Knowledge

Bachmann–Howard ordinal

Source 📝

590: 647: 195: 344: 392: 138:, multiplication and exponentiation, and ψ to previously constructed ordinals (except that ψ can only be applied to arguments less than 532: 508: 631: 134:) is defined to be the smallest ordinal that cannot be constructed by starting with 0, 1, ω and Ω, and repeatedly applying 688: 326: 385: 433: 239:
Bachmann, Heinz (1950), "Die Normalfunktionen und das Problem der ausgezeichneten Folgen von Ordnungszahlen",
94: 624: 44: 662: 605: 378: 80: 717: 565: 261: 178:
of ordinals; this extension was carried out by Heinz Bachmann and is not completely straightforward.
113: 712: 617: 401: 351: 52: 32: 209:
The proof theory of classical and constructive inductive definitions. A 40 year saga, 1968-2008.
681: 722: 707: 489: 551: 462: 452: 336: 290: 252: 64: 8: 208: 537: 307: 294: 278: 674: 442: 322: 221: 48: 298: 314: 270: 135: 36: 412: 332: 286: 248: 165: 658: 601: 421: 56: 40: 318: 701: 370: 313:, Lecture Notes in Mathematics, vol. 1407, Berlin: Springer-Verlag, 597: 282: 259:
Howard, W. A. (1972), "A system of abstract constructive ordinals.",
274: 196:
An order-theoretic characterization of the Howard-Bachmann-hierarchy
654: 589: 646: 157:
The Bachmann–Howard ordinal can also be defined as φ
345:"Proof Theory: Part III, Kripke-Platek Set Theory" 306: 699: 79:The Bachmann–Howard ordinal is defined using an 533:the theories of iterated inductive definitions 269:(2), Association for Symbolic Logic: 355–374, 194:J. Van der Meeren, M. Rathjen, A. Weiermann, " 682: 625: 386: 400: 689: 675: 632: 618: 393: 379: 224:" (2006), p.11. Accessed 21 February 2023. 211:" (2008), p.7. Accessed 21 February 2023. 366:(Slides of a talk given at Fischbachau.) 238: 60: 342: 304: 123:is the first epsilon number after Ω = ε 700: 258: 241:Vierteljschr. Naturforsch. Ges. Zürich 68: 374: 142:, to ensure that it is well defined). 641: 584: 198:" (2017). Accessed 21 February 2023. 13: 14: 734: 509:Takeuti–Feferman–Buchholz ordinal 645: 588: 343:Rathjen, Michael (August 2005). 214: 201: 188: 1: 540: < ω‍ 231: 74: 661:. You can help Knowledge by 604:. You can help Knowledge by 531:Proof-theoretic ordinals of 181: 164:(0) for an extension of the 7: 222:The Art of Ordinal Analysis 81:ordinal collapsing function 10: 739: 640: 583: 554: ≥ ω‍ 566:First uncountable ordinal 408: 319:10.1007/978-3-540-46825-7 305:Pohlers, Wolfram (1989), 262:Journal of Symbolic Logic 114:first uncountable ordinal 16:A large countable ordinal 434:Feferman–Schütte ordinal 402:Large countable ordinals 65:William Alvin Howard 51:) and the system CZF of 45:Kripke–Platek set theory 39:of several mathematical 473:Bachmann–Howard ordinal 147:Bachmann–Howard ordinal 55:. It was introduced by 53:constructive set theory 37:proof-theoretic ordinal 33:large countable ordinal 29:Howard-Bachmann ordinal 21:Bachmann–Howard ordinal 600:-related article is a 413:First infinite ordinal 653:This article about a 174:to certain functions 552:Nonrecursive ordinal 463:large Veblen ordinal 453:small Veblen ordinal 19:In mathematics, the 538:Computable ordinals 23:(also known as the 490:Buchholz's ordinal 57:Heinz Bachmann 670: 669: 613: 612: 578: 577: 443:Ackermann ordinal 49:axiom of infinity 730: 718:Set theory stubs 691: 684: 677: 649: 642: 634: 627: 620: 592: 585: 562: 561: 548: 547: 395: 388: 381: 372: 371: 365: 363: 362: 356: 350:. Archived from 349: 339: 312: 301: 255: 225: 218: 212: 205: 199: 192: 166:Veblen functions 136:ordinal addition 738: 737: 733: 732: 731: 729: 728: 727: 713:Ordinal numbers 698: 697: 696: 695: 639: 638: 581: 579: 574: 560: 557: 556: 555: 546: 543: 542: 541: 527: 525: 504: 498: 485: 439: 430: 422:Epsilon numbers 404: 399: 369: 360: 358: 354: 347: 329: 275:10.2307/2272979 234: 229: 228: 219: 215: 206: 202: 193: 189: 184: 173: 163: 162: 152: 126: 122: 111: 97:, the ordinals 95:epsilon numbers 93:enumerates the 92: 77: 17: 12: 11: 5: 736: 726: 725: 720: 715: 710: 694: 693: 686: 679: 671: 668: 667: 650: 637: 636: 629: 622: 614: 611: 610: 593: 576: 575: 573: 572: 563: 558: 549: 544: 535: 529: 521: 519: 506: 500: 496: 487: 483: 470: 460: 450: 440: 437: 431: 428: 419: 409: 406: 405: 398: 397: 390: 383: 375: 368: 367: 340: 327: 302: 256: 235: 233: 230: 227: 226: 213: 207:S. Feferman, " 200: 186: 185: 183: 180: 169: 160: 158: 155: 154: 150: 143: 128: 124: 120: 117: 109: 106: 101:such that ω = 88: 76: 73: 25:Howard ordinal 15: 9: 6: 4: 3: 2: 735: 724: 721: 719: 716: 714: 711: 709: 706: 705: 703: 692: 687: 685: 680: 678: 673: 672: 666: 664: 660: 656: 651: 648: 644: 643: 635: 630: 628: 623: 621: 616: 615: 609: 607: 603: 599: 594: 591: 587: 586: 582: 571: 567: 564: 553: 550: 539: 536: 534: 530: 524: 518: 514: 510: 507: 503: 495: 491: 488: 482: 478: 474: 471: 468: 464: 461: 458: 454: 451: 448: 444: 441: 435: 432: 427: 423: 420: 418: 414: 411: 410: 407: 403: 396: 391: 389: 384: 382: 377: 376: 373: 357:on 2007-06-12 353: 346: 341: 338: 334: 330: 328:3-540-51842-8 324: 320: 316: 311: 310: 303: 300: 296: 292: 288: 284: 280: 276: 272: 268: 264: 263: 257: 254: 250: 246: 242: 237: 236: 223: 220:M. Rathjen, " 217: 210: 204: 197: 191: 187: 179: 177: 172: 167: 148: 144: 141: 137: 133: 129: 118: 115: 107: 104: 100: 96: 91: 86: 85: 84: 82: 72: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 26: 22: 723:Number stubs 708:Proof theory 663:expanding it 652: 606:expanding it 595: 580: 569: 522: 516: 512: 501: 493: 480: 476: 472: 466: 456: 446: 425: 416: 359:. Retrieved 352:the original 309:Proof theory 308: 266: 260: 244: 240: 216: 203: 190: 175: 170: 156: 146: 139: 131: 102: 98: 89: 78: 35:. It is the 28: 24: 20: 18: 247:: 115–147, 43:, such as 702:Categories 598:set theory 361:2008-04-17 232:References 75:Definition 47:(with the 182:Citations 299:44618354 41:theories 436: Γ 337:1026933 291:0329869 283:2272979 253:0036806 112:is the 67: ( 59: ( 31:) is a 655:number 568:  511:  492:  475:  465:  455:  445:  424:  415:  335:  325:  297:  289:  281:  251:  149:is ψ(ε 63:) and 657:is a 596:This 355:(PDF) 348:(PDF) 295:S2CID 279:JSTOR 108:Ω = ω 27:, or 659:stub 602:stub 323:ISBN 145:The 69:1972 61:1950 484:Ω+1 469:(Ω) 459:(Ω) 449:(Ω) 315:doi 271:doi 161:Ω+1 151:Ω+1 121:Ω+1 71:). 704:: 526:+1 499:(Ω 333:MR 331:, 321:, 293:, 287:MR 285:, 277:, 267:37 265:, 249:MR 245:95 243:, 153:). 130:ψ( 83:: 690:e 683:t 676:v 665:. 633:e 626:t 619:v 608:. 570:Ω 559:1 545:1 528:) 523:ω 520:Ω 517:ε 515:( 513:ψ 505:) 502:ω 497:0 494:ψ 486:) 481:ε 479:( 477:ψ 467:θ 457:θ 447:θ 438:0 429:0 426:ε 417:ω 394:e 387:t 380:v 364:. 317:: 273:: 176:α 171:α 168:φ 159:ε 140:α 132:α 127:. 125:Ω 119:ε 116:. 110:1 105:. 103:ε 99:ε 90:α 87:ε

Index

large countable ordinal
proof-theoretic ordinal
theories
Kripke–Platek set theory
axiom of infinity
constructive set theory
Heinz Bachmann
1950
William Alvin Howard
1972
ordinal collapsing function
epsilon numbers
first uncountable ordinal
ordinal addition
Veblen functions
An order-theoretic characterization of the Howard-Bachmann-hierarchy
The proof theory of classical and constructive inductive definitions. A 40 year saga, 1968-2008.
The Art of Ordinal Analysis
MR
0036806
Journal of Symbolic Logic
doi
10.2307/2272979
JSTOR
2272979
MR
0329869
S2CID
44618354
Proof theory

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.