olefination 2681:Cadiot–Chodkiewicz coupling 2606:Aza-Baylis–Hillman reaction 2551:Acetoacetic ester synthesis 2262:Dynamic binding (chemistry) 2252:Conrotatory and disrotatory 2227:Charge remote fragmentation 924: 735:Atypical aromatic compounds 585:Types of aromatic compounds 539:of commercial interest are 128:Modern depiction of benzene 10: 5386: 5370:Physical organic chemistry 5316:Robinson–Gabriel synthesis 5266:Kröhnke pyridine synthesis 5100:Retro-Diels–Alder reaction 5040:Imine Diels–Alder reaction 4827:Kröhnke pyridine synthesis 4442:Newman–Kwart rearrangement 4417:Mislow–Evans rearrangement 4327:Fischer–Hepp rearrangement 4272:Di-π-methane rearrangement 4052:Stephen aldehyde synthesis 3787:Eschweiler–Clarke reaction 3504:Williamson ether synthesis 2821:Fujiwara–Moritani reaction 2726:Combes quinoline synthesis 2691:Carbonyl olefin metathesis 2392:More O'Ferrall–Jencks plot 2317:Grunwald–Winstein equation 2287:Electron-withdrawing group 2222:Catalytic resonance theory 1624:Metal–ligand multiple bond 221:— occurs in an article by 200: 18: 5326:Urech hydantoin synthesis 5306:Pomeranz–Fritsch reaction 5231:Fischer oxazole synthesis 5128: 4965:1,3-Dipolar cycloaddition 4955: 4937:Urech hydantoin synthesis 4907:Reissert indole synthesis 4892:Pomeranz–Fritsch reaction 4822:Knorr quinoline synthesis 4752:Fischer oxazole synthesis 4682:Camps quinoline synthesis 4602:1,3-Dipolar cycloaddition 4590: 4502:Semipinacol rearrangement 4477:Ramberg–BĂ€cklund reaction 4462:Piancatelli rearrangement 4402:McFadyen–Stevens reaction 4157:Alpha-ketol rearrangement 4105: 3912:McFadyen–Stevens reaction 3857:Kiliani–Fischer synthesis 3777:Elbs persulfate oxidation 3702:Bouveault–Blanc reduction 3662:Baeyer–Villiger oxidation 3600: 3517: 3494:Schotten–Baumann reaction 3397: 3370:Ramberg–BĂ€cklund reaction 3277: 3249:Kiliani–Fischer synthesis 3229: 3091:Ramberg–BĂ€cklund reaction 3076:Pinacol coupling reaction 3071:Piancatelli rearrangement 2966:Liebeskind–Srogl coupling 2816:Fujimoto–Belleau reaction 2539: 2533:List of organic reactions 2397:Negative hyperconjugation 2142: 2084: 2035:List of organic compounds 1980: 1888: 1865: 1796: 1758: 1738: 1727: 1704: 1687: 1669: 1560: 1549: 727:, and the nucleotides of 309:, in which (fourth) the 119: 5301:Pictet–Spengler reaction 5216:Einhorn–Brunner reaction 5181:Boger pyridine synthesis 5075:Oxo-Diels–Alder reaction 4990:Aza-Diels–Alder reaction 4887:Pictet–Spengler reaction 4787:Hofmann–Löffler reaction 4777:Hegedus indole synthesis 4747:Fischer indole synthesis 4622:Bartoli indole synthesis 4577:Willgerodt rearrangement 4407:McLafferty rearrangement 4317:Ferrier carbocyclization 4132:2,3-Wittig rearrangement 4122:1,2-Wittig rearrangement 3962:Parikh–Doering oxidation 3952:Oxygen rebound mechanism 3617:Adkins–Peterson reaction 3509:Yamaguchi esterification 3449:Hegedus indole synthesis 3414:Bartoli indole synthesis 3285:Bamford–Stevens reaction 3201:Weinreb ketone synthesis 3161:Stork enamine alkylation 2936:Knoevenagel condensation 2806:Ferrier carbocyclization 2696:Castro–Stephens coupling 2322:Hammett acidity function 2312:Free-energy relationship 2257:Curtin–Hammett principle 2242:Conformational isomerism 1126:10.1002/jlac.18721620110 747:cation (2e system), the 739:Aromaticity is found in 600:, as well as most other 5261:Knorr pyrrole synthesis 5196:Bucherer–Bergs reaction 5141:Allan–Robinson reaction 5120:Wagner-Jauregg reaction 4912:Ring-closing metathesis 4837:Larock indole synthesis 4817:Knorr pyrrole synthesis 4672:Bucherer–Bergs reaction 4537:Stieglitz rearrangement 4517:SkattebĂžl rearrangement 4487:Ring-closing metathesis 4347:Group transfer reaction 4312:Favorskii rearrangement 4252:Cornforth rearrangement 4182:Bamberger rearrangement 4087:Wolff–Kishner reduction 3907:Markó–Lam deoxygenation 3802:Fleming–Tamao oxidation 3797:Fischer–Tropsch process 3484:Oxymercuration reaction 3464:Knorr pyrrole synthesis 3290:Barton–Kellogg reaction 3196:Wagner-Jauregg reaction 3116:Ring-closing metathesis 3106:Reimer–Tiemann reaction 3096:Rauhut–Currier reaction 3011:Nef isocyanide reaction 2971:Malonic ester synthesis 2941:Knorr pyrrole synthesis 2876:High dilution principle 2811:Friedel–Crafts reaction 2746:Cross-coupling reaction 2671:Bucherer–Bergs reaction 2656:Blanc chloromethylation 2646:Blaise ketone synthesis 2621:Baylis–Hillman reaction 2616:Barton–Kellogg reaction 2591:Allan–Robinson reaction 2497:Woodward–Hoffmann rules 2232:Charge-transfer complex 751:anion (6e system), the 264:Between 1897 and 1906, 5226:Feist–Benary synthesis 5000:Bradsher cycloaddition 4970:4+4 Photocycloaddition 4927:Simmons–Smith reaction 4872:PaternĂČ–BĂŒchi reaction 4732:Feist–Benary synthesis 4722:Dieckmann condensation 4472:Pummerer rearrangement 4452:Oxy-Cope rearrangement 4427:Myers allene synthesis 4377:Jacobsen rearrangement 4292:Electrocyclic reaction 4267:Demjanov rearrangement 4222:Buchner ring expansion 4192:Beckmann rearrangement 4172:Aza-Cope rearrangement 4167:Arndt–Eistert reaction 4142:Alkyne zipper reaction 4062:Transfer hydrogenation 4037:Sharpless oxyamination 4012:Selenoxide elimination 3897:Lombardo methylenation 3822:Griesbaum coozonolysis 3732:Corey–Itsuno reduction 3707:Boyland–Sims oxidation 3647:Angeli–Rimini reaction 3295:Boord olefin synthesis 3239:Arndt–Eistert reaction 3231:Homologation reactions 3031:Nitro-Mannich reaction 2946:Kolbe–Schmitt reaction 2756:Cross-coupling partner 2676:Buchner ring expansion 2596:Arndt–Eistert reaction 2362:Kinetic isotope effect 2109:Rearrangement reaction 1263:10.1002/anie.201105081 1235:10.1002/chem.200400457 1002:10.1098/rspl.1856.0002 618:cyclotetradecaheptaene 422:electrophilic addition 284:Henry Edward Armstrong 257:was first proposed by 250: 223:August Wilhelm Hofmann 129: 70:August Wilhelm Hofmann 41: 5085:Pauson–Khand reaction 4922:Sharpless epoxidation 4877:Pechmann condensation 4757:FriedlĂ€nder synthesis 4707:Davis–Beirut reaction 4562:Wallach rearrangement 4532:Stevens rearrangement 4467:Pinacol rearrangement 4447:Overman rearrangement 4362:Hofmann rearrangement 4357:Hayashi rearrangement 4322:Ferrier rearrangement 4277:Dimroth rearrangement 4262:Curtius rearrangement 4257:Criegee rearrangement 4237:Claisen rearrangement 4227:Carroll rearrangement 4162:Amadori rearrangement 4152:Allylic rearrangement 4032:Sharpless epoxidation 3767:Dess–Martin oxidation 3692:Bohn–Schmidt reaction 3552:Hofmann rearrangement 3355:Kauffmann olefination 3278:Olefination reactions 3216:Wurtz–Fittig reaction 3051:Palladium–NHC complex 2931:Kauffmann olefination 2886:Homologation reaction 2736:Corey–House synthesis 2716:Claisen rearrangement 2512:Yukawa–Tsuno equation 2472:Swain–Lupton equation 2452:Spherical aromaticity 2387:Möbius–HĂŒckel concept 2172:Aromatic ring current 2134:Substitution reaction 878:Möbius–HĂŒckel concept 703:Substituted aromatics 685:simple aromatic rings 537:aromatic hydrocarbons 248: 127: 35: 5291:Paal–Knorr synthesis 5161:Barton–Zard reaction 5105:Staudinger synthesis 5055:Ketene cycloaddition 5025:Diels–Alder reaction 5005:Cheletropic reaction 4985:Alkyne trimerisation 4867:Paal–Knorr synthesis 4832:Kulinkovich reaction 4807:Jacobsen epoxidation 4727:Diels–Alder reaction 4522:Smiles rearrangement 4512:Sigmatropic reaction 4397:Lossen rearrangement 4247:Corey–Fuchs reaction 4212:Boekelheide reaction 4207:Bergmann degradation 4137:Achmatowicz reaction 3922:Methionine sulfoxide 3722:Clemmensen reduction 3682:Bergmann degradation 3612:Acyloin condensation 3577:Strecker degradation 3532:Bergmann degradation 3499:Ullmann condensation 3365:Peterson olefination 3340:Hydrazone iodination 3320:Elimination reaction 3221:Zincke–Suhl reaction 3141:Sonogashira coupling 3101:Reformatsky reaction 3061:Peterson olefination 3026:Nierenstein reaction 2956:Kulinkovich reaction 2771:Diels–Alder reaction 2731:Corey–Fuchs reaction 2711:Claisen condensation 2581:Alkyne trimerisation 2556:Acyloin condensation 2522:ÎŁ-bishomoaromaticity 2482:Thorpe–Ingold effect 2094:Elimination reaction 1614:Coordinate (dipolar) 1341:Paul von R. Schleyer 1251:Angew. Chem. Int. Ed 1208:10.1039/PL8900600095 1153:10.1039/CT9252701604 956:Simple aromatic ring 931:Aromatic hydrocarbon 721:acetylsalicylic acid 321:, thus anticipating 307:Wheland intermediate 5311:Prilezhaev reaction 5296:Pellizzari reaction 4975:(4+3) cycloaddition 4942:Van Leusen reaction 4917:Robinson annulation 4902:Pschorr cyclization 4897:Prilezhaev reaction 4627:Bergman cyclization 4582:Wolff rearrangement 4567:Weerman degradation 4457:Pericyclic reaction 4437:Neber rearrangement 4332:Fries rearrangement 4217:Brook rearrangement 4202:Bergman cyclization 4047:Staudinger reaction 3992:Rosenmund reduction 3982:Reductive amination 3947:Oppenauer oxidation 3737:Corey–Kim oxidation 3712:Cannizzaro reaction 3587:Weerman degradation 3562:Isosaccharinic acid 3474:Mukaiyama hydration 3330:Hofmann elimination 3315:Dehydrohalogenation 3300:Chugaev elimination 3121:Robinson annulation 3066:Pfitzinger reaction 2836:Gattermann reaction 2781:Wulff–Dötz reaction 2761:Dakin–West reaction 2686:Carbonyl allylation 2631:Bergman cyclization 2417:Kennedy J. P. Orton 2337:Hammond's postulate 2307:Flippin–Lodge angle 2277:Electromeric effect 2202:Beta-silicon effect 2187:Baker–Nathan effect 1788:C–H···O interaction 1570:Electron deficiency 1461:10.1021/ja00167a011 1434:10.1021/ja00059a035 1304:10.1038/nature02224 1181:10.1021/ja01429a002 868:and populated in a 593:Neutral homocyclics 420:reactions, but not 273:Sir Robert Robinson 235:aliphatic compounds 206:The term "aromatic" 132:As is standard for 5365:Aromatic compounds 5060:McCormack reaction 5010:Conia-ene reaction 4842:Madelung synthesis 4632:Biginelli reaction 4422:Mumm rearrangement 4307:Favorskii reaction 4242:Cope rearrangement 4232:Chan rearrangement 3997:Rubottom oxidation 3927:Miyaura borylation 3892:Lipid peroxidation 3887:Lindgren oxidation 3867:Kornblum oxidation 3862:Kolbe electrolysis 3807:Fukuyama reduction 3717:Carbonyl reduction 3567:Marker degradation 3429:Diazonium compound 3419:Boudouard reaction 3398:Carbon-heteroatom 3325:Grieco elimination 3111:Rieche formylation 3056:Passerini reaction 2986:Meerwein arylation 2906:Hydroxymethylation 2801:Favorskii reaction 2701:Chan rearrangement 2636:Biginelli reaction 2561:Aldol condensation 2407:2-Norbornyl cation 2382:Möbius aromaticity 2377:Markovnikov's rule 2272:Effective molarity 2217:BĂŒrgi–Dunitz angle 2207:Bicycloaromaticity 1773:Resonance-assisted 859:Möbius aromaticity 755:ion (6e), and the 709:chemical compounds 412:compounds undergo 338:quantum mechanical 251: 134:resonance diagrams 130: 42: 5352: 5351: 5348: 5347: 5344: 5343: 5336:Wohl–Aue reaction 4980:6+4 Cycloaddition 4797:Iodolactonization 4117:1,2-rearrangement 4082:Wohl–Aue reaction 4002:Sabatier reaction 3967:Pinnick oxidation 3932:Mozingo reduction 3877:Leuckart reaction 3832:Haloform reaction 3747:Criegee oxidation 3727:Collins oxidation 3677:Benkeser reaction 3672:Bechamp reduction 3642:Andrussow process 3627:Alcohol oxidation 3537:Edman degradation 3444:Haloform reaction 3393: 3392: 3380:Takai olefination 3345:Julia olefination 3171:Takai olefination 3046:Olefin metathesis 2921:Julia olefination 2846:Grignard reaction 2826:Fukuyama coupling 2741:Coupling reaction 2706:Chan–Lam coupling 2576:Alkyne metathesis 2571:Alkane metathesis 2427:Phosphaethynolate 2332:George S. Hammond 2292:Electronic effect 2247:Conjugated system 2129:Stereospecificity 2124:Stereoselectivity 2089:Addition reaction 2078:organic reactions 2043: 2042: 2015:Organic synthesis 2010:Organic reactions 2005:Organic compounds 1995:Functional groups 1974:organic chemistry 1939: 1938: 1890:Electron counting 1861: 1860: 1750:London dispersion 1702: 1701: 1679:Metal aromaticity 1488:10.1021/jp960311p 1399:10.1021/ol0518333 1358:10.1021/ja0458165 1346:J. Am. Chem. Soc. 1169:J. Am. Chem. Soc. 1114:Liebigs Ann. Chem 1098:10.1021/cr030095y 1066:10.1021/cr0300946 1060:(10): 3436–3447. 1029:10.1021/cr0103221 853:Metal aromaticity 757:cyclooctatetraene 713:functional groups 606:cyclodecapentaene 456:cyclooctatetraene 188:molecular orbital 173:atomic p-orbitals 58:unsaturated bonds 46:organic chemistry 16:Chemical property 5377: 5331:Wenker synthesis 5321:StollĂ© synthesis 5176:Bobbitt reaction 5146:Auwers synthesis 5090:Povarov reaction 5015:Cyclopropanation 4953: 4952: 4947:Wenker synthesis 4702:Darzens reaction 4652:Bobbitt reaction 4497:Schmidt reaction 4302:Enyne metathesis 4077:Whiting reaction 4072:Wharton reaction 4017:Shapiro reaction 4007:Sarett oxidation 3972:PrĂ©vost reaction 3782:Emde degradation 3592:Wohl degradation 3572:Ruff degradation 3542:Emde degradation 3439:Grignard reagent 3375:Shapiro reaction 3360:McMurry reaction 3227: 3226: 3191:Ullmann reaction 3156:StollĂ© synthesis 3146:Stetter reaction 3136:Shapiro reaction 3126:Sakurai reaction 3021:Negishi coupling 3001:Minisci reaction 2996:Michael reaction 2981:McMurry reaction 2976:Mannich reaction 2856:Hammick reaction 2851:Grignard reagent 2791:Enyne metathesis 2776:Doebner reaction 2766:Darzens reaction 2611:Barbier reaction 2601:Auwers synthesis 2528: 2527: 2502:Woodward's rules 2467:Superaromaticity 2457:Spiroaromaticity 2357:Inductive effect 2352:Hyperconjugation 2327:Hammett equation 2267:Edwards equation 2119:Regioselectivity 2070: 2063: 2056: 2047: 2046: 1990:Covalent bonding 1966: 1959: 1952: 1943: 1942: 1931:Jemmis mno rules 1783:Dihydrogen bonds 1736: 1735: 1722: 1716: 1710: 1644:Hyperconjugation 1558: 1557: 1536: 1529: 1522: 1513: 1512: 1506: 1505: 1499: 1491: 1471: 1465: 1464: 1444: 1438: 1437: 1417: 1411: 1410: 1382: 1376: 1375: 1369: 1361: 1352:(8): 2425–2432. 1336: 1330: 1329: 1323: 1315: 1298:(6968): 819–21. 1287: 1281: 1280: 1274: 1266: 1245: 1239: 1238: 1218: 1212: 1211: 1191: 1185: 1184: 1175:(8): 1618–1630. 1163: 1157: 1156: 1136: 1130: 1129: 1109: 1103: 1102: 1100: 1085:Chemical Reviews 1076: 1070: 1069: 1053:Chemical Reviews 1047: 1041: 1040: 1017:Chemical Reviews 1012: 1006: 1005: 985: 966:Avoided crossing 749:cyclopentadienyl 687:). Examples are 672:, for example). 524:. The molecule 358:covalently bound 352:An aromatic (or 197: 190:has π symmetry. 182: 5385: 5384: 5380: 5379: 5378: 5376: 5375: 5374: 5355: 5354: 5353: 5340: 5241:Gewald reaction 5124: 4951: 4932:Skraup reaction 4767:Graham reaction 4762:Gewald reaction 4593: 4586: 4108: 4101: 4057:Swern oxidation 4042:Stahl oxidation 3987:Riley oxidation 3942:Omega oxidation 3902:Luche reduction 3852:Jones oxidation 3817:Glycol cleavage 3812:Ganem oxidation 3757:Davis oxidation 3752:Dakin oxidation 3687:Birch reduction 3637:Amide reduction 3603: 3596: 3557:Hooker reaction 3519: 3513: 3401: 3399: 3389: 3385:Wittig reaction 3273: 3269:Wittig reaction 3244:Hooker reaction 3225: 3206:Wittig reaction 3181:Thorpe reaction 3166:Suzuki reaction 3151:Stille reaction 3086:Quelet reaction 2961:Kumada coupling 2911:Ivanov reaction 2901:Hydrovinylation 2881:Hiyama coupling 2841:Glaser coupling 2651:Blaise reaction 2641:Bingel reaction 2626:Benary reaction 2543: 2541: 2535: 2526: 2422:Passive binding 2342:Homoaromaticity 2192:Baldwin's rules 2167:Antiaromaticity 2162:Anomeric effect 2138: 2080: 2074: 2044: 2039: 2030:Stereochemistry 1976: 1970: 1940: 1935: 1884: 1857: 1800: 1792: 1754: 1741: 1731: 1723: 1717: 1711: 1698: 1683: 1665: 1553: 1545: 1540: 1510: 1509: 1493: 1492: 1482:: 10928–10935. 1472: 1468: 1445: 1441: 1418: 1414: 1387:Organic Letters 1383: 1379: 1363: 1362: 1337: 1333: 1317: 1316: 1288: 1284: 1268: 1267: 1246: 1242: 1219: 1215: 1192: 1188: 1164: 1160: 1137: 1133: 1110: 1106: 1077: 1073: 1048: 1044: 1013: 1009: 986: 979: 974: 941:BTX (chemistry) 927: 914: 866:atomic orbitals 864: 848: 844: 840: 836: 832: 828: 820: 816: 811:Hexasilabenzene 772:homoaromaticity 737: 717:trinitrotoluene 705: 678: 626: 615: 611: 595: 587: 474: 350: 277:aromatic sextet 243: 208: 203: 122: 28: 17: 12: 11: 5: 5383: 5373: 5372: 5367: 5350: 5349: 5346: 5345: 5342: 5341: 5339: 5338: 5333: 5328: 5323: 5318: 5313: 5308: 5303: 5298: 5293: 5288: 5283: 5278: 5273: 5268: 5263: 5258: 5253: 5248: 5246:Hantzsch ester 5243: 5238: 5233: 5228: 5223: 5218: 5213: 5208: 5203: 5198: 5193: 5188: 5183: 5178: 5173: 5168: 5163: 5158: 5156:Banert cascade 5153: 5148: 5143: 5138: 5132: 5130: 5126: 5125: 5123: 5122: 5117: 5112: 5107: 5102: 5097: 5095:Prato reaction 5092: 5087: 5082: 5077: 5072: 5067: 5062: 5057: 5052: 5047: 5042: 5037: 5032: 5027: 5022: 5017: 5012: 5007: 5002: 4997: 4992: 4987: 4982: 4977: 4972: 4967: 4961: 4959: 4950: 4949: 4944: 4939: 4934: 4929: 4924: 4919: 4914: 4909: 4904: 4899: 4894: 4889: 4884: 4879: 4874: 4869: 4864: 4859: 4854: 4849: 4844: 4839: 4834: 4829: 4824: 4819: 4814: 4809: 4804: 4799: 4794: 4789: 4784: 4779: 4774: 4769: 4764: 4759: 4754: 4749: 4744: 4739: 4734: 4729: 4724: 4719: 4714: 4709: 4704: 4699: 4694: 4689: 4684: 4679: 4674: 4669: 4664: 4659: 4654: 4649: 4644: 4639: 4634: 4629: 4624: 4619: 4614: 4609: 4604: 4598: 4596: 4588: 4587: 4585: 4584: 4579: 4574: 4569: 4564: 4559: 4554: 4549: 4544: 4539: 4534: 4529: 4524: 4519: 4514: 4509: 4504: 4499: 4494: 4489: 4484: 4479: 4474: 4469: 4464: 4459: 4454: 4449: 4444: 4439: 4434: 4429: 4424: 4419: 4414: 4409: 4404: 4399: 4394: 4389: 4384: 4379: 4374: 4369: 4364: 4359: 4354: 4349: 4344: 4339: 4334: 4329: 4324: 4319: 4314: 4309: 4304: 4299: 4294: 4289: 4284: 4279: 4274: 4269: 4264: 4259: 4254: 4249: 4244: 4239: 4234: 4229: 4224: 4219: 4214: 4209: 4204: 4199: 4194: 4189: 4187:Banert cascade 4184: 4179: 4174: 4169: 4164: 4159: 4154: 4149: 4144: 4139: 4134: 4129: 4124: 4119: 4113: 4111: 4107:Rearrangement 4103: 4102: 4100: 4099: 4097:Zinin reaction 4094: 4089: 4084: 4079: 4074: 4069: 4067:Wacker process 4064: 4059: 4054: 4049: 4044: 4039: 4034: 4029: 4024: 4019: 4014: 4009: 4004: 3999: 3994: 3989: 3984: 3979: 3974: 3969: 3964: 3959: 3954: 3949: 3944: 3939: 3934: 3929: 3924: 3919: 3914: 3909: 3904: 3899: 3894: 3889: 3884: 3879: 3874: 3869: 3864: 3859: 3854: 3849: 3844: 3842:Hydrogenolysis 3839: 3834: 3829: 3824: 3819: 3814: 3809: 3804: 3799: 3794: 3792:Étard reaction 3789: 3784: 3779: 3774: 3769: 3764: 3759: 3754: 3749: 3744: 3739: 3734: 3729: 3724: 3719: 3714: 3709: 3704: 3699: 3697:Bosch reaction 3694: 3689: 3684: 3679: 3674: 3669: 3664: 3659: 3654: 3649: 3644: 3639: 3634: 3629: 3624: 3619: 3614: 3608: 3606: 3602:Organic redox 3598: 3597: 3595: 3594: 3589: 3584: 3579: 3574: 3569: 3564: 3559: 3554: 3549: 3544: 3539: 3534: 3529: 3523: 3521: 3515: 3514: 3512: 3511: 3506: 3501: 3496: 3491: 3486: 3481: 3476: 3471: 3466: 3461: 3456: 3451: 3446: 3441: 3436: 3434:Esterification 3431: 3426: 3421: 3416: 3411: 3405: 3403: 3395: 3394: 3391: 3390: 3388: 3387: 3382: 3377: 3372: 3367: 3362: 3357: 3352: 3347: 3342: 3337: 3332: 3327: 3322: 3317: 3312: 3307: 3302: 3297: 3292: 3287: 3281: 3279: 3275: 3274: 3272: 3271: 3266: 3261: 3256: 3251: 3246: 3241: 3235: 3233: 3224: 3223: 3218: 3213: 3211:Wurtz reaction 3208: 3203: 3198: 3193: 3188: 3183: 3178: 3173: 3168: 3163: 3158: 3153: 3148: 3143: 3138: 3133: 3128: 3123: 3118: 3113: 3108: 3103: 3098: 3093: 3088: 3083: 3081:Prins reaction 3078: 3073: 3068: 3063: 3058: 3053: 3048: 3043: 3038: 3033: 3028: 3023: 3018: 3013: 3008: 3003: 2998: 2993: 2988: 2983: 2978: 2973: 2968: 2963: 2958: 2953: 2948: 2943: 2938: 2933: 2928: 2923: 2918: 2913: 2908: 2903: 2898: 2896:Hydrocyanation 2893: 2888: 2883: 2878: 2873: 2868: 2866:Henry reaction 2863: 2858: 2853: 2848: 2843: 2838: 2833: 2828: 2823: 2818: 2813: 2808: 2803: 2798: 2793: 2788: 2783: 2778: 2773: 2768: 2763: 2758: 2753: 2748: 2743: 2738: 2733: 2728: 2723: 2718: 2713: 2708: 2703: 2698: 2693: 2688: 2683: 2678: 2673: 2668: 2663: 2658: 2653: 2648: 2643: 2638: 2633: 2628: 2623: 2618: 2613: 2608: 2603: 2598: 2593: 2588: 2583: 2578: 2573: 2568: 2566:Aldol reaction 2563: 2558: 2553: 2547: 2545: 2540:Carbon-carbon 2537: 2536: 2525: 2524: 2519: 2517:Zaitsev's rule 2514: 2509: 2504: 2499: 2494: 2489: 2484: 2479: 2474: 2469: 2464: 2462:Steric effects 2459: 2454: 2449: 2444: 2439: 2434: 2429: 2424: 2419: 2414: 2409: 2404: 2399: 2394: 2389: 2384: 2379: 2374: 2369: 2364: 2359: 2354: 2349: 2344: 2339: 2334: 2329: 2324: 2319: 2314: 2309: 2304: 2299: 2294: 2289: 2284: 2279: 2274: 2269: 2264: 2259: 2254: 2249: 2244: 2239: 2234: 2229: 2224: 2219: 2214: 2209: 2204: 2199: 2194: 2189: 2184: 2179: 2174: 2169: 2164: 2159: 2154: 2149: 2143: 2140: 2139: 2137: 2136: 2131: 2126: 2121: 2116: 2114:Redox reaction 2111: 2106: 2101: 2099:Polymerization 2096: 2091: 2085: 2082: 2081: 2073: 2072: 2065: 2058: 2050: 2041: 2040: 2038: 2037: 2032: 2027: 2022: 2017: 2012: 2007: 2002: 1997: 1992: 1987: 1981: 1978: 1977: 1969: 1968: 1961: 1954: 1946: 1937: 1936: 1934: 1933: 1928: 1923: 1922: 1921: 1916: 1911: 1906: 1895: 1893: 1886: 1885: 1883: 1882: 1877: 1871: 1869: 1863: 1862: 1859: 1858: 1856: 1855: 1850: 1845: 1840: 1835: 1830: 1820: 1815: 1810: 1804: 1802: 1794: 1793: 1791: 1790: 1785: 1780: 1775: 1770: 1764: 1762: 1756: 1755: 1753: 1752: 1746: 1744: 1733: 1729:Intermolecular 1725: 1724: 1705: 1703: 1700: 1699: 1697: 1696: 1693: 1691: 1685: 1684: 1682: 1681: 1675: 1673: 1667: 1666: 1664: 1663: 1662: 1661: 1656: 1646: 1641: 1636: 1631: 1626: 1621: 1616: 1611: 1606: 1601: 1600: 1599: 1589: 1588: 1587: 1582: 1577: 1566: 1564: 1555: 1551:Intramolecular 1547: 1546: 1543:Chemical bonds 1539: 1538: 1531: 1524: 1516: 1508: 1507: 1466: 1439: 1412: 1393:(21): 4637–9. 1377: 1331: 1282: 1240: 1213: 1202:(85): 95–106. 1186: 1158: 1131: 1104: 1071: 1042: 1007: 976: 975: 973: 970: 969: 968: 963: 961:Pi interaction 958: 953: 948: 943: 938: 936:Aromatic amine 933: 926: 923: 913: 910: 902:Johann Listing 862: 846: 842: 838: 834: 830: 826: 818: 814: 807:pyrylium salts 795:germanabenzene 736: 733: 704: 701: 677: 674: 625: 622: 613: 609: 594: 591: 586: 583: 473: 470: 460:cyclobutadiene 401:cyclobutadiene 397: 396: 385: 382: 376: 349: 346: 327:wave mechanics 242: 239: 207: 204: 202: 199: 149:and that of a 121: 118: 81:delocalization 66:empty orbitals 36:Two different 21:aroma compound 15: 9: 6: 4: 3: 2: 5382: 5371: 5368: 5366: 5363: 5362: 5360: 5337: 5334: 5332: 5329: 5327: 5324: 5322: 5319: 5317: 5314: 5312: 5309: 5307: 5304: 5302: 5299: 5297: 5294: 5292: 5289: 5287: 5284: 5282: 5279: 5277: 5274: 5272: 5269: 5267: 5264: 5262: 5259: 5257: 5256:Herz reaction 5254: 5252: 5249: 5247: 5244: 5242: 5239: 5237: 5234: 5232: 5229: 5227: 5224: 5222: 5219: 5217: 5214: 5212: 5209: 5207: 5204: 5202: 5199: 5197: 5194: 5192: 5189: 5187: 5184: 5182: 5179: 5177: 5174: 5172: 5169: 5167: 5164: 5162: 5159: 5157: 5154: 5152: 5149: 5147: 5144: 5142: 5139: 5137: 5134: 5133: 5131: 5127: 5121: 5118: 5116: 5113: 5111: 5108: 5106: 5103: 5101: 5098: 5096: 5093: 5091: 5088: 5086: 5083: 5081: 5078: 5076: 5073: 5071: 5068: 5066: 5063: 5061: 5058: 5056: 5053: 5051: 5048: 5046: 5043: 5041: 5038: 5036: 5033: 5031: 5028: 5026: 5023: 5021: 5018: 5016: 5013: 5011: 5008: 5006: 5003: 5001: 4998: 4996: 4993: 4991: 4988: 4986: 4983: 4981: 4978: 4976: 4973: 4971: 4968: 4966: 4963: 4962: 4960: 4958: 4957:Cycloaddition 4954: 4948: 4945: 4943: 4940: 4938: 4935: 4933: 4930: 4928: 4925: 4923: 4920: 4918: 4915: 4913: 4910: 4908: 4905: 4903: 4900: 4898: 4895: 4893: 4890: 4888: 4885: 4883: 4880: 4878: 4875: 4873: 4870: 4868: 4865: 4863: 4860: 4858: 4855: 4853: 4850: 4848: 4845: 4843: 4840: 4838: 4835: 4833: 4830: 4828: 4825: 4823: 4820: 4818: 4815: 4813: 4810: 4808: 4805: 4803: 4802:Isay reaction 4800: 4798: 4795: 4793: 4790: 4788: 4785: 4783: 4780: 4778: 4775: 4773: 4770: 4768: 4765: 4763: 4760: 4758: 4755: 4753: 4750: 4748: 4745: 4743: 4740: 4738: 4735: 4733: 4730: 4728: 4725: 4723: 4720: 4718: 4715: 4713: 4710: 4708: 4705: 4703: 4700: 4698: 4697:Cycloaddition 4695: 4693: 4690: 4688: 4685: 4683: 4680: 4678: 4675: 4673: 4670: 4668: 4665: 4663: 4660: 4658: 4655: 4653: 4650: 4648: 4645: 4643: 4640: 4638: 4635: 4633: 4630: 4628: 4625: 4623: 4620: 4618: 4615: 4613: 4610: 4608: 4605: 4603: 4600: 4599: 4597: 4595: 4592:Ring forming 4589: 4583: 4580: 4578: 4575: 4573: 4570: 4568: 4565: 4563: 4560: 4558: 4555: 4553: 4550: 4548: 4545: 4543: 4540: 4538: 4535: 4533: 4530: 4528: 4525: 4523: 4520: 4518: 4515: 4513: 4510: 4508: 4505: 4503: 4500: 4498: 4495: 4493: 4492:Rupe reaction 4490: 4488: 4485: 4483: 4480: 4478: 4475: 4473: 4470: 4468: 4465: 4463: 4460: 4458: 4455: 4453: 4450: 4448: 4445: 4443: 4440: 4438: 4435: 4433: 4430: 4428: 4425: 4423: 4420: 4418: 4415: 4413: 4410: 4408: 4405: 4403: 4400: 4398: 4395: 4393: 4390: 4388: 4385: 4383: 4380: 4378: 4375: 4373: 4370: 4368: 4365: 4363: 4360: 4358: 4355: 4353: 4350: 4348: 4345: 4343: 4340: 4338: 4335: 4333: 4330: 4328: 4325: 4323: 4320: 4318: 4315: 4313: 4310: 4308: 4305: 4303: 4300: 4298: 4295: 4293: 4290: 4288: 4285: 4283: 4280: 4278: 4275: 4273: 4270: 4268: 4265: 4263: 4260: 4258: 4255: 4253: 4250: 4248: 4245: 4243: 4240: 4238: 4235: 4233: 4230: 4228: 4225: 4223: 4220: 4218: 4215: 4213: 4210: 4208: 4205: 4203: 4200: 4198: 4195: 4193: 4190: 4188: 4185: 4183: 4180: 4178: 4175: 4173: 4170: 4168: 4165: 4163: 4160: 4158: 4155: 4153: 4150: 4148: 4145: 4143: 4140: 4138: 4135: 4133: 4130: 4128: 4125: 4123: 4120: 4118: 4115: 4114: 4112: 4110: 4104: 4098: 4095: 4093: 4090: 4088: 4085: 4083: 4080: 4078: 4075: 4073: 4070: 4068: 4065: 4063: 4060: 4058: 4055: 4053: 4050: 4048: 4045: 4043: 4040: 4038: 4035: 4033: 4030: 4028: 4025: 4023: 4020: 4018: 4015: 4013: 4010: 4008: 4005: 4003: 4000: 3998: 3995: 3993: 3990: 3988: 3985: 3983: 3980: 3978: 3975: 3973: 3970: 3968: 3965: 3963: 3960: 3958: 3955: 3953: 3950: 3948: 3945: 3943: 3940: 3938: 3935: 3933: 3930: 3928: 3925: 3923: 3920: 3918: 3915: 3913: 3910: 3908: 3905: 3903: 3900: 3898: 3895: 3893: 3890: 3888: 3885: 3883: 3882:Ley oxidation 3880: 3878: 3875: 3873: 3870: 3868: 3865: 3863: 3860: 3858: 3855: 3853: 3850: 3848: 3847:Hydroxylation 3845: 3843: 3840: 3838: 3837:Hydrogenation 3835: 3833: 3830: 3828: 3825: 3823: 3820: 3818: 3815: 3813: 3810: 3808: 3805: 3803: 3800: 3798: 3795: 3793: 3790: 3788: 3785: 3783: 3780: 3778: 3775: 3773: 3772:DNA oxidation 3770: 3768: 3765: 3763: 3762:Deoxygenation 3760: 3758: 3755: 3753: 3750: 3748: 3745: 3743: 3740: 3738: 3735: 3733: 3730: 3728: 3725: 3723: 3720: 3718: 3715: 3713: 3710: 3708: 3705: 3703: 3700: 3698: 3695: 3693: 3690: 3688: 3685: 3683: 3680: 3678: 3675: 3673: 3670: 3668: 3665: 3663: 3660: 3658: 3655: 3653: 3652:Aromatization 3650: 3648: 3645: 3643: 3640: 3638: 3635: 3633: 3630: 3628: 3625: 3623: 3620: 3618: 3615: 3613: 3610: 3609: 3607: 3605: 3599: 3593: 3590: 3588: 3585: 3583: 3580: 3578: 3575: 3573: 3570: 3568: 3565: 3563: 3560: 3558: 3555: 3553: 3550: 3548: 3545: 3543: 3540: 3538: 3535: 3533: 3530: 3528: 3525: 3524: 3522: 3516: 3510: 3507: 3505: 3502: 3500: 3497: 3495: 3492: 3490: 3489:Reed reaction 3487: 3485: 3482: 3480: 3477: 3475: 3472: 3470: 3467: 3465: 3462: 3460: 3457: 3455: 3452: 3450: 3447: 3445: 3442: 3440: 3437: 3435: 3432: 3430: 3427: 3425: 3422: 3420: 3417: 3415: 3412: 3410: 3407: 3406: 3404: 3400:bond forming 3396: 3386: 3383: 3381: 3378: 3376: 3373: 3371: 3368: 3366: 3363: 3361: 3358: 3356: 3353: 3351: 3348: 3346: 3343: 3341: 3338: 3336: 3333: 3331: 3328: 3326: 3323: 3321: 3318: 3316: 3313: 3311: 3308: 3306: 3305:Cope reaction 3303: 3301: 3298: 3296: 3293: 3291: 3288: 3286: 3283: 3282: 3280: 3276: 3270: 3267: 3265: 3262: 3260: 3257: 3255: 3252: 3250: 3247: 3245: 3242: 3240: 3237: 3236: 3234: 3232: 3228: 3222: 3219: 3217: 3214: 3212: 3209: 3207: 3204: 3202: 3199: 3197: 3194: 3192: 3189: 3187: 3184: 3182: 3179: 3177: 3174: 3172: 3169: 3167: 3164: 3162: 3159: 3157: 3154: 3152: 3149: 3147: 3144: 3142: 3139: 3137: 3134: 3132: 3129: 3127: 3124: 3122: 3119: 3117: 3114: 3112: 3109: 3107: 3104: 3102: 3099: 3097: 3094: 3092: 3089: 3087: 3084: 3082: 3079: 3077: 3074: 3072: 3069: 3067: 3064: 3062: 3059: 3057: 3054: 3052: 3049: 3047: 3044: 3042: 3039: 3037: 3034: 3032: 3029: 3027: 3024: 3022: 3019: 3017: 3016:Nef synthesis 3014: 3012: 3009: 3007: 3004: 3002: 2999: 2997: 2994: 2992: 2991:Methylenation 2989: 2987: 2984: 2982: 2979: 2977: 2974: 2972: 2969: 2967: 2964: 2962: 2959: 2957: 2954: 2952: 2949: 2947: 2944: 2942: 2939: 2937: 2934: 2932: 2929: 2927: 2924: 2922: 2919: 2917: 2914: 2912: 2909: 2907: 2904: 2902: 2899: 2897: 2894: 2892: 2889: 2887: 2884: 2882: 2879: 2877: 2874: 2872: 2869: 2867: 2864: 2862: 2861:Heck reaction 2859: 2857: 2854: 2852: 2849: 2847: 2844: 2842: 2839: 2837: 2834: 2832: 2829: 2827: 2824: 2822: 2819: 2817: 2814: 2812: 2809: 2807: 2804: 2802: 2799: 2797: 2794: 2792: 2789: 2787: 2784: 2782: 2779: 2777: 2774: 2772: 2769: 2767: 2764: 2762: 2759: 2757: 2754: 2752: 2749: 2747: 2744: 2742: 2739: 2737: 2734: 2732: 2729: 2727: 2724: 2722: 2719: 2717: 2714: 2712: 2709: 2707: 2704: 2702: 2699: 2697: 2694: 2692: 2689: 2687: 2684: 2682: 2679: 2677: 2674: 2672: 2669: 2667: 2664: 2662: 2659: 2657: 2654: 2652: 2649: 2647: 2644: 2642: 2639: 2637: 2634: 2632: 2629: 2627: 2624: 2622: 2619: 2617: 2614: 2612: 2609: 2607: 2604: 2602: 2599: 2597: 2594: 2592: 2589: 2587: 2584: 2582: 2579: 2577: 2574: 2572: 2569: 2567: 2564: 2562: 2559: 2557: 2554: 2552: 2549: 2548: 2546: 2542:bond forming 2538: 2534: 2529: 2523: 2520: 2518: 2515: 2513: 2510: 2508: 2507:Y-aromaticity 2505: 2503: 2500: 2498: 2495: 2493: 2492:Walsh diagram 2490: 2488: 2485: 2483: 2480: 2478: 2477:Taft equation 2475: 2473: 2470: 2468: 2465: 2463: 2460: 2458: 2455: 2453: 2450: 2448: 2447:ÎŁ-aromaticity 2445: 2443: 2440: 2438: 2435: 2433: 2430: 2428: 2425: 2423: 2420: 2418: 2415: 2413: 2410: 2408: 2405: 2403: 2400: 2398: 2395: 2393: 2390: 2388: 2385: 2383: 2380: 2378: 2375: 2373: 2372:Marcus theory 2370: 2368: 2365: 2363: 2360: 2358: 2355: 2353: 2350: 2348: 2347:HĂŒckel's rule 2345: 2343: 2340: 2338: 2335: 2333: 2330: 2328: 2325: 2323: 2320: 2318: 2315: 2313: 2310: 2308: 2305: 2303: 2302:Evelyn effect 2300: 2298: 2295: 2293: 2290: 2288: 2285: 2283: 2282:Electron-rich 2280: 2278: 2275: 2273: 2270: 2268: 2265: 2263: 2260: 2258: 2255: 2253: 2250: 2248: 2245: 2243: 2240: 2238: 2235: 2233: 2230: 2228: 2225: 2223: 2220: 2218: 2215: 2213: 2210: 2208: 2205: 2203: 2200: 2198: 2197:Bema Hapothle 2195: 2193: 2190: 2188: 2185: 2183: 2180: 2178: 2175: 2173: 2170: 2168: 2165: 2163: 2160: 2158: 2155: 2153: 2150: 2148: 2145: 2144: 2141: 2135: 2132: 2130: 2127: 2125: 2122: 2120: 2117: 2115: 2112: 2110: 2107: 2105: 2102: 2100: 2097: 2095: 2092: 2090: 2087: 2086: 2083: 2079: 2071: 2066: 2064: 2059: 2057: 2052: 2051: 2048: 2036: 2033: 2031: 2028: 2026: 2023: 2021: 2018: 2016: 2013: 2011: 2008: 2006: 2003: 2001: 1998: 1996: 1993: 1991: 1988: 1986: 1983: 1982: 1979: 1975: 1967: 1962: 1960: 1955: 1953: 1948: 1947: 1944: 1932: 1929: 1927: 1924: 1920: 1917: 1915: 1912: 1910: 1907: 1905: 1904:HĂŒckel's rule 1902: 1901: 1900: 1897: 1896: 1894: 1891: 1887: 1881: 1878: 1876: 1873: 1872: 1870: 1868: 1867:Bond cleavage 1864: 1854: 1851: 1849: 1846: 1844: 1841: 1839: 1836: 1834: 1833:Intercalation 1831: 1828: 1824: 1823:Metallophilic 1821: 1819: 1816: 1814: 1811: 1809: 1806: 1805: 1803: 1799: 1795: 1789: 1786: 1784: 1781: 1779: 1776: 1774: 1771: 1769: 1766: 1765: 1763: 1761: 1757: 1751: 1748: 1747: 1745: 1743: 1740:Van der Waals 1737: 1734: 1730: 1726: 1721: 1715: 1709: 1695: 1694: 1692: 1690: 1686: 1680: 1677: 1676: 1674: 1672: 1668: 1660: 1657: 1655: 1652: 1651: 1650: 1647: 1645: 1642: 1640: 1637: 1635: 1632: 1630: 1627: 1625: 1622: 1620: 1617: 1615: 1612: 1610: 1607: 1605: 1602: 1598: 1595: 1594: 1593: 1590: 1586: 1583: 1581: 1578: 1576: 1573: 1572: 1571: 1568: 1567: 1565: 1563: 1559: 1556: 1552: 1548: 1544: 1537: 1532: 1530: 1525: 1523: 1518: 1517: 1514: 1503: 1497: 1489: 1485: 1481: 1477: 1470: 1462: 1458: 1455:: 4177–4182. 1454: 1450: 1443: 1435: 1431: 1428:: 2362–2372. 1427: 1423: 1416: 1408: 1404: 1400: 1396: 1392: 1388: 1381: 1373: 1367: 1359: 1355: 1351: 1348: 1347: 1342: 1335: 1327: 1321: 1313: 1309: 1305: 1301: 1297: 1293: 1286: 1278: 1272: 1264: 1260: 1257:(50): 12099. 1256: 1252: 1244: 1236: 1232: 1228: 1224: 1217: 1209: 1205: 1201: 1197: 1190: 1182: 1178: 1174: 1171: 1170: 1162: 1154: 1150: 1146: 1142: 1135: 1127: 1123: 1120:(1): 77–124. 1119: 1115: 1108: 1099: 1094: 1090: 1086: 1082: 1075: 1067: 1063: 1059: 1055: 1054: 1046: 1038: 1034: 1030: 1026: 1023:(5): 1115–8. 1022: 1018: 1011: 1003: 999: 995: 991: 984: 982: 977: 967: 964: 962: 959: 957: 954: 952: 949: 947: 944: 942: 939: 937: 934: 932: 929: 928: 922: 919: 912:Y-aromaticity 909: 907: 906:carbo-benzene 903: 899: 895: 891: 887: 883: 879: 875: 871: 867: 860: 856: 854: 850: 824: 812: 808: 804: 800: 799:stannabenzene 796: 792: 788: 783: 782:carbon atom. 781: 777: 773: 768: 766: 762: 758: 754: 750: 746: 745:cyclopropenyl 743:as well: the 742: 732: 730: 726: 722: 718: 714: 710: 700: 698: 694: 690: 686: 682: 673: 671: 670:benzimidazole 667: 666:benzannulated 663: 659: 655: 651: 647: 643: 639: 635: 634:heteroaromats 631: 624:Heterocyclics 621: 619: 607: 603: 599: 590: 582: 580: 576: 572: 568: 564: 560: 558: 553: 551: 546: 542: 538: 533: 531: 527: 523: 519: 515: 511: 507: 503: 499: 495: 491: 487: 483: 482:phenylalanine 479: 469: 466: 461: 457: 452: 447: 445: 440: 438: 434: 433:ring currents 429: 425: 423: 419: 415: 409: 407: 402: 394: 393:HĂŒckel's Rule 390: 386: 383: 380: 377: 375: 371: 367: 363: 362: 361: 359: 355: 345: 343: 339: 334: 332: 328: 324: 320: 316: 312: 308: 304: 300: 295: 293: 289: 285: 280: 278: 274: 269: 267: 266:J. J. Thomson 262: 260: 259:August KekulĂ© 256: 247: 238: 236: 232: 228: 224: 220: 217: 213: 198: 196: 191: 189: 183: 181: 176: 174: 170: 165: 163: 159: 154: 152: 148: 144: 139: 135: 126: 117: 114: 110: 106: 102: 98: 94: 90: 86: 82: 77: 75: 71: 67: 63: 59: 55: 51: 47: 39: 34: 30: 26: 22: 4297:Ene reaction 3657:Autoxidation 3518:Degradation 3409:Azo coupling 3186:Ugi reaction 2786:Ene reaction 2586:Alkynylation 2437:Polyfluorene 2432:Polar effect 2297:Electrophile 2212:Bredt's rule 2182:Baird's rule 2176: 2152:Alpha effect 2025:Spectroscopy 2020:Publications 2000:Nomenclature 1984: 1972:Concepts in 1909:Baird's rule 1898: 1648: 1629:Charge-shift 1592:Hypervalence 1496:cite journal 1479: 1475: 1469: 1452: 1448: 1442: 1425: 1421: 1415: 1390: 1386: 1380: 1366:cite journal 1349: 1344: 1334: 1320:cite journal 1295: 1291: 1285: 1271:cite journal 1254: 1250: 1243: 1229:(17): 4367. 1226: 1222: 1216: 1199: 1195: 1189: 1172: 1167: 1161: 1144: 1140: 1134: 1117: 1113: 1107: 1091:(10): 3433. 1088: 1084: 1074: 1057: 1051: 1045: 1020: 1016: 1010: 993: 989: 915: 890:dissymmetric 889: 886:right-handed 874:Möbius strip 870:closed shell 857: 851: 784: 775: 769: 738: 706: 697:phenanthrene 679: 664:, and their 633: 630:heterocyclic 627: 596: 588: 556: 549: 534: 475: 451:antiaromatic 448: 444:π-π stacking 441: 430: 426: 410: 398: 351: 335: 330: 318: 314: 296: 291: 287: 281: 276: 270: 263: 252: 211: 209: 192: 184: 177: 166: 157: 155: 137: 131: 78: 49: 43: 29: 2796:Ethenolysis 2442:Ring strain 2412:Nucleophile 2237:Clar's rule 2177:Aromaticity 1985:Aromaticity 1899:Aromaticity 1875:Heterolysis 1853:Salt bridge 1798:Noncovalent 1768:Low-barrier 1649:Aromaticity 1639:Conjugation 1619:Pi backbond 918:guanidinium 882:left-handed 803:phosphorine 791:silabenzene 787:borabenzene 765:cyclophanes 725:paracetamol 723:(aspirin), 689:naphthalene 676:Polycyclics 632:aromatics ( 530:Chlorophyll 522:pyrimidines 494:nucleotides 465:Hund's rule 368:conjugated 366:delocalized 319:inner cycle 311:conjugation 288:double ring 158:inner cycle 151:double bond 50:aromaticity 5359:Categories 5080:Ozonolysis 4607:Annulation 3957:Ozonolysis 2076:Topics in 1827:aurophilic 1808:Mechanical 972:References 898:paradromic 780:hybridized 693:anthracene 486:tryptophan 323:Erich Clar 62:lone pairs 54:conjugated 4594:reactions 4109:reactions 3604:reactions 3520:reactions 3402:reactions 2544:reactions 1919:spherical 1880:Homolysis 1843:Cation–pi 1818:Chalcogen 1778:Symmetric 1634:Hapticity 753:tropylium 668:analogs ( 662:thiophene 650:imidazole 602:annulenes 575:polyester 478:histidine 227:olfactory 113:resonance 89:electrons 85:resonance 74:olfactory 38:resonance 25:aromantic 2487:Vinylogy 2157:Annulene 2104:Reagents 1848:Anion–pi 1838:Stacking 1760:Hydrogen 1671:Metallic 1562:Covalent 1554:(strong) 1407:16209498 1312:14685233 1147:: 1604. 1037:11749368 925:See also 823:borazine 654:pyrazole 646:pyrazine 642:pyridine 506:cytosine 490:tyrosine 379:Coplanar 299:electron 231:terpenes 212:chemical 56:ring of 2147:A value 1813:Halogen 1659:bicyclo 1604:Agostic 996:: 1–3. 761:tropone 719:(TNT), 658:oxazole 598:Benzene 571:aniline 563:styrene 559:-xylene 552:-xylene 545:toluene 541:benzene 518:purines 510:guanine 502:thymine 498:adenine 255:benzene 219:radical 201:History 169:σ-bonds 109:History 101:benzene 83:and of 1914:Möbius 1742:forces 1732:(weak) 1405:  1310:  1292:Nature 1035:  894:chiral 821:) and 695:, and 567:phenol 514:uracil 512:, and 488:, and 342:HĂŒckel 216:phenyl 162:π-bond 147:single 143:length 138:actual 120:Theory 105:KekulĂ© 97:bonded 1892:rules 1801:other 1689:Ionic 1597:3c–4e 1585:8c–2e 1580:4c–2e 1575:3c–2e 904:. In 707:Many 638:furan 579:nylon 550:ortho 406:furan 374:bonds 107:(see 93:atoms 64:, or 1654:homo 1609:Bent 1502:link 1403:PMID 1372:link 1326:link 1308:PMID 1277:link 1033:PMID 951:SARA 884:or 741:ions 577:and 557:para 554:and 526:heme 416:and 354:aryl 336:The 1484:doi 1480:100 1457:doi 1453:112 1430:doi 1426:115 1395:doi 1354:doi 1350:127 1300:doi 1296:426 1259:doi 1231:doi 1204:doi 1177:doi 1149:doi 1145:127 1122:doi 1118:162 1093:doi 1089:105 1062:doi 1058:105 1025:doi 1021:101 998:doi 946:PAH 892:or 813:(Si 805:or 729:DNA 628:In 520:or 437:NMR 333:). 292:sic 44:In 5361:: 1498:}} 1494:{{ 1478:. 1451:. 1424:. 1401:. 1389:. 1368:}} 1364:{{ 1322:}} 1318:{{ 1306:. 1294:. 1273:}} 1269:{{ 1255:50 1253:. 1227:10 1225:. 1198:. 1173:44 1143:. 1116:. 1087:. 1083:. 1056:. 1031:. 1019:. 992:. 980:^ 845:Si 843:12 825:(B 801:, 797:, 793:, 789:, 778:Âł 776:sp 767:. 731:. 699:. 691:, 660:, 656:, 652:, 648:, 644:, 620:. 581:. 573:, 569:, 565:, 547:, 543:, 508:, 504:, 500:, 484:, 480:, 364:A 153:. 60:, 48:, 2069:e 2062:t 2055:v 1965:e 1958:t 1951:v 1829:) 1825:( 1535:e 1528:t 1521:v 1504:) 1490:. 1486:: 1463:. 1459:: 1436:. 1432:: 1409:. 1397:: 1391:7 1374:) 1360:. 1356:: 1328:) 1314:. 1302:: 1279:) 1265:. 1261:: 1237:. 1233:: 1210:. 1206:: 1200:6 1183:. 1179:: 1155:. 1151:: 1128:. 1124:: 1101:. 1095:: 1068:. 1064:: 1039:. 1027:: 1004:. 1000:: 994:8 863:π 847:7 839:5 835:6 833:H 831:3 829:N 827:3 819:6 817:H 815:6 614:n 612:H 610:n 604:( 496:( 395:. 370:π 315:C 290:( 27:.

Index

aroma compound
aromantic

resonance
organic chemistry
conjugated
unsaturated bonds
lone pairs
empty orbitals
August Wilhelm Hofmann
olfactory
delocalization
resonance
electrons
atoms
bonded
benzene
Kekulé
History
resonance
Modern depiction of benzene
resonance diagrams
length
single
double bond
π-bond
σ-bonds
atomic p-orbitals
Benzene electron orbitals
molecular orbital

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑