Knowledge

Auger effect

Source 📝

1608: 20: 1620: 23:
Two views of the Auger process. (a) illustrates sequentially the steps involved in Auger deexcitation. An incident electron (or photon) creates a core hole in the 1s level. An electron from the 2s level fills in the 1s hole and the transition energy is imparted to a 2p electron which is emitted. The
204:
of energy from a radiationless transition. Further investigation, and theoretical work using elementary quantum mechanics and transition rate/transition probability calculations, showed that the effect was a radiationless effect more than an internal conversion effect.
142:
or energetic electrons and measures the intensity of Auger electrons that result as a function of the Auger electron energy. The resulting spectra can be used to determine the identity of the emitting atoms and some information about their environment.
168:
The Auger effect can impact biological molecules such as DNA. Following the K-shell ionization of the component atoms of DNA, Auger electrons are ejected leading to damage of its sugar-phosphate backbone.
719: 348:
Akinari Yokoya & Takashi Ito (2017) Photon-induced Auger effect in biological systems: a review,International Journal of Radiation Biology, 93:8, 743–756, DOI: 10.1080/09553002.2017.1312670
756: 200:
electrons. The observation of electron tracks that were independent of the frequency of the incident photon suggested a mechanism for electron ionization that was caused from an
100:. For light atoms (Z<12), this energy is most often transferred to a valence electron which is subsequently ejected from the atom. This second ejected electron is called an 1252: 773: 132:
from which the Auger electron was ejected. These energy levels depend on the type of atom and the chemical environment in which the atom was located.
319: 257: 1235: 1230: 1379: 1082: 146: 1369: 972: 1272: 1245: 1180: 181:, an Austrian-Swedish physicist, as a side effect in her competitive search for the nuclear beta electrons with the British physicist 1240: 814: 24:
final atomic state thus has two holes, one in the 2s orbital and the other in the 2p orbital. (b) illustrates the same process using
1384: 877: 824: 496: 1200: 736: 196:
experiment and it became the central part of his PhD work. High-energy X-rays were applied to ionize gas particles and observe
1651: 1324: 1190: 1137: 751: 304: 1624: 1579: 1307: 1292: 1218: 834: 829: 219: 96:
is removed, leaving a vacancy, an electron from a higher energy level may fall into the vacancy, resulting in a release of
907: 892: 761: 1329: 1162: 1015: 965: 1317: 1312: 1210: 1185: 1152: 809: 788: 1389: 1374: 1354: 1656: 1584: 1157: 1092: 1000: 414:
Duparc, Olivier Hardouin (2009). "Pierre Auger – Lise Meitner: Comparative contributions to the Auger effect".
1574: 1334: 1297: 1142: 839: 804: 1612: 1172: 958: 902: 872: 731: 704: 229: 882: 849: 819: 783: 489: 135: 1359: 1277: 928: 768: 656: 1538: 1364: 595: 1646: 1287: 1223: 1097: 1056: 401: 1477: 897: 746: 482: 239: 182: 1482: 1302: 857: 726: 534: 121: 81: 1487: 1046: 694: 626: 559: 423: 367: 224: 8: 1452: 1437: 1344: 1339: 1282: 1147: 1129: 1061: 1051: 995: 981: 646: 621: 600: 201: 189: 427: 371: 358:
L. Meitner (1922). "Über die Entstehung der β-Strahl-Spektren radioaktiver Substanzen".
1523: 1102: 1066: 887: 666: 631: 564: 439: 383: 296: 120:
of the Auger electron corresponds to the difference between the energy of the initial
1467: 1462: 935: 867: 862: 689: 661: 554: 443: 387: 300: 162: 125: 1554: 329: 267: 1417: 1349: 651: 529: 431: 375: 333: 324: 292: 271: 262: 234: 47: 1472: 923: 778: 641: 605: 524: 158: 104:. For heavier atomic nuclei, the release of the energy in the form of an emitted 72: 157:(electron-hole pair) can recombine giving up their energy to an electron in the 1427: 1041: 129: 117: 25: 469:"The Theory of Auger Transitions". Chattarji, D., Academic Press, London, 1976 1640: 1503: 1447: 1107: 699: 328:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 266:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 214: 197: 193: 154: 150: 93: 337: 275: 138:
involves the emission of Auger electrons by bombarding a sample with either
1564: 1528: 1422: 1412: 1087: 741: 549: 539: 178: 1508: 1442: 1432: 590: 457: 1589: 1569: 1010: 1005: 714: 580: 435: 379: 950: 1457: 1112: 1559: 1025: 585: 89: 402:
Sur les rayons β secondaires produits dans un gaz par des rayons X
1513: 1195: 709: 177:
The Auger emission process was observed and published in 1922 by
474: 289:
Photoabsorption, Photoionization, and Photoelectron Spectroscopy
19: 1533: 544: 105: 97: 192:
independently discovered it in 1923 upon analysis of a Wilson
56: 519: 505: 139: 1518: 85: 59: 50: 456:"The Auger Effect and Other Radiationless Transitions". 161:, increasing its energy. The reverse effect is known as 80:
is a physical phenomenon in which the filling of an
53: 1638: 1380:Serial block-face scanning electron microscopy 1083:Detectors for transmission electron microscopy 280: 966: 490: 416:International Journal of Materials Research 220:Charge carrier generation and recombination 973: 959: 497: 483: 357: 149:is a similar Auger effect which occurs in 18: 980: 460:, Cambridge Monographs on Physics, 1952 1639: 413: 954: 478: 286: 88:is accompanied by the emission of an 71: 1619: 13: 325:Compendium of Chemical Terminology 297:10.1016/B978-0-12-091650-4.50011-6 263:Compendium of Chemical Terminology 14: 1668: 1016:Timeline of microscope technology 504: 108:becomes gradually more probable. 1618: 1607: 1606: 46: 1375:Precession electron diffraction 291:. Academic Press. p. 156. 463: 450: 407: 404:, C.R.A.S. 177 (1923) 169–171. 394: 351: 342: 313: 251: 1: 245: 1652:Foundational quantum physics 172: 7: 208: 136:Auger electron spectroscopy 92:from the same atom. When a 10: 1673: 1360:Immune electron microscopy 1278:Annular dark-field imaging 1093:Everhart–Thornley detector 769:X-Ray Fluorescence Imaging 657:Anomalous X-ray scattering 1602: 1547: 1514:Hitachi High-Technologies 1496: 1405: 1398: 1265: 1209: 1171: 1128: 1121: 1075: 1024: 988: 916: 848: 797: 682: 675: 614: 573: 512: 124:into the vacancy and the 111: 1539:Thermo Fisher Scientific 1365:Geometric phase analysis 1253:Aberration-Corrected TEM 596:Synchrotron light source 230:Coster–Kronig transition 1288:Charge contrast imaging 1098:Field electron emission 615:Interaction with matter 574:Sources and instruments 338:10.1351/goldbook.A00521 276:10.1351/goldbook.A00520 1478:Thomas Eugene Everhart 747:Diffraction tomography 240:Radiative Auger effect 183:Charles Drummond Ellis 37: 1657:Electron spectroscopy 1483:Vernon Ellis Cosslett 1303:Dark-field microscopy 858:X-ray crystallography 727:Soft x-ray microscopy 695:Panoramic radiography 535:Synchrotron radiation 188:The French physicist 122:electronic transition 69:French pronunciation: 22: 1488:Vladimir K. Zworykin 1138:Correlative light EM 1047:Electron diffraction 627:Photoelectric effect 560:Characteristic X-ray 225:Characteristic X-ray 78:Auger−Meitner effect 1453:Manfred von Ardenne 1438:Gerasimos Danilatos 1345:Electron tomography 1340:Electron holography 1283:Cathodoluminescence 1062:Secondary electrons 1052:Electron scattering 996:Electron microscopy 982:Electron microscopy 647:Photodisintegration 622:Rayleigh scattering 601:Free-electron laser 428:2009IJMR..100.1162H 372:1922ZPhy....9..131M 202:internal conversion 190:Pierre Victor Auger 147:Auger recombination 116:Upon ejection, the 16:Physical phenomenon 1575:Digital Micrograph 1181:Environmental SEM 1103:Field emission gun 1067:X-ray fluorescence 888:X-ray reflectivity 667:X-ray fluorescence 632:Compton scattering 565:High-energy X-rays 436:10.3139/146.110163 380:10.1007/BF01326962 153:. An electron and 38: 1634: 1633: 1598: 1597: 1468:Nestor J. Zaluzec 1463:Maximilian Haider 1261: 1260: 948: 947: 944: 943: 936:X-ray lithography 868:Backscatter X-ray 863:X-ray diffraction 690:X-ray radiography 662:X-ray diffraction 555:Siegbahn notation 306:978-0-12-091650-4 163:impact ionization 126:ionization energy 73:[ˈ/o.ʒe/] 1664: 1622: 1621: 1610: 1609: 1418:Bodo von Borries 1403: 1402: 1163:Photoemission EM 1126: 1125: 975: 968: 961: 952: 951: 774:X-ray holography 680: 679: 652:Radiation damage 499: 492: 485: 476: 475: 470: 467: 461: 454: 448: 447: 422:(9): 1162–1166. 411: 405: 398: 392: 391: 355: 349: 346: 340: 317: 311: 310: 284: 278: 255: 235:Electron capture 75: 70: 66: 65: 62: 61: 58: 55: 52: 1672: 1671: 1667: 1666: 1665: 1663: 1662: 1661: 1637: 1636: 1635: 1630: 1594: 1543: 1492: 1473:Ondrej Krivanek 1394: 1257: 1205: 1167: 1153:Liquid-Phase EM 1117: 1076:Instrumentation 1071: 1029: 1020: 984: 979: 949: 940: 924:X-ray astronomy 912: 844: 793: 779:X-ray telescope 671: 642:Photoionization 610: 606:X-ray nanoprobe 569: 525:Absorption edge 513:Characteristics 508: 503: 473: 468: 464: 455: 451: 412: 408: 399: 395: 356: 352: 347: 343: 318: 314: 307: 285: 281: 256: 252: 248: 211: 175: 159:conduction band 114: 68: 49: 45: 35: 31: 17: 12: 11: 5: 1670: 1660: 1659: 1654: 1649: 1647:Atomic physics 1632: 1631: 1629: 1628: 1616: 1603: 1600: 1599: 1596: 1595: 1593: 1592: 1587: 1582: 1580:Direct methods 1577: 1572: 1567: 1562: 1557: 1551: 1549: 1545: 1544: 1542: 1541: 1536: 1531: 1526: 1521: 1516: 1511: 1506: 1500: 1498: 1494: 1493: 1491: 1490: 1485: 1480: 1475: 1470: 1465: 1460: 1455: 1450: 1445: 1440: 1435: 1430: 1428:Ernst G. Bauer 1425: 1420: 1415: 1409: 1407: 1400: 1396: 1395: 1393: 1392: 1387: 1382: 1377: 1372: 1367: 1362: 1357: 1352: 1347: 1342: 1337: 1332: 1327: 1322: 1321: 1320: 1310: 1305: 1300: 1295: 1290: 1285: 1280: 1275: 1269: 1267: 1263: 1262: 1259: 1258: 1256: 1255: 1250: 1249: 1248: 1238: 1233: 1228: 1227: 1226: 1215: 1213: 1207: 1206: 1204: 1203: 1198: 1193: 1188: 1183: 1177: 1175: 1169: 1168: 1166: 1165: 1160: 1155: 1150: 1145: 1140: 1134: 1132: 1123: 1119: 1118: 1116: 1115: 1110: 1105: 1100: 1095: 1090: 1085: 1079: 1077: 1073: 1072: 1070: 1069: 1064: 1059: 1054: 1049: 1044: 1042:Bremsstrahlung 1039: 1033: 1031: 1022: 1021: 1019: 1018: 1013: 1008: 1003: 998: 992: 990: 986: 985: 978: 977: 970: 963: 955: 946: 945: 942: 941: 939: 938: 933: 932: 931: 920: 918: 914: 913: 911: 910: 905: 900: 895: 890: 885: 880: 875: 870: 865: 860: 854: 852: 846: 845: 843: 842: 837: 832: 827: 822: 817: 812: 807: 801: 799: 795: 794: 792: 791: 786: 781: 776: 771: 766: 765: 764: 759: 754: 744: 739: 734: 729: 724: 723: 722: 717: 707: 702: 697: 692: 686: 684: 677: 673: 672: 670: 669: 664: 659: 654: 649: 644: 639: 634: 629: 624: 618: 616: 612: 611: 609: 608: 603: 598: 593: 588: 583: 577: 575: 571: 570: 568: 567: 562: 557: 552: 547: 542: 537: 532: 527: 522: 516: 514: 510: 509: 502: 501: 494: 487: 479: 472: 471: 462: 458:Burhop, E.H.S. 449: 406: 393: 366:(1): 131–144. 350: 341: 330:Auger electron 312: 305: 279: 249: 247: 244: 243: 242: 237: 232: 227: 222: 217: 210: 207: 174: 171: 151:semiconductors 130:electron shell 118:kinetic energy 113: 110: 102:Auger electron 84:vacancy of an 33: 29: 26:X-ray notation 15: 9: 6: 4: 3: 2: 1669: 1658: 1655: 1653: 1650: 1648: 1645: 1644: 1642: 1627: 1626: 1617: 1615: 1614: 1605: 1604: 1601: 1591: 1588: 1586: 1583: 1581: 1578: 1576: 1573: 1571: 1568: 1566: 1563: 1561: 1558: 1556: 1553: 1552: 1550: 1546: 1540: 1537: 1535: 1532: 1530: 1527: 1525: 1522: 1520: 1517: 1515: 1512: 1510: 1507: 1505: 1504:Carl Zeiss AG 1502: 1501: 1499: 1497:Manufacturers 1495: 1489: 1486: 1484: 1481: 1479: 1476: 1474: 1471: 1469: 1466: 1464: 1461: 1459: 1456: 1454: 1451: 1449: 1448:James Hillier 1446: 1444: 1441: 1439: 1436: 1434: 1431: 1429: 1426: 1424: 1421: 1419: 1416: 1414: 1411: 1410: 1408: 1404: 1401: 1397: 1391: 1388: 1386: 1383: 1381: 1378: 1376: 1373: 1371: 1368: 1366: 1363: 1361: 1358: 1356: 1353: 1351: 1348: 1346: 1343: 1341: 1338: 1336: 1333: 1331: 1328: 1326: 1323: 1319: 1316: 1315: 1314: 1311: 1309: 1306: 1304: 1301: 1299: 1296: 1294: 1291: 1289: 1286: 1284: 1281: 1279: 1276: 1274: 1271: 1270: 1268: 1264: 1254: 1251: 1247: 1244: 1243: 1242: 1239: 1237: 1234: 1232: 1229: 1225: 1222: 1221: 1220: 1217: 1216: 1214: 1212: 1208: 1202: 1201:Ultrafast SEM 1199: 1197: 1194: 1192: 1189: 1187: 1184: 1182: 1179: 1178: 1176: 1174: 1170: 1164: 1161: 1159: 1158:Low-energy EM 1156: 1154: 1151: 1149: 1146: 1144: 1141: 1139: 1136: 1135: 1133: 1131: 1127: 1124: 1120: 1114: 1111: 1109: 1108:Magnetic lens 1106: 1104: 1101: 1099: 1096: 1094: 1091: 1089: 1086: 1084: 1081: 1080: 1078: 1074: 1068: 1065: 1063: 1060: 1058: 1057:Kikuchi lines 1055: 1053: 1050: 1048: 1045: 1043: 1040: 1038: 1035: 1034: 1032: 1027: 1023: 1017: 1014: 1012: 1009: 1007: 1004: 1002: 999: 997: 994: 993: 991: 987: 983: 976: 971: 969: 964: 962: 957: 956: 953: 937: 934: 930: 927: 926: 925: 922: 921: 919: 915: 909: 906: 904: 901: 899: 896: 894: 891: 889: 886: 884: 881: 879: 876: 874: 871: 869: 866: 864: 861: 859: 856: 855: 853: 851: 847: 841: 838: 836: 833: 831: 828: 826: 823: 821: 818: 816: 813: 811: 808: 806: 803: 802: 800: 796: 790: 787: 785: 782: 780: 777: 775: 772: 770: 767: 763: 760: 758: 755: 753: 750: 749: 748: 745: 743: 740: 738: 735: 733: 730: 728: 725: 721: 718: 716: 713: 712: 711: 708: 706: 703: 701: 700:Tomosynthesis 698: 696: 693: 691: 688: 687: 685: 681: 678: 674: 668: 665: 663: 660: 658: 655: 653: 650: 648: 645: 643: 640: 638: 635: 633: 630: 628: 625: 623: 620: 619: 617: 613: 607: 604: 602: 599: 597: 594: 592: 589: 587: 584: 582: 579: 578: 576: 572: 566: 563: 561: 558: 556: 553: 551: 548: 546: 543: 541: 538: 536: 533: 531: 530:Moseley's law 528: 526: 523: 521: 518: 517: 515: 511: 507: 506:X-ray science 500: 495: 493: 488: 486: 481: 480: 477: 466: 459: 453: 445: 441: 437: 433: 429: 425: 421: 417: 410: 403: 397: 389: 385: 381: 377: 373: 369: 365: 361: 354: 345: 339: 335: 331: 327: 326: 321: 316: 308: 302: 298: 294: 290: 283: 277: 273: 269: 265: 264: 259: 254: 250: 241: 238: 236: 233: 231: 228: 226: 223: 221: 218: 216: 215:Auger therapy 213: 212: 206: 203: 199: 198:photoelectric 195: 194:cloud chamber 191: 186: 184: 180: 170: 166: 164: 160: 156: 155:electron hole 152: 148: 144: 141: 137: 133: 131: 127: 123: 119: 109: 107: 103: 99: 95: 94:core electron 91: 87: 83: 79: 74: 64: 43: 27: 21: 1623: 1611: 1565:EM Data Bank 1529:Nion Company 1423:Dennis Gabor 1413:Albert Crewe 1191:Confocal SEM 1088:Electron gun 1037:Auger effect 1036: 798:Spectroscopy 742:Ptychography 676:Applications 637:Auger effect 636: 540:Water window 465: 452: 419: 415: 409: 396: 363: 359: 353: 344: 323: 315: 288: 282: 268:Auger effect 261: 253: 187: 179:Lise Meitner 176: 167: 145: 134: 115: 101: 77: 42:Auger effect 41: 39: 1509:FEI Company 1443:Harald Rose 1433:Ernst Ruska 1122:Microscopes 1030:with matter 1028:interaction 591:Synchrotron 287:Berkowitz. 82:inner-shell 1641:Categories 1590:Multislice 1406:Developers 1266:Techniques 1011:Microscope 1006:Micrograph 850:Scattering 715:Helical CT 581:X-ray tube 400:P. Auger: 246:References 1458:Max Knoll 1113:Stigmator 444:229164774 388:121637546 173:Discovery 1613:Category 1560:CrysTBox 1548:Software 1219:Cryo-TEM 1026:Electron 586:Betatron 209:See also 128:for the 90:electron 1625:Commons 1273:4D STEM 1246:4D STEM 1224:Cryo-ET 1196:SEM-XRF 1186:CryoSEM 1143:Cryo-EM 1001:History 929:History 683:Imaging 424:Bibcode 368:Bibcode 360:Z. Phys 1570:EMsoft 1555:CASINO 1534:TESCAN 1399:Others 1298:cryoEM 989:Basics 917:Others 878:GISAXS 550:L-edge 545:K-edge 442:  386:  303:  140:X-rays 112:Effect 106:photon 98:energy 1524:Leica 1370:PINEM 1236:HRTEM 1231:EFTEM 908:EDXRD 830:XANES 825:EXAFS 815:ARPES 762:3DXRD 520:X-ray 440:S2CID 384:S2CID 320:IUPAC 258:IUPAC 76:) or 1585:IUCr 1519:JEOL 1390:WBDF 1385:WDXS 1335:EBIC 1330:EELS 1325:ECCI 1313:EBSD 1293:CBED 1241:STEM 893:RIXS 883:WAXS 873:SAXS 784:DFXM 752:XDCT 737:STXM 732:XPCI 720:XACT 301:ISBN 86:atom 40:The 28:, KL 1355:FEM 1350:FIB 1318:TKD 1308:EDS 1211:TEM 1173:SEM 1148:EMP 898:XRS 840:XFH 835:EDS 820:AES 810:XPS 805:XAS 789:DXA 757:DCT 705:CDI 432:doi 420:100 376:doi 334:doi 332:". 293:doi 272:doi 270:". 34:2,3 1643:: 1130:EM 903:XS 710:CT 438:. 430:. 418:. 382:. 374:. 362:. 322:, 299:. 260:, 185:. 165:. 67:; 60:eɪ 51:oʊ 974:e 967:t 960:v 498:e 491:t 484:v 446:. 434:: 426:: 390:. 378:: 370:: 364:9 336:: 309:. 295:: 274:: 63:/ 57:ʒ 54:ˈ 48:/ 44:( 36:. 32:L 30:1

Index


X-ray notation
/ˈʒ/
[ˈ/o.ʒe/]
inner-shell
atom
electron
core electron
energy
photon
kinetic energy
electronic transition
ionization energy
electron shell
Auger electron spectroscopy
X-rays
Auger recombination
semiconductors
electron hole
conduction band
impact ionization
Lise Meitner
Charles Drummond Ellis
Pierre Victor Auger
cloud chamber
photoelectric
internal conversion
Auger therapy
Charge carrier generation and recombination
Characteristic X-ray

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.