Knowledge

Nucleic acid analogue

Source 📝

811:
has shown to bind tightly to Cu, whereas other divalent ions are only loosely bound. The tridentate character contributes to this selectivity. The fourth coordination site on the copper is saturated by an oppositely arranged pyridine nucleobase. The asymmetric metal base pairing system is orthogonal to the Watson-Crick base pairs. Another example of an artificial nucleobase is that with hydroxypyridone nucleobases, which are able to bind Cu inside the DNA duplex. Five consecutive copper-hydroxypyridone base pairs were incorporated into a double strand, which were flanked by only one natural nucleobase on both ends. EPR data showed that the distance between copper centers was estimated to be 3.7 ± 0.1 Å, while a natural B-type DNA duplex is only slightly larger (3.4 Å). The appeal for stacking metal ions inside a DNA duplex is the hope to obtain nanoscopic self-assembling metal wires, though this has not been realized yet.
541:
single- and in double-strands irrespective of surrounding bases. Also the oxo-homologue of tC called tC (both commercially available), 1,3-diaza-2-oxophenoxazine, has a quantum yield of 0.2 in double-stranded systems. However, it is somewhat sensitive to surrounding bases in single-strands (quantum yields of 0.14–0.41). The high and stable quantum yields of these base analogues make them very bright, and, in combination with their good base analogue properties (leaves DNA structure and stability next to unperturbed), they are especially useful in fluorescence anisotropy and FRET measurements, areas where other fluorescent base analogues are less accurate. Also, in the same family of cytosine analogues, a FRET-acceptor base analogue, tC
644: 537:
sensitivity of 2-AP to immediate surroundings is shared by other promising and useful fluorescent base analogues like 3-MI, 6-MI, 6-MAP, pyrrolo-dC (also commercially available), modified and improved derivatives of pyrrolo-dC, furan-modified bases and many other ones (see recent reviews). This sensitivity to the microenvironment has been utilized in studies of e.g. structure and dynamics within both DNA and RNA, dynamics and kinetics of DNA-protein interaction and electron transfer within DNA.
38: 658: 170: 743: 736: 3799: 729: 356: 228: 472: 651: 342: 594: 587: 622:(DAP) is used instead of adenine. Diaminopurine basepairs perfectly with thymine as it is identical to adenine but has an amine group at position 2 forming 3 intramolecular hydrogen bonds, eliminating the major difference between the two types of basepairs (weak A-T vs strong C-G). This improved stability affects protein-binding interactions that rely on those differences. Other combination include: 807:
a duplex; this is an example where a Watson-Crick basepair mismatch is stabilized by the formation of the metal-base pair. Another example of a metal complexing to natural nucleobases is the formation of A-Zn-T and G-Zn-C at high pH; Co and Ni also form these complexes. These are Watson-Crick base pairs where the divalent cation in coordinated to the nucleobases. The exact binding is debated.
795:. Metal-complexing with DNA can occur by the formation of non-canonical base pairs from natural nucleobases with participation by metal ions and also by the exchanging the hydrogen atoms that are part of the Watson-Crick base pairing by metal ions. Introduction of metal ions into a DNA duplex has shown to have potential magnetic or conducting properties, as well as increased stability. 277:. These nucleoside triphosphates possess a non-canonical sugar, dideoxyribose, which lacks the 3' hydroxyl group normally present in DNA and therefore cannot bond with the next base. The lack of the 3' hydroxyl group terminates the chain reaction as the DNA polymerases mistake it for a regular deoxyribonucleotide. Another chain-terminating analogue that lacks a 3' hydroxyl and mimics 888:. Earlier, the artificial strings of DNA did not encode for anything, but scientists speculated they could be designed to manufacture new proteins which could have industrial or pharmaceutical uses. Transcription of DNA containing unnatural base pairs and translation of corresponding mRNA were actually achieved recently. In November 2017, the same team at the 900:: four canonical and two artificially added, dNaM and dTPT3 (these two form a pair). The bacteria had two corresponding RNA bases included in two new codons, additional tRNAs recognizing these new codons (these tRNAs also contained two new RNA bases within their anticodons) and additional amino acids, enabling the bacteria to synthesize "unnatural" proteins. 491:) are linked to the ring linked to the sugar (in para) via a flexible arm, presumably extruding from the major groove of the helix. Due to low processivity of the nucleotides linked to bulky adducts such as florophores by s, the sequence is typically copied using a nucleotide with an arm and later coupled with a reactive fluorophore (indirect labelling): 254:). Although these oligonucleotides have a different backbone sugar—or, in the case of PNA, an amino acid residue in place of the ribose phosphate—they still bind to RNA or DNA according to Watson and Crick pairing while being immune to nuclease activity. They cannot be synthesized enzymatically and can only be obtained synthetically using 911:
in transcription and translation, for the site-specific incorporation of non-standard amino acids into proteins. In 2006, they created 7-(2-thienyl)imidazopyridine (Ds) and pyrrole-2-carbaldehyde (Pa) as a third base pair for replication and transcription. Afterward, Ds and 4--2-nitropyrrole (Px) was
540:
A newly developed and very interesting group of fluorescent base analogues that has a fluorescence quantum yield that is nearly insensitive to their immediate surroundings is the tricyclic cytosine family. 1,3-Diaza-2-oxophenothiazine, tC, has a fluorescence quantum yield of approximately 0.2 both in
806:
nucleobases that are brought together by Hg and forms a connected metal-base pair. This motif does not accommodate stacked Hg in a duplex due to an intrastrand hairpin formation process that is favored over duplex formation. Two thymines across from each other do not form a Watson-Crick base pair in
810:
A large variety of artificial nucleobases have been developed for use as metal base pairs. These modified nucleobases exhibit tunable electronic properties, sizes, and binding affinities that can be optimized for a specific metal. For example, a nucleoside modified with a pyridine-2,6-dicarboxylate
714:
is considered. xDNA contains expanded bases, in which a benzene ring has been added, which may pair with canonical bases, resulting in four additional possible base-pairs (xA-T, xT-A, xC-G, xG-C) with eight bases (or 16 bases if the unused arrangements are used). Another form of benzene added bases
706:
Universal bases may pair indiscriminately with any other base, but, in general, lower the melting temperature of the sequence considerably; examples include 2'-deoxyinosine (hypoxanthine deoxynucleotide) derivatives, nitroazole analogues, and hydrophobic aromatic non-hydrogen-bonding bases (strong
536:
The most commonly used and commercially available fluorescent base analogue, 2-aminopurine (2-AP), has a high-fluorescence quantum yield free in solution (0.68) that is considerably reduced (appr. 100 times but highly dependent on base sequence) when incorporated into nucleic acids. The emission
553:
In a cell, there are several non-canonical bases present: CpG islands in DNA (often methylated), all eukaryotic mRNA (capped with a methyl-7-guanosine), and several bases of rRNAs (methylated). Often, tRNAs are heavily modified postranscriptionally in order to improve their conformation or base
924:
The possibility has been proposed and studied, both theoretically and experimentally, of implementing an orthogonal system inside cells independent of the cellular genetic material in order to make a completely safe system, with the possible increase in encoding potentials. Several groups have
865:, which successfully replicated the unnatural base pairs through multiple generations. This is the first known example of a living organism passing along an expanded genetic code to subsequent generations. This was in part achieved by the addition of a supportive algal gene that expresses a 91:. An analogue may have any of these altered. Typically the analogue nucleobases confer, among other things, different base pairing and base stacking properties. Examples include universal bases, which can pair with all four canonical bases, and phosphate-sugar backbone analogues such as 626:
Isoguanine and isocytosine, which have their amine and ketone inverted compared to standard guanine and cytosine. They are not used probably as tautomers are problematic for base pairing, but isoC and isoG can be amplified correctly with PCR even in the presence of the 4 canonical
574:(Watson-Crick base pairing) via hydrogen bonds (amine with ketone, purine with pyrimidine). Adenine and 2-aminoadenine have one/two amine group(s), whereas thymine has two carbonyl groups, and cytosine and guanine are mixed amine and carbonyl (inverted in respect to each other). 141:
into bacterial DNA, and by including individual artificial nucleotides in the culture media, were able to passage the bacteria 24 times; they did not create mRNA or proteins able to use the artificial nucleotides. The artificial nucleotides featured 2 fused aromatic rings.
545:, has been developed. Together with tC as a FRET-donor this constitutes the first nucleic acid base analogue FRET-pair ever developed. The tC-family has, for example, been used in studies related to polymerase DNA-binding and DNA-polymerization mechanisms. 2589:
Buncel E, Boone C, Joly H, Kumar R, Norris AR (1985). "Metal ion-biomolecule interactions. XII. 1H and 13C NMR evidence for the preferred reaction of thymidine over guanosine in exchange and competition reactions with mercury (II) and methylmercury (II)".
457:, which base pairs to cytosine instead of thymine. Cytosine is deaminated to uracil, which base pairs with adenine instead of guanine. Deamination of guanine is not mutagenic. Nitrous acid-induced mutations also are induced to mutate back to wild-type. 181:
Investigation of possible scenarios of the origin of life: By testing different analogs, researchers try to answer the question of whether life's use of DNA and RNA was selected over time due to its advantages, or if they were chosen by arbitrary
418:) have been inserted into bacterial DNA but these genes did not template mRNA or induce protein synthesis. The artificial nucleotides featured two fused aromatic rings which formed a (d5SICS–dNaM) complex mimicking the natural (dG–dC) base pair. 160:
polymerase incorporates these compounds with non-canonical bases. These compounds are activated in the cells by being converted into nucleotides, they are administered as nucleosides since charged nucleotides cannot easily cross cell membranes.
3005:
Hirao I, Ohtsuki T, Fujiwara T, Mitsui T, Yokogawa T, Okuni T, Nakayama H, Takio K, Yabuki T, Kigawa T, Kodama K, Yokogawa T, Nishikawa K, Yokoyama S (February 2002). "An unnatural base pair for incorporating amino acid analogs into proteins".
238:'s 2' hydroxy group reacts with the phosphate linked 3' hydroxy group, making RNA too unstable to be used or synthesized reliably. To overcome this, a ribose analogue can be used. The most common RNA analogues are 2'-O-methyl-substituted RNA, 442:. If this happens during DNA replication, a guanine will be inserted as the opposite base analog, and in the next DNA replication, that guanine will pair with a cytosine. This results in a change in one base pair of DNA, specifically a 430:(5BU), the abnormal base found in the mutagenic nucleotide analog BrdU. When a nucleotide containing 5-bromouracil is incorporated into the DNA, it is most likely to pair with adenine; however, it can spontaneously shift into another 778:
In metal base-pairing, the Watson-Crick hydrogen bonds are replaced by the interaction between a metal ion with nucleosides acting as ligands. The possible geometries of the metal that would allow for duplex formation with two
1107:
Petersson B, Nielsen BB, Rasmussen H, Larsen IK, Gajhede M, Nielsen PE, Kastrup JS (February 2005). "Crystal structure of a partly self-complementary peptide nucleic acid (PNA) oligomer showing a duplex-triplex network".
693:(analogues with same number of atoms) such as the thymine analogue 2,4-difluorotoluene (F) or the adenine analogue 4-methylbenzimidazole (Z). An alternative hydrophobic pair could be isoquinoline and pyrrolopyridine 1632:
Wojciechowski F, Hudson RH (September 2008). "Fluorescence and hybridization properties of peptide nucleic acid containing a substituted phenylpyrrolocytosine designed to engage Guanine with an additional H-bond".
3049:
Hirao I, Kimoto M, Mitsui T, Fujiwara T, Kawai R, Sato A, Harada Y, Yokoyama S (September 2006). "An unnatural hydrophobic base pair system: site-specific incorporation of nucleotide analogs into DNA and RNA".
1604:
Berry DA, Jung KY, Wise DS, Sercel AD, Pearson WH, Mackie H, Randolph JB, Somers RL (2004). "Pyrrolo-dC and pyrrolo-C: fluorescent analogs of cytidine and 2 '-deoxycytidine for the study of oligonucleotides".
452:
Additionally, nitrous acid (HNO2) is a potent mutagen that acts on replicating and non-replicating DNA. It can cause deamination of the amino groups of adenine, guanine and cytosine. Adenine is deaminated to
558:
can base pair with C, U, and even with A, whereas thiouridine (with A) is more specific than uracil (with a purine). Other common tRNA base modifications are pseudouridine (which gives its name to the
618:
The precise reason why there are only four nucleotides is debated, but there are several unused possibilities. Furthermore, adenine is not the most stable choice for base pairing: in Cyanophage S-2L,
703:
Metal-coordinated bases, such as pairing between a pyridine-2,6-dicarboxylate (tridentate ligand) and a pyridine (monodentate ligand) through square planar coordination to a central copper ion.
562:), dihydrouridine (which does not stack as it is not aromatic), queuosine, wyosine, and so forth. Nevertheless, these are all modifications to normal bases and are not placed by a polymerase. 2907: 689:
However, correct DNA structure can form even when the bases are not paired via hydrogen bonding; that is, the bases pair thanks to hydrophobicity, as studies have shown with DNA
570:
Canonical bases may have either a carbonyl or an amine group on the carbons surrounding the nitrogen atom furthest away from the glycosidic bond, which allows them to
884:
which can be encoded by DNA, from the existing 20 amino acids to a theoretically possible 172, thereby expanding the potential for living organisms to produce novel
861:
containing natural T-A and C-G base pairs along with the best-performing UBP Romesberg's laboratory had designed and inserted it into cells of the common bacterium
630:
Diaminopyrimidine and xanthine, which bind like 2-aminoadenine and thymine but with inverted structures. This pair is not used as xanthine is a deamination product.
130:(TNA) and hexitol nucleic acids (HNA). Each of these is distinguished from naturally occurring DNA or RNA by changes to the backbone of the molecule. However, the 1886:
Wilhelmsson LM, Holmén A, Lincoln P, Nielsen PE, Nordén B (2001). "A highly fluorescent DNA base analogue that forms Watson-Crick base pairs with guanine".
2110:
Kirnos MD, Khudyakov IY, Alexandrushkina NI, Vanyushin BF (November 1977). "2-aminoadenine is an adenine substituting for a base in S-2L cyanophage DNA".
833:
that is created in a laboratory and does not occur in nature. In 2012, a group of American scientists led by Floyd Romesberg, a chemical biologist at the
289:
replication. Another analogue in sequencing is a nucleobase analogue, 7-deaza-GTP and is used to sequence CG rich regions, instead 7-deaza-ATP is called
185:
As a tool to detect particular sequences: XNA can be used to tag and identify a wide range of DNA and RNA components with high specificity and accuracy;
1923:"Fluorescent properties of DNA base analogue tC upon incorporation into DNA – negligible influence of neighbouring bases on fluorescence quantum yield" 1392: 3191:
Kimoto M, Yamashige R, Matsunaga K, Yokoyama S, Hirao I (May 2013). "Generation of high-affinity DNA aptamers using an expanded genetic alphabet".
1053: 1518:"Fluorescence studies of nucleotides and polynucleotides. I. Formycin, 2-aminopurine riboside, 2,6-diaminopurine riboside, and their derivatives" 907:
institute in Japan. In 2002, they developed an unnatural base pair between 2-amino-8-(2-thienyl)purine (s) and pyridine-2-one (y) that functions
707:
stacking effects). These are used as proof of concept and, in general, are not utilized in degenerate primers (which are a mixture of primers).
290: 3250:
Herdewijn P, Marlière P (June 2009). "Toward safe genetically modified organisms through the chemical diversification of nucleic acids".
2767:"Efficient and sequence-independent replication of DNA containing a third base pair establishes a functional six-letter genetic alphabet" 2210:
Taniguchi Y, Kool ET (July 2007). "Nonpolar isosteres of damaged DNA bases: effective mimicry of mutagenic properties of 8-oxopurines".
2881: 2679:
Lee JS, Latimer LJ, Reid RS (1993). "A cooperative conformational change in duplex DNA induced by Zn2+ and other divalent metal ions".
916:
selection (SELEX) and demonstrated the genetic alphabet expansion significantly augment DNA aptamer affinities to target proteins.
880:
The successful incorporation of a third base pair is a significant breakthrough toward the goal of greatly expanding the number of
3394: 1703:
Rist MJ, Marino JP (2002). "Fluorescent nucleotide base analogs as probes of nucleic acid structure, dynamics and interactions".
2511:
Aich P, Skinner RJ, Wettig SD, Steer RP, Lee JS (August 2002). "Long range molecular wire behaviour in a metal complex of DNA".
2714:
Tanaka K, Tengeiji A, Kato T, Toyama N, Shionoya M (February 2003). "A discrete self-assembled metal array in artificial DNA".
2063:"Structural and mechanistic basis for enhanced translational efficiency by 2-thiouridine at the tRNA anticodon wobble position" 1774: 2855: 2390:
Liu H, Gao J, Lynch SR, Saito YD, Maynard L, Kool ET (October 2003). "A four-base paired genetic helix with expanded size".
700:
Several fluorescent bases have also been made, such as the 2-amino-6-(2-thienyl)purine and pyrrole-2-carbaldehyde base pair.
912:
discovered as a high fidelity pair in PCR amplification. In 2013, they applied the Ds-Px pair to DNA aptamer generation by
510:
Thiol reactive: thiol-containing nucleotides react with the fluorophore linked to a reactive leaving group like maleimide.
2825: 2476:
Zhang HY, Calzolari A, Di Felice R (August 2005). "On the magnetic alignment of metal ions in a DNA-mimic double helix".
2061:
Rodriguez-Hernandez A, Spears JL, Gaston KW, Limbach PA, Gamper H, Hou YM, Kaiser R, Agris PF, Perona JJ (October 2013).
1730:
Wilson JN, Kool ET (December 2006). "Fluorescent DNA base replacements: Reporters and sensors for biological systems".
507:
dyes, which contain a reactive leaving group like succinimidyl ester (NHS). Base-pairing amino groups are not affected.
131: 2617:
Ono A, Togashi H (August 2004). "Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions".
1080: 3480: 2021:"Nucleic acid base analog FRET-pair facilitating detailed structural measurements in nucleic acid containing systems" 1972:"Characterization and use of an unprecedentedly bright and structurally non-perturbing fluorescent DNA base analogue" 1299:
Summerton J (December 1999). "Morpholino antisense oligomers: the case for an RNase H-independent structural type".
3767: 1668:
Greco NJ, Tor Y (August 2005). "Simple fluorescent pyrimidine analogues detect the presence of DNA abasic sites".
3772: 857:
that form a d5SICS–dNaM complex or base pair in DNA. In 2014, the same team reported that they had synthesized a
516:-linked nucleotides rely on the same indirect labelling principle (and fluorescent streptavidin) and are used in 2932:
Zhang Y, Ptacin JL, Fischer EC, Aerni HR, Caffaro CE, San Jose K, Feldman AW, Turner CR, Romesberg FE (2017).
3669: 3555: 2652:
Meggers E, Holland PL, Tolman WB, Romesberg FE, Schultz PG (2000). "A Novel Copper-Mediated DNA Base Pair".
2554:
Clever GH, Polborn K, Carell T (2005). "Ein hochgradig DNA-Duplex-stabilisierendes Metall-Salen-Basenpaar".
892:
that first introduced two extra nucleobases into bacterial DNA reported having constructed a semi-synthetic
3234: 311:
may have been preceded by an "RNA-like world" where other nucleic acids with a different backbone, such as
193: 1256:
Summerton J, Weller D (June 1997). "Morpholino antisense oligomers: design, preparation, and properties".
3823: 3782: 3777: 3762: 3387: 17: 889: 834: 3095:"An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules" 3838: 1023: 950:
allowing the translation of only orthogonal mRNA with a matching altered Shine-Dalgarno sequence; and
525: 255: 3843: 2765:
Malyshev DA, Dhami K, Quach HT, Lavergne T, Ordoukhanian P, Torkamani A, Romesberg FE (July 2012).
2441:
Wettig SD, Lee JS (2003). "Thermodynamic investigation of M-DNA: a novel metal ion–DNA complex".
947: 866: 1970:
Sandin P, Börjesson K, Li H, Mårtensson J, Brown T, Wilhelmsson LM, Albinsson B (January 2008).
1459:
Malyshev DA, Dhami K, Lavergne T, Chen T, Dai N, Foster JM, Corrêa IR, Romesberg FE (May 2014).
873:
bacteria. Then, the natural bacterial replication pathways use them to accurately replicate the
3828: 3802: 3495: 3380: 820: 188:
As an enzyme acting on DNA, RNA and XNA substrates - XNA has been shown to have the ability to
837:
in San Diego, California, published that his team had designed two unnatural base pairs named
3523: 1146:
Taylor AI, Pinheiro VB, Smola MJ, Morgunov AS, Peak-Chew S, Cozens C, Weeks KM, Herdewijn P,
983: 954: 496: 443: 137:
In May 2014, researchers announced that they had successfully introduced two new artificial
3714: 3697: 3528: 2945: 2778: 2723: 2563: 2399: 2119: 1839:"Fluorescent analogs of biomolecular building blocks: design, properties, and applications" 1472: 1163: 854: 377: 316: 308: 302: 251: 243: 151: 111: 92: 3295:"The conserved active site motif A of Escherichia coli DNA polymerase I is highly mutable" 499:
contain a primary amine group on a linker that reacts with the amino-reactive dye such as
8: 3709: 3692: 3550: 3433: 869:
transporter which efficiently imports the triphosphates of both d5SICSTP and dNaMTP into
643: 239: 119: 3144:"Highly specific unnatural base pair systems as a third base pair for PCR amplification" 2988: 2949: 2782: 2727: 2567: 2403: 2123: 2019:
Börjesson K, Preus S, El-Sagheer AH, Brown T, Albinsson B, Wilhelmsson LM (April 2009).
1476: 1167: 802:. A well-documented example is the formation of T-Hg-T, which involves two deprotonated 383:
Naturally occurring bases can be divided into two classes according to their structure:
3603: 3598: 3473: 3359: 3275: 3216: 3168: 3143: 3142:
Yamashige R, Kimoto M, Takezawa Y, Sato A, Mitsui T, Yokoyama S, Hirao I (March 2012).
3119: 3094: 3075: 3031: 2966: 2933: 2801: 2766: 2747: 2536: 2423: 2320: 2295: 2271: 2246: 2143: 2087: 2062: 1996: 1971: 1947: 1922: 1863: 1838: 1819: 1586: 1493: 1460: 1434: 1368: 1335: 1281: 1233: 1208: 1184: 1151: 320: 312: 270: 127: 123: 60: 2454: 2187: 2162: 1534: 1517: 1312: 3687: 3649: 3642: 3593: 3545: 3351: 3316: 3267: 3208: 3173: 3124: 3067: 3023: 2971: 2806: 2739: 2696: 2634: 2603: 2528: 2493: 2458: 2415: 2372: 2364: 2325: 2276: 2227: 2192: 2135: 2092: 2040: 2001: 1952: 1903: 1868: 1811: 1791: 1770: 1747: 1685: 1650: 1578: 1539: 1498: 1373: 1355: 1316: 1273: 1238: 1189: 1125: 1059: 1033: 998: 943: 936: 932: 259: 100: 3363: 3220: 3035: 2751: 2540: 2427: 2020: 1823: 1590: 1438: 1285: 3513: 3343: 3334:
Rackham O, Chin JW (August 2005). "A network of orthogonal ribosome x mRNA pairs".
3306: 3279: 3259: 3200: 3163: 3155: 3114: 3106: 3079: 3059: 3015: 2961: 2953: 2934:"A semi-synthetic organism that stores and retrieves increased genetic information" 2796: 2786: 2731: 2688: 2661: 2626: 2599: 2571: 2524: 2520: 2485: 2450: 2407: 2356: 2315: 2307: 2266: 2258: 2219: 2182: 2174: 2147: 2127: 2082: 2074: 2032: 1991: 1983: 1942: 1934: 1895: 1858: 1850: 1803: 1739: 1712: 1677: 1642: 1614: 1570: 1529: 1488: 1480: 1426: 1421: 1363: 1347: 1308: 1265: 1228: 1220: 1179: 1171: 1147: 1117: 1085: 657: 31: 742: 735: 3637: 3608: 1618: 728: 107:, the design of new-to-nature forms of life based on alternative biochemistries. 1351: 3729: 3632: 3449: 2771:
Proceedings of the National Academy of Sciences of the United States of America
1574: 1397: 896:
bacteria able to make proteins using such DNA. Its DNA contained six different
650: 204: 2163:"A third base pair for the polymerase chain reaction: inserting isoC and isoG" 2078: 1807: 1430: 3817: 3664: 3654: 3535: 3490: 3468: 2368: 2344: 1921:
Sandin P, Wilhelmsson LM, Lincoln P, Powers VE, Brown T, Albinsson B (2005).
1716: 1359: 1269: 1048: 978: 973: 935:
artificial replication and transcription polymerases starting generally from
792: 758: 751: 680: 673: 666: 619: 609: 602: 427: 376:
For structures of the analogues that may be mentioned in the literature, see
189: 156:
Several nucleoside analogues are used as antiviral or anticancer agents. The
2791: 2735: 2411: 2343:
Atwell, Shane; Meggers, Eric; Spraggon, Glen; Schultz, Peter G. (Dec 2001).
1767:
Fluorescent Analogs of Biomolecular Building Blocks: Design and Applications
593: 586: 3833: 3747: 3567: 3540: 3485: 3404: 3355: 3320: 3311: 3294: 3271: 3263: 3212: 3177: 3128: 3071: 3027: 2975: 2810: 2743: 2638: 2630: 2575: 2532: 2497: 2462: 2419: 2376: 2329: 2280: 2231: 2196: 2096: 2044: 2005: 1956: 1907: 1872: 1815: 1751: 1689: 1654: 1582: 1502: 1377: 1320: 1242: 1193: 1129: 1003: 788: 454: 177:
Nucleic acid analogues are used in molecular biology for several purposes:
96: 72: 3159: 2700: 1987: 1543: 1277: 3659: 3505: 3372: 3110: 2311: 2178: 2139: 1938: 1038: 988: 846: 784: 504: 488: 480: 466: 138: 134:
proposes that a genetic molecule require a charged backbone to function.
104: 84: 3460: 3347: 3019: 2957: 2882:"First life forms to pass on artificial DNA engineered by US scientists" 2296:"Fluorescent probing for RNA molecules by an unnatural base-pair system" 1559:"Fluorescent pteridine nucleoside analogs: a window on DNA interactions" 1484: 1175: 37: 3719: 3428: 3423: 3418: 2109: 1018: 1013: 1008: 903:
Another demonstration of UBPs were achieved by Ichiro Hirao's group at
897: 881: 850: 826: 799: 517: 435: 387: 371: 361: 355: 282: 274: 247: 169: 115: 88: 45: 2665: 2489: 2360: 2262: 2247:"Unnatural substrate repertoire of A, B, and X family DNA polymerases" 2223: 2060: 2036: 1899: 1854: 1681: 1646: 1224: 1121: 390:
are six-membered heterocyclic with nitrogen atoms in position 1 and 3.
323:
existed, however, evidence for this hypothesis been called "tenuous".
3583: 3204: 3063: 2131: 1743: 1393:"Researchers Report Breakthrough in Creating Artificial Genetic Code" 780: 571: 484: 278: 227: 76: 2692: 1558: 471: 396:
are bicyclic, consisting of a pyrimidine fused to an imidazole ring.
3737: 3588: 3518: 2161:
Johnson SC, Sherrill CB, Marshall DJ, Moser MJ, Prudent JR (2004).
1301:
Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression
1209:"Molecular beacons of xeno-nucleic acid for detecting nucleic acid" 1028: 993: 690: 446: 341: 197: 3093:
Kimoto M, Kawai R, Mitsui T, Yokoyama S, Hirao I (February 2009).
2294:
Kimoto M, Mitsui T, Harada Y, Sato A, Yokoyama S, Hirao I (2007).
3742: 2908:"Scientists Add Letters to DNA's Alphabet, Raising Hope and Fear" 885: 874: 858: 803: 555: 500: 439: 3235:"Xenobiology: a new form of life as the ultimate biosafety tool" 3190: 601:
A GC basepair: purine carbonyl/amine forms three intermolecular
95:, which affect the properties of the chain (PNA can even form a 75:
are chains of nucleotides, which are composed of three parts: a
3757: 3752: 3702: 2826:"Scientists Create First Living Organism With 'Artificial' DNA" 1885: 1106: 968: 838: 672:
An X-DAP base: purine ketone/ketone forms three intermolecular
513: 431: 406: 393: 347: 235: 196:
DNA, RNA and other XNA molecules similar to the actions of RNA
80: 1920: 757:
An S-Pa base: purine thienyl/amine forms three intermolecular
3560: 2651: 2018: 1461:"A semi-synthetic organism with an expanded genetic alphabet" 904: 750:
A F-Z base: methylbenzimidazole does not form intermolecular
679:
A iG-iC base: purine amine/ketone forms three intermolecular
559: 157: 2342: 2160: 665:
A DAP-T base: purine amine/amine forms three intermolecular
3141: 1969: 1145: 1081:"Chemists Invent New Letters for Nature's Genetic Alphabet" 1043: 842: 711: 413: 3004: 2764: 213:
Investigation of the structural features of nucleic acids.
3622: 3443: 3092: 3048: 1458: 1419:
Callaway E (May 7, 2014). "First life with 'alien' DNA".
830: 798:
Metal complexing has been shown to occur between natural
286: 68: 64: 49: 41: 2713: 608:
An AT basepair: purine amine/- forms two intermolecular
331: 265: 2931: 2475: 825:
An unnatural base pair (UBP) is a designed subunit (or
2758: 2510: 2293: 71:, used in medicine and in molecular biology research. 715:
is yDNA, in which the base is widened by the benzene.
222: 27:
Compound analogous to naturally occurring RNA and DNA
2588: 2553: 1764: 1631: 1603: 710:The numbers of possible base pairs is doubled when 210:
Investigation of the mechanisms used by enzyme; and
953:Novel tRNA encoding non-natural aminoacids for an 929:Novel backbones and base pairs as discussed above; 3249: 2345:"Structure of a Copper-Mediated Base Pair in DNA" 1836: 554:pairing, in particular in or near the anticodon: 3815: 3292: 2513:Journal of Biomolecular Structure & Dynamics 2389: 1454: 1452: 1450: 1448: 1206: 1054:Artificially Expanded Genetic Information System 285:. Cordycepin is an anticancer drug that targets 1515: 1255: 2678: 2244: 1412: 1333: 548: 296: 63:(structurally similar) to naturally occurring 3388: 2209: 1445: 1334:Robertson, M. P.; Joyce, G. F. (2012-05-01). 1258:Antisense & Nucleic Acid Drug Development 1207:Wang Q, Chen L, Long Y, Tian H, Wu J (2013). 531: 2925: 2856:"Life engineered with expanded genetic code" 2154: 814: 783:nucleosides around a central metal atom are 3333: 3286: 2672: 1789: 1384: 1152:"Catalysts from synthetic genetic polymers" 3402: 3395: 3381: 3293:Shinkai A, Patel PH, Loeb LA (June 2001). 2616: 2103: 1837:Sinkeldam RW, Greco NJ, Tor Y (May 2010). 1729: 1702: 1340:Cold Spring Harbor Perspectives in Biology 99:). Nucleic acid analogues are also called 3310: 3167: 3118: 2965: 2800: 2790: 2440: 2319: 2270: 2186: 2086: 2056: 2054: 1995: 1946: 1862: 1792:"Fluorescent nucleic acid base analogues" 1533: 1516:Ward DC, Reich E, Stryer L (March 1969). 1492: 1367: 1298: 1232: 1183: 1072: 103:and represent one of the main pillars of 2849: 2847: 2823: 2349:Journal of the American Chemical Society 2251:Journal of the American Chemical Society 2245:Hwang GT, Romesberg FE (November 2008). 2212:Journal of the American Chemical Society 2025:Journal of the American Chemical Society 1670:Journal of the American Chemical Society 1667: 1635:Journal of the American Chemical Society 1418: 1110:Journal of the American Chemical Society 722:Novel basepairs with special properties 470: 226: 168: 36: 2905: 2899: 1556: 1390: 426:One of the most common base analogs is 14: 3816: 2879: 2873: 2051: 1078: 173:Common changes in nucleotide analogues 3376: 2989:'Unnatural' microbe can make proteins 2853: 2844: 845:. More technically, these artificial 332:Nucleobase structure and nomenclature 266:Other notable analogues used as tools 217: 2817: 1732:Organic & Biomolecular Chemistry 1141: 1139: 919: 164: 3299:The Journal of Biological Chemistry 2478:The Journal of Physical Chemistry B 1522:The Journal of Biological Chemistry 773: 24: 764:An xA-T base: same bonding as A-T 612:with pyrimidine carbonyl/carbonyl 223:Hydrolysis resistant RNA-analogues 132:polyelectrolyte theory of the gene 79:backbone, a pentose sugar, either 25: 3855: 3519:Micro 2443:Journal of Inorganic Biochemistry 1136: 326: 110:Artificial nucleic acids include 3798: 3797: 1563:Cell Biochemistry and Biophysics 741: 734: 727: 656: 649: 642: 592: 585: 354: 340: 231:Chemical structure of Morpholino 3474:precursor, heterogenous nuclear 3327: 3243: 3227: 3184: 3135: 3086: 3042: 2998: 2982: 2707: 2645: 2610: 2582: 2547: 2504: 2469: 2434: 2383: 2336: 2287: 2238: 2203: 2012: 1963: 1914: 1879: 1830: 1796:Quarterly Reviews of Biophysics 1783: 1758: 1723: 1696: 1661: 1625: 1597: 1550: 1509: 605:with pyrimidine amine/carbonyl 565: 475:Structure of aminoallyl-uridine 460: 307:It has been suggested that the 3604:Trans-acting small interfering 3568:Enhancer RNAs 3486:Transfer 2525:10.1080/07391102.2002.10506826 1336:"The Origins of the RNA World" 1327: 1292: 1249: 1200: 1100: 925:focused on different aspects: 669:with pyrimidine ketone/ketone 528:in medicine and biochemistry. 258:or, for PNA, other methods of 13: 1: 3491:Ribosomal 3469:Messenger 2681:Biochemistry and Cell Biology 2455:10.1016/S0162-0134(02)00624-4 1535:10.1016/S0021-9258(18)91833-8 1313:10.1016/s0167-4781(99)00150-5 1066: 683:with pyrimidine ketone/amine 637:Unused basepair arrangements 434:which pairs with a different 203:As a tool with resistance to 3252:Chemistry & Biodiversity 2604:10.1016/0162-0134(85)83009-9 2067:Journal of Molecular Biology 1765:Wilhelmsson and Tor (2016). 1619:10.1016/j.tetlet.2004.01.108 761:with pyrrole -/carbaldehyde 696:Other noteworthy basepairs: 676:with pyrimidine amine/amine 256:the phosphoramidite strategy 250:, and peptide nucleic acid ( 7: 1790:Wilhelmsson LM (May 2010). 1352:10.1101/cshperspect.a003608 961: 549:Natural non-canonical bases 421: 297:Precursors to the RNA world 145: 10: 3860: 3670:Multicopy single-stranded 3514:Interferential 2824:Callaway E (May 7, 2014). 1079:Singer E (July 19, 2015). 890:Scripps Research Institute 835:Scripps Research Institute 818: 532:Fluorescent base analogues 464: 375: 369: 300: 149: 29: 3793: 3728: 3678: 3621: 3584:Guide 3576: 3504: 3459: 3442: 3411: 2906:Pollack A (May 7, 2014). 2079:10.1016/j.jmb.2013.05.018 1808:10.1017/s0033583510000090 1431:10.1038/nature.2014.15179 1391:Pollack A (May 7, 2014). 1024:Oligonucleotide synthesis 815:Unnatural base pair (UBP) 721: 636: 579: 3546:Small nuclear 2880:Sample I (May 7, 2014). 2854:Fikes BJ (May 8, 2014). 1717:10.2174/1385272023373914 1270:10.1089/oli.1.1997.7.187 948:Shine-Dalgarno sequences 877:containing d5SICS–dNaM. 400:Artificial nucleotides ( 59:are compounds which are 30:Not to be confused with 3660:Genomic 3336:Nature Chemical Biology 2860:San Diego Union Tribune 2792:10.1073/pnas.1205176109 2736:10.1126/science.1080587 2412:10.1126/science.1088334 944:16S ribosomal sequences 867:nucleotide triphosphate 3763:Artificial chromosomes 3551:Small nucleolar 3312:10.1074/jbc.M011472200 3264:10.1002/cbdv.200900083 3148:Nucleic Acids Research 3099:Nucleic Acids Research 2631:10.1002/anie.200454172 2576:10.1002/ange.200501589 2300:Nucleic Acids Research 2167:Nucleic Acids Research 1976:Nucleic Acids Research 1927:Nucleic Acids Research 497:aminoallyl nucleotides 476: 232: 174: 57:Nucleic acid analogues 53: 3556:Small Cajal Body RNAs 1769:. New Jersey: Wiley. 984:Expanded genetic code 955:expanded genetic code 474: 230: 172: 128:threose nucleic acids 112:peptide nucleic acids 40: 3609:Subgenomic messenger 3524:Small interfering 3496:Transfer-messenger 3193:Nature Biotechnology 3008:Nature Biotechnology 2556:Angew. Chem. Int. Ed 1575:10.1385/cbb:34:2:257 849:bearing hydrophobic 524:Fluorophores find a 402:Unnatural Base Pairs 378:Simple aromatic ring 303:RNA world hypothesis 244:bridged nucleic acid 152:Nucleoside analogues 124:glycol nucleic acids 120:locked nucleic acids 3348:10.1038/nchembio719 3160:10.1093/nar/gkr1068 3020:10.1038/nbt0202-177 2995:. 29 November 2017. 2958:10.1038/nature24659 2950:2017Natur.551..644Z 2783:2012PNAS..10912005M 2728:2003Sci...299.1212T 2568:2005AngCh.117.7370C 2404:2003Sci...302..868L 2355:(49): 12364–12367. 2124:1977Natur.270..369K 1988:10.1093/nar/gkm1006 1557:Hawkins ME (2001). 1485:10.1038/nature13314 1477:2014Natur.509..385M 1176:10.1038/nature13982 1168:2015Natur.518..427T 821:Unnatural base pair 240:locked nucleic acid 3824:Molecular genetics 3638:Chloroplast 3481:modified Messenger 3444:Ribonucleic acids 3111:10.1093/nar/gkn956 2312:10.1093/nar/gkm508 2179:10.1093/nar/gkh522 1939:10.1093/nar/gki790 946:with altered anti- 853:feature two fused 580:Natural basepairs 477: 271:Dideoxynucleotides 233: 218:Backbone analogues 175: 122:(LNA), as well as 101:xeno nucleic acids 87:, and one of four 54: 3811: 3810: 3688:Xeno 3650:Complementary 3623:Deoxyribonucleic 3617: 3616: 3594:Small hairpin 2832:. Huffington Post 2722:(5610): 1212–13. 2666:10.1021/ja0025806 2619:Angewandte Chemie 2490:10.1021/jp052202t 2361:10.1021/ja011822e 2263:10.1021/ja803833h 2224:10.1021/ja071970q 2037:10.1021/ja806944w 1900:10.1021/ja0025797 1855:10.1021/cr900301e 1776:978-1-118-17586-6 1682:10.1021/ja052000a 1647:10.1021/ja804233g 1225:10.7150/thno.5935 1150:(February 2015). 1122:10.1021/ja0458726 1060:Xeno nucleic acid 1034:Synthetic biology 999:Molecular biology 937:T7 RNA polymerase 920:Orthogonal system 768: 767: 754:with toluene F/F 687: 686: 616: 615: 293:, an antibiotic. 260:peptide synthesis 165:Molecular biology 16:(Redirected from 3851: 3839:RNA interference 3801: 3800: 3778:Yeast 3599:Small temporal 3529:Piwi-interacting 3457: 3456: 3453: 3434:Deoxynucleotides 3397: 3390: 3383: 3374: 3373: 3368: 3367: 3331: 3325: 3324: 3314: 3305:(22): 18836–42. 3290: 3284: 3283: 3247: 3241: 3240:Vol 32(4):322–31 3231: 3225: 3224: 3205:10.1038/nbt.2556 3188: 3182: 3181: 3171: 3139: 3133: 3132: 3122: 3090: 3084: 3083: 3064:10.1038/nmeth915 3046: 3040: 3039: 3002: 2996: 2986: 2980: 2979: 2969: 2944:(7682): 644–47. 2929: 2923: 2922: 2920: 2918: 2903: 2897: 2896: 2894: 2892: 2877: 2871: 2870: 2868: 2866: 2851: 2842: 2841: 2839: 2837: 2821: 2815: 2814: 2804: 2794: 2777:(30): 12005–10. 2762: 2756: 2755: 2711: 2705: 2704: 2676: 2670: 2669: 2660:(43): 10714–15. 2654:J. Am. Chem. Soc 2649: 2643: 2642: 2614: 2608: 2607: 2586: 2580: 2579: 2551: 2545: 2544: 2508: 2502: 2501: 2484:(32): 15345–48. 2473: 2467: 2466: 2438: 2432: 2431: 2398:(5646): 868–71. 2387: 2381: 2380: 2340: 2334: 2333: 2323: 2291: 2285: 2284: 2274: 2257:(44): 14872–82. 2242: 2236: 2235: 2207: 2201: 2200: 2190: 2158: 2152: 2151: 2132:10.1038/270369a0 2118:(5635): 369–70. 2107: 2101: 2100: 2090: 2073:(20): 3888–906. 2058: 2049: 2048: 2016: 2010: 2009: 1999: 1967: 1961: 1960: 1950: 1918: 1912: 1911: 1888:J. Am. Chem. Soc 1883: 1877: 1876: 1866: 1843:Chemical Reviews 1834: 1828: 1827: 1787: 1781: 1780: 1762: 1756: 1755: 1744:10.1039/b612284c 1727: 1721: 1720: 1700: 1694: 1693: 1676:(31): 10784–85. 1665: 1659: 1658: 1641:(38): 12574–75. 1629: 1623: 1622: 1607:Tetrahedron Lett 1601: 1595: 1594: 1554: 1548: 1547: 1537: 1513: 1507: 1506: 1496: 1471:(7500): 385–88. 1456: 1443: 1442: 1416: 1410: 1409: 1407: 1405: 1388: 1382: 1381: 1371: 1331: 1325: 1324: 1296: 1290: 1289: 1253: 1247: 1246: 1236: 1204: 1198: 1197: 1187: 1162:(7539): 427–30. 1143: 1134: 1133: 1104: 1098: 1097: 1095: 1093: 1076: 774:Metal base-pairs 745: 738: 731: 719: 718: 660: 653: 646: 634: 633: 596: 589: 577: 576: 495:Amine reactive: 358: 344: 48:to the left and 32:degenerate bases 21: 3859: 3858: 3854: 3853: 3852: 3850: 3849: 3848: 3844:Gene expression 3814: 3813: 3812: 3807: 3789: 3730:Cloning vectors 3724: 3710:Locked 3674: 3624: 3613: 3572: 3500: 3447: 3446: 3438: 3407: 3401: 3371: 3332: 3328: 3291: 3287: 3248: 3244: 3232: 3228: 3189: 3185: 3154:(6): 2793–806. 3140: 3136: 3091: 3087: 3047: 3043: 3003: 2999: 2987: 2983: 2930: 2926: 2916: 2914: 2904: 2900: 2890: 2888: 2878: 2874: 2864: 2862: 2852: 2845: 2835: 2833: 2822: 2818: 2763: 2759: 2712: 2708: 2693:10.1139/o93-026 2687:(3–4): 162–68. 2677: 2673: 2650: 2646: 2625:(33): 4300–02. 2615: 2611: 2587: 2583: 2562:(44): 7370–74. 2552: 2548: 2509: 2505: 2474: 2470: 2439: 2435: 2388: 2384: 2341: 2337: 2306:(16): 5360–69. 2292: 2288: 2243: 2239: 2218:(28): 8836–44. 2208: 2204: 2159: 2155: 2108: 2104: 2059: 2052: 2031:(12): 4288–93. 2017: 2013: 1968: 1964: 1933:(16): 5019–25. 1919: 1915: 1894:(10): 2434–35. 1884: 1880: 1849:(5): 2579–619. 1835: 1831: 1788: 1784: 1777: 1763: 1759: 1738:(23): 4265–74. 1728: 1724: 1705:Curr. Org. Chem 1701: 1697: 1666: 1662: 1630: 1626: 1613:(11): 2457–61. 1602: 1598: 1555: 1551: 1514: 1510: 1457: 1446: 1417: 1413: 1403: 1401: 1389: 1385: 1332: 1328: 1297: 1293: 1254: 1250: 1205: 1201: 1144: 1137: 1105: 1101: 1091: 1089: 1077: 1073: 1069: 1064: 964: 922: 823: 817: 776: 770: 568: 551: 544: 534: 526:variety of uses 469: 463: 424: 381: 374: 368: 367: 366: 365: 364: 359: 351: 350: 345: 334: 329: 305: 299: 268: 225: 220: 167: 154: 148: 35: 28: 23: 22: 15: 12: 11: 5: 3857: 3847: 3846: 3841: 3836: 3831: 3826: 3809: 3808: 3806: 3805: 3794: 3791: 3790: 3788: 3787: 3786: 3785: 3780: 3775: 3770: 3760: 3755: 3750: 3745: 3740: 3734: 3732: 3726: 3725: 3723: 3722: 3717: 3715:Peptide 3712: 3707: 3706: 3705: 3700: 3695: 3693:Glycol 3684: 3682: 3676: 3675: 3673: 3672: 3667: 3662: 3657: 3652: 3647: 3646: 3645: 3640: 3629: 3627: 3619: 3618: 3615: 3614: 3612: 3611: 3606: 3601: 3596: 3591: 3586: 3580: 3578: 3574: 3573: 3571: 3570: 3565: 3564: 3563: 3558: 3553: 3548: 3538: 3533: 3532: 3531: 3526: 3521: 3510: 3508: 3502: 3501: 3499: 3498: 3493: 3488: 3483: 3478: 3477: 3476: 3465: 3463: 3454: 3440: 3439: 3437: 3436: 3431: 3426: 3421: 3415: 3413: 3409: 3408: 3405:nucleic acids 3400: 3399: 3392: 3385: 3377: 3370: 3369: 3326: 3285: 3258:(6): 791–808. 3242: 3226: 3183: 3134: 3085: 3052:Nature Methods 3041: 2997: 2981: 2924: 2912:New York Times 2898: 2872: 2843: 2816: 2757: 2706: 2671: 2644: 2609: 2592:Inorg. Biochem 2581: 2546: 2503: 2468: 2449:(1–2): 94–99. 2433: 2382: 2335: 2286: 2237: 2202: 2173:(6): 1937–41. 2153: 2102: 2050: 2011: 1962: 1913: 1878: 1829: 1782: 1775: 1757: 1722: 1695: 1660: 1624: 1596: 1549: 1528:(5): 1228–37. 1508: 1444: 1411: 1398:New York Times 1383: 1346:(5): a003608. 1326: 1291: 1248: 1219:(6): 395–408. 1199: 1135: 1116:(5): 1424–30. 1099: 1070: 1068: 1065: 1063: 1062: 1057: 1051: 1046: 1041: 1036: 1031: 1026: 1021: 1016: 1011: 1006: 1001: 996: 991: 986: 981: 976: 971: 965: 963: 960: 959: 958: 951: 940: 930: 921: 918: 855:aromatic rings 819:Main article: 816: 813: 775: 772: 766: 765: 762: 759:hydrogen bonds 755: 752:hydrogen bonds 747: 746: 739: 732: 724: 723: 717: 716: 708: 704: 701: 685: 684: 681:hydrogen bonds 677: 674:hydrogen bonds 670: 667:hydrogen bonds 662: 661: 654: 647: 639: 638: 632: 631: 628: 614: 613: 610:hydrogen bonds 606: 603:hydrogen bonds 598: 597: 590: 582: 581: 567: 564: 550: 547: 542: 533: 530: 522: 521: 511: 508: 465:Main article: 462: 459: 423: 420: 398: 397: 391: 370:Main article: 360: 353: 352: 346: 339: 338: 337: 336: 335: 333: 330: 328: 327:Base analogues 325: 301:Main article: 298: 295: 267: 264: 224: 221: 219: 216: 215: 214: 211: 208: 205:RNA hydrolysis 201: 186: 183: 166: 163: 150:Main article: 147: 144: 26: 9: 6: 4: 3: 2: 3856: 3845: 3842: 3840: 3837: 3835: 3832: 3830: 3829:Nucleic acids 3827: 3825: 3822: 3821: 3819: 3804: 3796: 3795: 3792: 3784: 3781: 3779: 3776: 3774: 3771: 3769: 3766: 3765: 3764: 3761: 3759: 3756: 3754: 3751: 3749: 3746: 3744: 3741: 3739: 3736: 3735: 3733: 3731: 3727: 3721: 3718: 3716: 3713: 3711: 3708: 3704: 3701: 3699: 3698:Threose 3696: 3694: 3691: 3690: 3689: 3686: 3685: 3683: 3681: 3677: 3671: 3668: 3666: 3663: 3661: 3658: 3656: 3655:Deoxyribozyme 3653: 3651: 3648: 3644: 3643:Mitochondrial 3641: 3639: 3636: 3635: 3634: 3631: 3630: 3628: 3626: 3620: 3610: 3607: 3605: 3602: 3600: 3597: 3595: 3592: 3590: 3587: 3585: 3582: 3581: 3579: 3575: 3569: 3566: 3562: 3559: 3557: 3554: 3552: 3549: 3547: 3544: 3543: 3542: 3539: 3537: 3534: 3530: 3527: 3525: 3522: 3520: 3517: 3516: 3515: 3512: 3511: 3509: 3507: 3503: 3497: 3494: 3492: 3489: 3487: 3484: 3482: 3479: 3475: 3472: 3471: 3470: 3467: 3466: 3464: 3462: 3461:Translational 3458: 3455: 3451: 3445: 3441: 3435: 3432: 3430: 3427: 3425: 3422: 3420: 3417: 3416: 3414: 3410: 3406: 3398: 3393: 3391: 3386: 3384: 3379: 3378: 3375: 3365: 3361: 3357: 3353: 3349: 3345: 3342:(3): 159–66. 3341: 3337: 3330: 3322: 3318: 3313: 3308: 3304: 3300: 3296: 3289: 3281: 3277: 3273: 3269: 3265: 3261: 3257: 3253: 3246: 3239: 3236: 3230: 3222: 3218: 3214: 3210: 3206: 3202: 3199:(5): 453–57. 3198: 3194: 3187: 3179: 3175: 3170: 3165: 3161: 3157: 3153: 3149: 3145: 3138: 3130: 3126: 3121: 3116: 3112: 3108: 3104: 3100: 3096: 3089: 3081: 3077: 3073: 3069: 3065: 3061: 3058:(9): 729–35. 3057: 3053: 3045: 3037: 3033: 3029: 3025: 3021: 3017: 3014:(2): 177–82. 3013: 3009: 3001: 2994: 2990: 2985: 2977: 2973: 2968: 2963: 2959: 2955: 2951: 2947: 2943: 2939: 2935: 2928: 2913: 2909: 2902: 2887: 2883: 2876: 2861: 2857: 2850: 2848: 2831: 2827: 2820: 2812: 2808: 2803: 2798: 2793: 2788: 2784: 2780: 2776: 2772: 2768: 2761: 2753: 2749: 2745: 2741: 2737: 2733: 2729: 2725: 2721: 2717: 2710: 2702: 2698: 2694: 2690: 2686: 2682: 2675: 2667: 2663: 2659: 2655: 2648: 2640: 2636: 2632: 2628: 2624: 2620: 2613: 2605: 2601: 2597: 2593: 2585: 2577: 2573: 2569: 2565: 2561: 2557: 2550: 2542: 2538: 2534: 2530: 2526: 2522: 2518: 2514: 2507: 2499: 2495: 2491: 2487: 2483: 2479: 2472: 2464: 2460: 2456: 2452: 2448: 2444: 2437: 2429: 2425: 2421: 2417: 2413: 2409: 2405: 2401: 2397: 2393: 2386: 2378: 2374: 2370: 2366: 2362: 2358: 2354: 2350: 2346: 2339: 2331: 2327: 2322: 2317: 2313: 2309: 2305: 2301: 2297: 2290: 2282: 2278: 2273: 2268: 2264: 2260: 2256: 2252: 2248: 2241: 2233: 2229: 2225: 2221: 2217: 2213: 2206: 2198: 2194: 2189: 2184: 2180: 2176: 2172: 2168: 2164: 2157: 2149: 2145: 2141: 2137: 2133: 2129: 2125: 2121: 2117: 2113: 2106: 2098: 2094: 2089: 2084: 2080: 2076: 2072: 2068: 2064: 2057: 2055: 2046: 2042: 2038: 2034: 2030: 2026: 2022: 2015: 2007: 2003: 1998: 1993: 1989: 1985: 1982:(1): 157–67. 1981: 1977: 1973: 1966: 1958: 1954: 1949: 1944: 1940: 1936: 1932: 1928: 1924: 1917: 1909: 1905: 1901: 1897: 1893: 1889: 1882: 1874: 1870: 1865: 1860: 1856: 1852: 1848: 1844: 1840: 1833: 1825: 1821: 1817: 1813: 1809: 1805: 1802:(2): 159–83. 1801: 1797: 1793: 1786: 1778: 1772: 1768: 1761: 1753: 1749: 1745: 1741: 1737: 1733: 1726: 1718: 1714: 1711:(9): 775–93. 1710: 1706: 1699: 1691: 1687: 1683: 1679: 1675: 1671: 1664: 1656: 1652: 1648: 1644: 1640: 1636: 1628: 1620: 1616: 1612: 1608: 1600: 1592: 1588: 1584: 1580: 1576: 1572: 1569:(2): 257–81. 1568: 1564: 1560: 1553: 1545: 1541: 1536: 1531: 1527: 1523: 1519: 1512: 1504: 1500: 1495: 1490: 1486: 1482: 1478: 1474: 1470: 1466: 1462: 1455: 1453: 1451: 1449: 1440: 1436: 1432: 1428: 1424: 1423: 1415: 1400: 1399: 1394: 1387: 1379: 1375: 1370: 1365: 1361: 1357: 1353: 1349: 1345: 1341: 1337: 1330: 1322: 1318: 1314: 1310: 1307:(1): 141–58. 1306: 1302: 1295: 1287: 1283: 1279: 1275: 1271: 1267: 1264:(3): 187–95. 1263: 1259: 1252: 1244: 1240: 1235: 1230: 1226: 1222: 1218: 1214: 1210: 1203: 1195: 1191: 1186: 1181: 1177: 1173: 1169: 1165: 1161: 1157: 1153: 1149: 1142: 1140: 1131: 1127: 1123: 1119: 1115: 1111: 1103: 1088: 1087: 1082: 1075: 1071: 1061: 1058: 1055: 1052: 1050: 1049:Hachimoji DNA 1047: 1045: 1042: 1040: 1037: 1035: 1032: 1030: 1027: 1025: 1022: 1020: 1017: 1015: 1012: 1010: 1007: 1005: 1002: 1000: 997: 995: 992: 990: 987: 985: 982: 980: 979:Deoxyribozyme 977: 975: 974:Dark quencher 972: 970: 967: 966: 956: 952: 949: 945: 941: 938: 934: 931: 928: 927: 926: 917: 915: 910: 906: 901: 899: 895: 891: 887: 883: 878: 876: 872: 868: 864: 860: 856: 852: 848: 844: 840: 836: 832: 828: 822: 812: 808: 805: 801: 796: 794: 793:square planar 790: 786: 782: 771: 763: 760: 756: 753: 749: 748: 744: 740: 737: 733: 730: 726: 725: 720: 713: 709: 705: 702: 699: 698: 697: 694: 692: 682: 678: 675: 671: 668: 664: 663: 659: 655: 652: 648: 645: 641: 640: 635: 629: 625: 624: 623: 621: 620:diaminopurine 611: 607: 604: 600: 599: 595: 591: 588: 584: 583: 578: 575: 573: 563: 561: 557: 546: 538: 529: 527: 519: 515: 512: 509: 506: 502: 498: 494: 493: 492: 490: 486: 482: 473: 468: 458: 456: 450: 448: 445: 441: 437: 433: 429: 428:5-bromouracil 419: 417: 415: 410: 408: 404:(UBPs) named 403: 395: 392: 389: 386: 385: 384: 379: 373: 363: 357: 349: 343: 324: 322: 318: 314: 310: 304: 294: 292: 288: 284: 280: 276: 272: 263: 261: 257: 253: 249: 245: 241: 237: 229: 212: 209: 206: 202: 199: 195: 191: 187: 184: 180: 179: 178: 171: 162: 159: 153: 143: 140: 135: 133: 129: 125: 121: 117: 113: 108: 106: 102: 98: 94: 90: 86: 82: 78: 74: 73:Nucleic acids 70: 66: 62: 58: 52:to the right. 51: 47: 43: 39: 33: 19: 3773:Bacterial 3748:Lambda phage 3679: 3412:Constituents 3339: 3335: 3329: 3302: 3298: 3288: 3255: 3251: 3245: 3237: 3229: 3196: 3192: 3186: 3151: 3147: 3137: 3102: 3098: 3088: 3055: 3051: 3044: 3011: 3007: 3000: 2992: 2984: 2941: 2937: 2927: 2915:. Retrieved 2911: 2901: 2889:. Retrieved 2886:The Guardian 2885: 2875: 2863:. Retrieved 2859: 2834:. Retrieved 2829: 2819: 2774: 2770: 2760: 2719: 2715: 2709: 2684: 2680: 2674: 2657: 2653: 2647: 2622: 2618: 2612: 2595: 2591: 2584: 2559: 2555: 2549: 2519:(1): 93–98. 2516: 2512: 2506: 2481: 2477: 2471: 2446: 2442: 2436: 2395: 2391: 2385: 2352: 2348: 2338: 2303: 2299: 2289: 2254: 2250: 2240: 2215: 2211: 2205: 2170: 2166: 2156: 2115: 2111: 2105: 2070: 2066: 2028: 2024: 2014: 1979: 1975: 1965: 1930: 1926: 1916: 1891: 1887: 1881: 1846: 1842: 1832: 1799: 1795: 1785: 1766: 1760: 1735: 1731: 1725: 1708: 1704: 1698: 1673: 1669: 1663: 1638: 1634: 1627: 1610: 1606: 1599: 1566: 1562: 1552: 1525: 1521: 1511: 1468: 1464: 1420: 1414: 1402:. Retrieved 1396: 1386: 1343: 1339: 1329: 1304: 1300: 1294: 1261: 1257: 1251: 1216: 1213:Theranostics 1212: 1202: 1159: 1155: 1113: 1109: 1102: 1090:. Retrieved 1084: 1074: 1004:Nucleic acid 923: 913: 908: 902: 893: 879: 870: 862: 824: 809: 797: 789:dodecahedral 777: 769: 695: 688: 617: 569: 566:Base-pairing 552: 539: 535: 523: 481:fluorophores 478: 461:Fluorophores 455:hypoxanthine 451: 425: 412: 405: 401: 399: 382: 306: 273:are used in 269: 234: 176: 155: 136: 109: 97:triple helix 56: 55: 3768:P1-derived 3536:Antisense 3429:Nucleotides 3424:Nucleosides 3419:Nucleobases 3233:Schmidt M. 2830:Nature News 1039:Xenobiology 989:Fluorophore 898:nucleobases 882:amino acids 851:nucleobases 847:nucleotides 800:nucleobases 785:tetrahedral 505:Alexa Fluor 489:fluorescein 467:Fluorophore 388:Pyrimidines 139:nucleotides 105:xenobiology 89:nucleobases 85:deoxyribose 46:nucleobases 18:Base analog 3818:Categories 3720:Morpholino 3633:Organellar 3541:Processual 3506:Regulatory 3450:non-coding 3105:(2): e14. 1148:Holliger P 1067:References 1019:Nucleotide 1014:Nucleoside 1009:Nucleobase 827:nucleobase 518:Affymetrix 444:transition 436:nucleobase 372:Nucleobase 362:Pyrimidine 291:tubercidin 283:cordycepin 281:is called 275:sequencing 248:morpholino 116:Morpholino 3680:Analogues 3665:Hachimoji 3448:(coding, 3403:Types of 3238:Bioessays 2598:: 61–73. 2369:0002-7863 1360:1943-0264 781:bidentate 691:isosteres 572:base pair 520:DNAchips. 485:rhodamine 483:(such as 479:Commonly 309:RNA world 279:adenosine 242:(LNA) or 198:ribozymes 77:phosphate 61:analogous 44:with its 3803:Category 3738:Phagemid 3589:Ribozyme 3364:37181098 3356:16408021 3321:11278911 3272:19554563 3221:23329867 3213:23563318 3178:22121213 3129:19073696 3072:16929319 3036:22055476 3028:11821864 2993:BBC News 2976:29189780 2811:22773812 2752:22413126 2744:12595687 2639:15368377 2541:41568646 2533:12144356 2498:16852946 2463:12620678 2428:37244007 2420:14593180 2377:11734038 2330:17693436 2281:18847263 2232:17592846 2197:15051811 2097:23727144 2045:19317504 2006:18003656 1957:16147985 1908:11456897 1873:20205430 1824:10783202 1816:20478079 1752:17102869 1690:16076156 1655:18761442 1591:12134698 1583:11898867 1503:24805238 1439:86967999 1378:20739415 1321:10807004 1286:19372403 1243:23781286 1194:25470036 1130:15686374 1092:July 20, 1029:Ribozyme 994:Genetics 962:See also 914:in vitro 909:in vitro 886:proteins 560:TΨC loop 447:mutation 422:Mutagens 146:Medicine 3743:Plasmid 3280:8572188 3169:3315302 3120:2632903 3080:6494156 2967:5796663 2946:Bibcode 2802:3409741 2779:Bibcode 2724:Bibcode 2716:Science 2701:8398074 2564:Bibcode 2400:Bibcode 2392:Science 2321:2018647 2272:2675700 2148:4177449 2120:Bibcode 2088:4521407 1997:2248743 1948:1201328 1864:2868948 1544:5767305 1494:4058825 1473:Bibcode 1369:3331698 1278:9212909 1234:3677410 1185:4336857 1164:Bibcode 1056:(AEGIS) 894:E. coli 875:plasmid 871:E. coli 863:E. coli 859:plasmid 804:thymine 556:inosine 501:cyanine 440:guanine 394:Purines 246:(BNA), 182:chance; 126:(GNA), 114:(PNA), 3758:Fosmid 3753:Cosmid 3703:Hexose 3625:acids 3577:Others 3362:  3354:  3319:  3278:  3270:  3219:  3211:  3176:  3166:  3127:  3117:  3078:  3070:  3034:  3026:  2974:  2964:  2938:Nature 2809:  2799:  2750:  2742:  2699:  2637:  2539:  2531:  2496:  2461:  2426:  2418:  2375:  2367:  2328:  2318:  2279:  2269:  2230:  2195:  2188:390373 2185:  2146:  2140:413053 2138:  2112:Nature 2095:  2085:  2043:  2004:  1994:  1955:  1945:  1906:  1871:  1861:  1822:  1814:  1773:  1750:  1688:  1653:  1589:  1581:  1542:  1501:  1491:  1465:Nature 1437:  1422:Nature 1404:May 7, 1376:  1366:  1358:  1319:  1284:  1276:  1241:  1231:  1192:  1182:  1156:Nature 1128:  969:Biotin 839:d5SICS 791:, and 627:bases. 514:Biotin 432:isomer 407:d5SICS 348:Purine 319:, and 236:Ribose 194:ligate 190:cleave 81:ribose 3783:Human 3561:Y RNA 3360:S2CID 3276:S2CID 3217:S2CID 3076:S2CID 3032:S2CID 2917:8 May 2891:8 May 2865:8 May 2836:8 May 2748:S2CID 2537:S2CID 2424:S2CID 2144:S2CID 1820:S2CID 1587:S2CID 1435:S2CID 1282:S2CID 1086:Wired 905:RIKEN 829:) of 543:nitro 158:viral 3352:PMID 3317:PMID 3268:PMID 3209:PMID 3174:PMID 3125:PMID 3068:PMID 3024:PMID 2972:PMID 2919:2014 2893:2014 2867:2014 2838:2014 2807:PMID 2740:PMID 2697:PMID 2635:PMID 2529:PMID 2494:PMID 2459:PMID 2416:PMID 2373:PMID 2365:ISSN 2326:PMID 2277:PMID 2228:PMID 2193:PMID 2136:PMID 2093:PMID 2041:PMID 2002:PMID 1953:PMID 1904:PMID 1869:PMID 1812:PMID 1771:ISBN 1748:PMID 1686:PMID 1651:PMID 1579:PMID 1540:PMID 1499:PMID 1406:2014 1374:PMID 1356:ISSN 1317:PMID 1305:1489 1274:PMID 1239:PMID 1190:PMID 1126:PMID 1094:2015 1044:xDNA 843:dNaM 841:and 712:xDNA 414:dNaM 411:and 192:and 118:and 67:and 3834:RNA 3344:doi 3307:doi 3303:276 3260:doi 3201:doi 3164:PMC 3156:doi 3115:PMC 3107:doi 3060:doi 3016:doi 2962:PMC 2954:doi 2942:551 2797:PMC 2787:doi 2775:109 2732:doi 2720:299 2689:doi 2662:doi 2658:122 2627:doi 2600:doi 2572:doi 2560:117 2521:doi 2486:doi 2482:109 2451:doi 2408:doi 2396:302 2357:doi 2353:123 2316:PMC 2308:doi 2267:PMC 2259:doi 2255:130 2220:doi 2216:129 2183:PMC 2175:doi 2128:doi 2116:270 2083:PMC 2075:doi 2071:425 2033:doi 2029:131 1992:PMC 1984:doi 1943:PMC 1935:doi 1896:doi 1892:123 1859:PMC 1851:doi 1847:110 1804:doi 1740:doi 1713:doi 1678:doi 1674:127 1643:doi 1639:130 1615:doi 1571:doi 1530:doi 1526:244 1489:PMC 1481:doi 1469:509 1427:doi 1364:PMC 1348:doi 1309:doi 1266:doi 1229:PMC 1221:doi 1180:PMC 1172:doi 1160:518 1118:doi 1114:127 933:XNA 831:DNA 503:or 487:or 416:UBP 409:UBP 321:TNA 317:PNA 313:GNA 287:RNA 252:PNA 93:PNA 83:or 69:DNA 65:RNA 50:DNA 42:RNA 3820:: 3358:. 3350:. 3338:. 3315:. 3301:. 3297:. 3274:. 3266:. 3254:. 3215:. 3207:. 3197:31 3195:. 3172:. 3162:. 3152:40 3150:. 3146:. 3123:. 3113:. 3103:37 3101:. 3097:. 3074:. 3066:. 3054:. 3030:. 3022:. 3012:20 3010:. 2991:. 2970:. 2960:. 2952:. 2940:. 2936:. 2910:. 2884:. 2858:. 2846:^ 2828:. 2805:. 2795:. 2785:. 2773:. 2769:. 2746:. 2738:. 2730:. 2718:. 2695:. 2685:71 2683:. 2656:. 2633:. 2623:43 2621:. 2596:25 2594:. 2570:. 2558:. 2535:. 2527:. 2517:20 2515:. 2492:. 2480:. 2457:. 2447:94 2445:. 2422:. 2414:. 2406:. 2394:. 2371:. 2363:. 2351:. 2347:. 2324:. 2314:. 2304:35 2302:. 2298:. 2275:. 2265:. 2253:. 2249:. 2226:. 2214:. 2191:. 2181:. 2171:32 2169:. 2165:. 2142:. 2134:. 2126:. 2114:. 2091:. 2081:. 2069:. 2065:. 2053:^ 2039:. 2027:. 2023:. 2000:. 1990:. 1980:36 1978:. 1974:. 1951:. 1941:. 1931:33 1929:. 1925:. 1902:. 1890:. 1867:. 1857:. 1845:. 1841:. 1818:. 1810:. 1800:43 1798:. 1794:. 1746:. 1734:. 1707:. 1684:. 1672:. 1649:. 1637:. 1611:45 1609:. 1585:. 1577:. 1567:34 1565:. 1561:. 1538:. 1524:. 1520:. 1497:. 1487:. 1479:. 1467:. 1463:. 1447:^ 1433:. 1425:. 1395:. 1372:. 1362:. 1354:. 1342:. 1338:. 1315:. 1303:. 1280:. 1272:. 1260:. 1237:. 1227:. 1215:. 1211:. 1188:. 1178:. 1170:. 1158:. 1154:. 1138:^ 1124:. 1112:. 1083:. 787:, 449:. 438:, 315:, 262:. 3452:) 3396:e 3389:t 3382:v 3366:. 3346:: 3340:1 3323:. 3309:: 3282:. 3262:: 3256:6 3223:. 3203:: 3180:. 3158:: 3131:. 3109:: 3082:. 3062:: 3056:3 3038:. 3018:: 2978:. 2956:: 2948:: 2921:. 2895:. 2869:. 2840:. 2813:. 2789:: 2781:: 2754:. 2734:: 2726:: 2703:. 2691:: 2668:. 2664:: 2641:. 2629:: 2606:. 2602:: 2578:. 2574:: 2566:: 2543:. 2523:: 2500:. 2488:: 2465:. 2453:: 2430:. 2410:: 2402:: 2379:. 2359:: 2332:. 2310:: 2283:. 2261:: 2234:. 2222:: 2199:. 2177:: 2150:. 2130:: 2122:: 2099:. 2077:: 2047:. 2035:: 2008:. 1986:: 1959:. 1937:: 1910:. 1898:: 1875:. 1853:: 1826:. 1806:: 1779:. 1754:. 1742:: 1736:4 1719:. 1715:: 1709:6 1692:. 1680:: 1657:. 1645:: 1621:. 1617:: 1593:. 1573:: 1546:. 1532:: 1505:. 1483:: 1475:: 1441:. 1429:: 1408:. 1380:. 1350:: 1344:4 1323:. 1311:: 1288:. 1268:: 1262:7 1245:. 1223:: 1217:3 1196:. 1174:: 1166:: 1132:. 1120:: 1096:. 957:. 942:( 939:; 380:. 207:; 200:; 34:. 20:)

Index

Base analog
degenerate bases

RNA
nucleobases
DNA
analogous
RNA
DNA
Nucleic acids
phosphate
ribose
deoxyribose
nucleobases
PNA
triple helix
xeno nucleic acids
xenobiology
peptide nucleic acids
Morpholino
locked nucleic acids
glycol nucleic acids
threose nucleic acids
polyelectrolyte theory of the gene
nucleotides
Nucleoside analogues
viral

cleave
ligate

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.