Knowledge

Bingham plastic

Source 📝

403:, is known, it becomes easier to handle different pipe-flow problems, viz. calculating the pressure drop for evaluating pumping costs or to find the flow-rate in a piping network for a given pressure drop. It is usually extremely difficult to arrive at exact analytical solution to calculate the friction factor associated with flow of non-Newtonian fluids and therefore explicit approximations are used to calculate it. Once the friction factor has been calculated the pressure drop can be easily determined for a given flow by the 128: 101: 20: 1664: 120:, is reached. Beyond this point the flow rate increases steadily with increasing shear stress. This is roughly the way in which Bingham presented his observation, in an experimental study of paints. These properties allow a Bingham plastic to have a textured surface with peaks and ridges instead of a featureless surface like a 389: 1996:
Both Swamee–Aggarwal equation and the Darby–Melson equation can be combined to give an explicit equation for determining the friction factor of Bingham plastic fluids in any regime. Relative roughness is not a parameter in any of the equations because the friction factor of Bingham plastic fluids is
146:
on the horizontal one. (Volumetric flow rate depends on the size of the pipe, shear rate is a measure of how the velocity changes with distance. It is proportional to flow rate, but does not depend on pipe size.) As before, the Newtonian fluid flows and gives a shear rate for any finite value of
1368: 1392: 258: 1758: 111:
shows a graph of the behaviour of an ordinary viscous (or Newtonian) fluid in red, for example in a pipe. If the pressure at one end of a pipe is increased this produces a stress on the fluid tending to make it move (called the
170:, and a certain amount of stress is required to break this structure. Once the structure has been broken, the particles move with the liquid under viscous forces. If the stress is removed, the particles associate again. 966: 1114: 1844: 766: 1270: 1659:{\displaystyle f_{L}={\frac {K_{1}+{\dfrac {4K_{2}}{\left(K_{1}+{\frac {K_{1}K_{2}}{K_{1}^{4}+3K_{2}}}\right)^{3}}}}{1+{\dfrac {3K_{2}}{\left(K_{1}+{\frac {K_{1}K_{2}}{K_{1}^{4}+3K_{2}}}\right)^{4}}}}}} 147:
shear stress. However, the Bingham plastic again does not exhibit any shear rate (no flow and thus no velocity) until a certain stress is achieved. For the Newtonian fluid the slope of this line is the
902: 1991: 471: 1946: 1859:
In 1981, Darby and Melson, using the approach of Churchill and of Churchill and Usagi, developed an expression to get a single friction factor equation valid for all flow regimes:
847: 821: 1236:
Note: Darby and Melson's expression is for a Fanning friction factor, and needs to be multiplied by 4 to be used in the friction loss equations located elsewhere on this page.
116:) and the volumetric flow rate increases proportionally. However, for a Bingham Plastic fluid (in blue), stress can be applied but it will not flow until a certain value, the 1231: 1147: 799: 530: 1043: 384:{\displaystyle {\frac {\partial u}{\partial y}}={\begin{cases}0,&\tau <\tau _{0}\\{\frac {\tau -\tau _{0}}{\mu _{\infty }}},&\tau \geq \tau _{0}\end{cases}}} 226: 1248:, due to complexity of the solution it is rarely employed. Therefore, researchers have tried to develop explicit approximations for the Buckingham–Reiner equation. 992: 199: 1014: 1675: 622: 600: 578: 556: 497: 2238:(1981). "Approximate explicit analytical expressions of friction factor for flow of Bingham fluids in smooth pipes using Adomian decomposition method". 633:
An exact description of friction loss for Bingham plastics in fully developed laminar pipe flow was first published by Buckingham. His expression, the
909: 1060: 1769: 1244:
Although an exact analytical solution of the Buckingham–Reiner equation can be obtained because it is a fourth order polynomial equation in
1264:
equation, but the discrepancy from experimental data is well within the accuracy of the data. The Swamee–Aggarwal equation is given by:
643: 1363:{\displaystyle f_{L}={64 \over \mathrm {Re} }+{64 \over \mathrm {Re} }\left({\mathrm {He} \over 6.2218\mathrm {Re} }\right)^{0.958}} 399:
In fluid flow, it is a common problem to calculate the pressure drop in an established piping network. Once the friction factor,
863: 1957: 2270:
Churchill, S.W.; Usagi, R.A. (1972). "A general expression for the correlation of rates of transfer and other phenomena".
151:, which is the only parameter needed to describe its flow. By contrast, the Bingham plastic requires two parameters, the 162:
The physical reason for this behaviour is that the liquid contains particles (such as clay) or large molecules (such as
413: 2145: 2095: 1386:
by using the Adomian decomposition method. The friction factor containing two terms through this method is given as:
2326: 2316: 1865: 2016: 832: 806: 404: 26:
is a Bingham plastic. The surface has ridges and peaks because Bingham plastics mimic solids under low
2213:
Swamee, P.K. and Aggarwal, N.(2011). "Explicit equations for laminar flow of Bingham plastic fluids".
252:), is directly proportional to the amount by which the applied shear stress exceeds the yield stress: 290: 2011: 2182:
Darby, R. and Melson J.(1981). "How to predict the friction factor for flow of Bingham plastics".
1154: 1125: 777: 508: 1021: 204: 1256:
The Swamee–Aggarwal equation is used to solve directly for the Darcy–Weisbach friction factor
2255:
Churchill, S.W. (November 7, 1977). "Friction factor equation spans all fluid-flow regimes".
500: 166:) which have some kind of interaction, creating a weak solid structure, formerly known as a 2279: 1054:
Darby and Melson developed an empirical expression that was then refined, and is given by:
977: 184: 77: 1753:{\displaystyle K_{1}={16 \over \mathrm {Re} }+{16\mathrm {He} \over 6\mathrm {Re} ^{2}},} 999: 8: 233: 2283: 2321: 2311: 2112: 607: 585: 563: 541: 482: 69: 51: 2199:
Darby, R.; et al. (September 1992). "Prediction friction loss in slurry pipes".
2141: 2091: 62: 35: 2287: 2218: 2068: 2063: 2055: 1260:
for laminar flow of Bingham plastic fluids. It is an approximation of the implicit
2222: 854: 824: 121: 2026: 2006: 2305: 2137: 1849: 92:
is applied to the tube. It is then pushed out as a relatively coherent plug.
229: 179: 139: 138:
shows the way in which it is normally presented currently. The graph shows
117: 113: 73: 43: 27: 2291: 2118: 2059: 961:{\displaystyle \operatorname {He} ={\rho D^{2}\tau _{o} \over \mu ^{2}}} 16:
Material which is solid at low stress but becomes viscous at high stress
1109:{\displaystyle f_{\text{T}}=4\times 10^{a}\operatorname {Re} ^{-0.193}} 237: 143: 85: 47: 23: 2046:
Bingham, E.C. (1916). "An Investigation of the Laws of Plastic Flow".
1839:{\displaystyle K_{2}=-{16\mathrm {He} ^{4} \over 3\mathrm {Re} ^{8}}.} 1382:
have provided an explicit procedure to calculate the friction factor
249: 148: 55: 2021: 1239: 801:
is the laminar flow Darcy friction factor (SI units: dimensionless)
533: 89: 2161:
Buckingham, E. (1921). "On Plastic Flow Through Capillary Tubes".
163: 761:{\displaystyle f_{\text{L}}={64 \over \operatorname {Re} }\left} 1149:
is the turbulent flow friction factor (SI units: dimensionless)
81: 19: 637:
equation, can be written in a dimensionless form as follows:
58: 2240:
Communications in Nonlinear Science and Numerical Simulation
127: 100: 1045:
is the yield point (yield strength) of fluid (SI units: Pa)
377: 1850:
Combined equation for friction factor for all flow regimes
236:") is exceeded, the material flows in such a way that the 897:{\displaystyle \operatorname {Re} ={\rho VD \over \mu },} 1986:{\displaystyle m=1.7+{40000 \over \operatorname {Re} }} 104:
Figure 1. Bingham Plastic flow as described by Bingham
1960: 1868: 1772: 1678: 1544: 1426: 1395: 1273: 1157: 1128: 1063: 1024: 1002: 980: 912: 866: 857:
and the Hedstrom number are respectively defined as:
835: 809: 780: 646: 610: 588: 566: 544: 511: 485: 416: 261: 207: 187: 131:
Figure 2. Bingham Plastic flow as described currently
1016:
is the dynamic viscosity of fluid (SI units: kg/m s)
1985: 1940: 1838: 1752: 1658: 1362: 1225: 1141: 1108: 1037: 1008: 986: 960: 896: 841: 815: 793: 760: 616: 594: 572: 558:is the gravitational acceleration (SI units: m/s²) 550: 524: 491: 465: 383: 220: 193: 2303: 1240:Approximations of the Buckingham–Reiner equation 849:is the Hedstrom number (SI units: dimensionless) 466:{\displaystyle f={2h_{\text{f}}gD \over LV^{2}}} 2088:Rheological Methods in Food Process Engineering 2269: 994:is the mass density of fluid (SI units: kg/m) 88:, which will not be extruded until a certain 2215:Journal of Petroleum Science and Engineering 1251: 394: 2160: 624:is the mean fluid velocity (SI units: m/s) 2254: 2067: 2192: 2081: 2079: 1854: 1373: 155:and the slope of the line, known as the 126: 99: 18: 2178: 2176: 2110: 2045: 2304: 2085: 1941:{\displaystyle f=\left^{\frac {1}{m}}} 2198: 2131: 2076: 178:The material is an elastic solid for 2173: 2134:Chemical Engineering Fluid Mechanics 65:who proposed its mathematical form. 2048:Bulletin of the Bureau of Standards 842:{\displaystyle \operatorname {He} } 816:{\displaystyle \operatorname {Re} } 13: 1820: 1817: 1800: 1797: 1734: 1731: 1720: 1717: 1701: 1698: 1343: 1340: 1331: 1328: 1314: 1311: 1296: 1293: 580:is the pipe diameter (SI units: m) 346: 273: 265: 61:at high stress. It is named after 14: 2338: 1997:not sensitive to pipe roughness. 1049: 2132:Darby, Ron (1996). "Chapter 6". 602:is the pipe length (SI units: m) 2263: 2248: 2090:(2nd ed.). Freeman Press. 628: 2228: 2207: 2154: 2125: 2104: 2039: 95: 1: 2032: 532:is the frictional head loss ( 201:, less than a critical value 173: 2223:10.1016/j.petrol.2011.01.015 1226:{\displaystyle a=-1.47\left} 1142:{\displaystyle f_{\text{T}}} 794:{\displaystyle f_{\text{L}}} 525:{\displaystyle h_{\text{f}}} 7: 2017:Bingham-Papanastasiou model 2000: 46:material that behaves as a 10: 2343: 1038:{\displaystyle \tau _{o}} 827:(SI units: dimensionless) 503:(SI units: dimensionless) 221:{\displaystyle \tau _{0}} 142:on the vertical axis and 80:, and in the handling of 1252:Swamee–Aggarwal equation 395:Friction factor formulae 2114:Fluidity and Plasticity 2069:2027/mdp.39015086559054 405:Darcy–Weisbach equation 68:It is used as a common 2111:Bingham, E.C. (1922). 1987: 1942: 1840: 1754: 1660: 1364: 1227: 1143: 1110: 1039: 1010: 988: 962: 898: 843: 817: 795: 762: 618: 596: 574: 552: 526: 493: 467: 385: 222: 195: 132: 105: 84:. A common example is 31: 2292:10.1002/aic.690180606 2086:Steffe, J.F. (1996). 2012:Bernoulli's principle 1988: 1943: 1855:Darby–Melson equation 1841: 1755: 1661: 1374:Danish–Kumar solution 1365: 1228: 1144: 1111: 1040: 1011: 989: 987:{\displaystyle \rho } 963: 899: 844: 818: 796: 763: 619: 597: 575: 553: 527: 501:Darcy friction factor 494: 468: 386: 223: 196: 194:{\displaystyle \tau } 130: 103: 22: 2327:Offshore engineering 2317:Non-Newtonian fluids 2257:Chemical Engineering 2201:Chemical Engineering 2184:Chemical Engineering 2060:10.6028/bulletin.304 1958: 1866: 1770: 1676: 1393: 1271: 1155: 1126: 1061: 1022: 1009:{\displaystyle \mu } 1000: 978: 910: 864: 833: 807: 778: 644: 608: 586: 564: 542: 509: 483: 414: 259: 250:article on viscosity 228:. Once the critical 205: 185: 78:drilling engineering 2284:1972AIChE..18.1121C 1619: 1501: 248:(as defined in the 1983: 1938: 1836: 1750: 1656: 1651: 1605: 1533: 1487: 1360: 1223: 1139: 1106: 1035: 1006: 984: 958: 894: 839: 813: 791: 758: 614: 592: 570: 548: 522: 489: 463: 381: 376: 218: 191: 133: 106: 70:mathematical model 32: 1981: 1935: 1912: 1890: 1831: 1745: 1705: 1654: 1650: 1637: 1532: 1519: 1348: 1318: 1300: 1262:Buckingham–Reiner 1136: 1071: 956: 889: 788: 747: 707: 694: 668: 654: 635:Buckingham–Reiner 617:{\displaystyle V} 595:{\displaystyle L} 573:{\displaystyle D} 551:{\displaystyle g} 519: 492:{\displaystyle f} 461: 436: 351: 280: 157:plastic viscosity 63:Eugene C. Bingham 36:materials science 2334: 2296: 2295: 2278:(6): 1121–1128. 2267: 2261: 2260: 2252: 2246: 2232: 2226: 2211: 2205: 2204: 2196: 2190: 2180: 2171: 2170: 2163:ASTM Proceedings 2158: 2152: 2151: 2129: 2123: 2122: 2108: 2102: 2101: 2083: 2074: 2073: 2071: 2043: 1992: 1990: 1989: 1984: 1982: 1974: 1947: 1945: 1944: 1939: 1937: 1936: 1928: 1926: 1922: 1921: 1920: 1915: 1914: 1913: 1910: 1899: 1898: 1893: 1892: 1891: 1888: 1845: 1843: 1842: 1837: 1832: 1830: 1829: 1828: 1823: 1810: 1809: 1808: 1803: 1790: 1782: 1781: 1759: 1757: 1756: 1751: 1746: 1744: 1743: 1742: 1737: 1724: 1723: 1711: 1706: 1704: 1693: 1688: 1687: 1665: 1663: 1662: 1657: 1655: 1653: 1652: 1649: 1648: 1643: 1639: 1638: 1636: 1635: 1634: 1618: 1613: 1603: 1602: 1601: 1592: 1591: 1581: 1576: 1575: 1560: 1559: 1558: 1545: 1535: 1534: 1531: 1530: 1525: 1521: 1520: 1518: 1517: 1516: 1500: 1495: 1485: 1484: 1483: 1474: 1473: 1463: 1458: 1457: 1442: 1441: 1440: 1427: 1421: 1420: 1410: 1405: 1404: 1369: 1367: 1366: 1361: 1359: 1358: 1353: 1349: 1347: 1346: 1334: 1326: 1319: 1317: 1306: 1301: 1299: 1288: 1283: 1282: 1232: 1230: 1229: 1224: 1222: 1218: 1217: 1216: 1212: 1211: 1210: 1148: 1146: 1145: 1140: 1138: 1137: 1134: 1115: 1113: 1112: 1107: 1105: 1104: 1092: 1091: 1073: 1072: 1069: 1044: 1042: 1041: 1036: 1034: 1033: 1015: 1013: 1012: 1007: 993: 991: 990: 985: 967: 965: 964: 959: 957: 955: 954: 945: 944: 943: 934: 933: 920: 903: 901: 900: 895: 890: 885: 874: 848: 846: 845: 840: 822: 820: 819: 814: 800: 798: 797: 792: 790: 789: 786: 767: 765: 764: 759: 757: 753: 752: 748: 746: 745: 744: 735: 734: 724: 723: 714: 708: 700: 695: 693: 682: 669: 661: 656: 655: 652: 623: 621: 620: 615: 601: 599: 598: 593: 579: 577: 576: 571: 557: 555: 554: 549: 531: 529: 528: 523: 521: 520: 517: 498: 496: 495: 490: 472: 470: 469: 464: 462: 460: 459: 458: 445: 438: 437: 434: 424: 390: 388: 387: 382: 380: 379: 373: 372: 352: 350: 349: 340: 339: 338: 322: 316: 315: 281: 279: 271: 263: 227: 225: 224: 219: 217: 216: 200: 198: 197: 192: 2342: 2341: 2337: 2336: 2335: 2333: 2332: 2331: 2302: 2301: 2300: 2299: 2268: 2264: 2253: 2249: 2233: 2229: 2212: 2208: 2197: 2193: 2181: 2174: 2159: 2155: 2148: 2130: 2126: 2109: 2105: 2098: 2084: 2077: 2044: 2040: 2035: 2003: 1973: 1959: 1956: 1955: 1927: 1916: 1909: 1905: 1904: 1903: 1894: 1887: 1883: 1882: 1881: 1880: 1876: 1875: 1867: 1864: 1863: 1857: 1852: 1824: 1816: 1815: 1811: 1804: 1796: 1795: 1791: 1789: 1777: 1773: 1771: 1768: 1767: 1738: 1730: 1729: 1725: 1716: 1712: 1710: 1697: 1692: 1683: 1679: 1677: 1674: 1673: 1644: 1630: 1626: 1614: 1609: 1604: 1597: 1593: 1587: 1583: 1582: 1580: 1571: 1567: 1566: 1562: 1561: 1554: 1550: 1546: 1543: 1536: 1526: 1512: 1508: 1496: 1491: 1486: 1479: 1475: 1469: 1465: 1464: 1462: 1453: 1449: 1448: 1444: 1443: 1436: 1432: 1428: 1425: 1416: 1412: 1411: 1409: 1400: 1396: 1394: 1391: 1390: 1376: 1354: 1339: 1335: 1327: 1325: 1321: 1320: 1310: 1305: 1292: 1287: 1278: 1274: 1272: 1269: 1268: 1254: 1242: 1203: 1199: 1198: 1188: 1184: 1174: 1170: 1156: 1153: 1152: 1133: 1129: 1127: 1124: 1123: 1097: 1093: 1087: 1083: 1068: 1064: 1062: 1059: 1058: 1052: 1029: 1025: 1023: 1020: 1019: 1001: 998: 997: 979: 976: 975: 950: 946: 939: 935: 929: 925: 921: 919: 911: 908: 907: 875: 873: 865: 862: 861: 855:Reynolds number 834: 831: 830: 825:Reynolds number 808: 805: 804: 785: 781: 779: 776: 775: 740: 736: 730: 726: 725: 719: 715: 713: 709: 699: 686: 681: 674: 670: 660: 651: 647: 645: 642: 641: 631: 609: 606: 605: 587: 584: 583: 565: 562: 561: 543: 540: 539: 516: 512: 510: 507: 506: 484: 481: 480: 454: 450: 446: 433: 429: 425: 423: 415: 412: 411: 397: 375: 374: 368: 364: 356: 345: 341: 334: 330: 323: 321: 318: 317: 311: 307: 299: 286: 285: 272: 264: 262: 260: 257: 256: 212: 208: 206: 203: 202: 186: 183: 182: 176: 122:Newtonian fluid 98: 54:but flows as a 40:Bingham plastic 17: 12: 11: 5: 2340: 2330: 2329: 2324: 2319: 2314: 2298: 2297: 2262: 2247: 2227: 2206: 2191: 2172: 2153: 2146: 2124: 2121:. p. 219. 2103: 2096: 2075: 2054:(2): 309–353. 2037: 2036: 2034: 2031: 2030: 2029: 2027:Shear thinning 2024: 2019: 2014: 2009: 2007:Bagnold number 2002: 1999: 1994: 1993: 1980: 1977: 1972: 1969: 1966: 1963: 1949: 1948: 1934: 1931: 1925: 1919: 1908: 1902: 1897: 1886: 1879: 1874: 1871: 1856: 1853: 1851: 1848: 1847: 1846: 1835: 1827: 1822: 1819: 1814: 1807: 1802: 1799: 1794: 1788: 1785: 1780: 1776: 1761: 1760: 1749: 1741: 1736: 1733: 1728: 1722: 1719: 1715: 1709: 1703: 1700: 1696: 1691: 1686: 1682: 1667: 1666: 1647: 1642: 1633: 1629: 1625: 1622: 1617: 1612: 1608: 1600: 1596: 1590: 1586: 1579: 1574: 1570: 1565: 1557: 1553: 1549: 1542: 1539: 1529: 1524: 1515: 1511: 1507: 1504: 1499: 1494: 1490: 1482: 1478: 1472: 1468: 1461: 1456: 1452: 1447: 1439: 1435: 1431: 1424: 1419: 1415: 1408: 1403: 1399: 1375: 1372: 1371: 1370: 1357: 1352: 1345: 1342: 1338: 1333: 1330: 1324: 1316: 1313: 1309: 1304: 1298: 1295: 1291: 1286: 1281: 1277: 1253: 1250: 1241: 1238: 1234: 1233: 1221: 1215: 1209: 1206: 1202: 1197: 1194: 1191: 1187: 1183: 1180: 1177: 1173: 1169: 1166: 1163: 1160: 1150: 1132: 1117: 1116: 1103: 1100: 1096: 1090: 1086: 1082: 1079: 1076: 1067: 1051: 1050:Turbulent flow 1048: 1047: 1046: 1032: 1028: 1017: 1005: 995: 983: 969: 968: 953: 949: 942: 938: 932: 928: 924: 918: 915: 905: 893: 888: 884: 881: 878: 872: 869: 851: 850: 838: 828: 812: 802: 784: 769: 768: 756: 751: 743: 739: 733: 729: 722: 718: 712: 706: 703: 698: 692: 689: 685: 680: 677: 673: 667: 664: 659: 650: 630: 627: 626: 625: 613: 603: 591: 581: 569: 559: 547: 537: 515: 504: 488: 474: 473: 457: 453: 449: 444: 441: 432: 428: 422: 419: 396: 393: 392: 391: 378: 371: 367: 363: 360: 357: 355: 348: 344: 337: 333: 329: 326: 320: 319: 314: 310: 306: 303: 300: 298: 295: 292: 291: 289: 284: 278: 275: 270: 267: 215: 211: 190: 175: 172: 97: 94: 28:shear stresses 15: 9: 6: 4: 3: 2: 2339: 2328: 2325: 2323: 2320: 2318: 2315: 2313: 2310: 2309: 2307: 2293: 2289: 2285: 2281: 2277: 2273: 2272:AIChE Journal 2266: 2258: 2251: 2244: 2241: 2237: 2231: 2224: 2220: 2216: 2210: 2202: 2195: 2188: 2185: 2179: 2177: 2168: 2164: 2157: 2149: 2147:0-8247-0444-4 2143: 2139: 2138:Marcel Dekker 2135: 2128: 2120: 2116: 2115: 2107: 2099: 2097:0-9632036-1-4 2093: 2089: 2082: 2080: 2070: 2065: 2061: 2057: 2053: 2049: 2042: 2038: 2028: 2025: 2023: 2020: 2018: 2015: 2013: 2010: 2008: 2005: 2004: 1998: 1978: 1975: 1970: 1967: 1964: 1961: 1954: 1953: 1952: 1932: 1929: 1923: 1917: 1906: 1900: 1895: 1884: 1877: 1872: 1869: 1862: 1861: 1860: 1833: 1825: 1812: 1805: 1792: 1786: 1783: 1778: 1774: 1766: 1765: 1764: 1747: 1739: 1726: 1713: 1707: 1694: 1689: 1684: 1680: 1672: 1671: 1670: 1645: 1640: 1631: 1627: 1623: 1620: 1615: 1610: 1606: 1598: 1594: 1588: 1584: 1577: 1572: 1568: 1563: 1555: 1551: 1547: 1540: 1537: 1527: 1522: 1513: 1509: 1505: 1502: 1497: 1492: 1488: 1480: 1476: 1470: 1466: 1459: 1454: 1450: 1445: 1437: 1433: 1429: 1422: 1417: 1413: 1406: 1401: 1397: 1389: 1388: 1387: 1385: 1381: 1355: 1350: 1336: 1322: 1307: 1302: 1289: 1284: 1279: 1275: 1267: 1266: 1265: 1263: 1259: 1249: 1247: 1237: 1219: 1213: 1207: 1204: 1200: 1195: 1192: 1189: 1185: 1181: 1178: 1175: 1171: 1167: 1164: 1161: 1158: 1151: 1130: 1122: 1121: 1120: 1101: 1098: 1094: 1088: 1084: 1080: 1077: 1074: 1065: 1057: 1056: 1055: 1030: 1026: 1018: 1003: 996: 981: 974: 973: 972: 951: 947: 940: 936: 930: 926: 922: 916: 913: 906: 891: 886: 882: 879: 876: 870: 867: 860: 859: 858: 856: 836: 829: 826: 810: 803: 782: 774: 773: 772: 754: 749: 741: 737: 731: 727: 720: 716: 710: 704: 701: 696: 690: 687: 683: 678: 675: 671: 665: 662: 657: 648: 640: 639: 638: 636: 611: 604: 589: 582: 567: 560: 545: 538: 535: 513: 505: 502: 486: 479: 478: 477: 455: 451: 447: 442: 439: 430: 426: 420: 417: 410: 409: 408: 406: 402: 369: 365: 361: 358: 353: 342: 335: 331: 327: 324: 312: 308: 304: 301: 296: 293: 287: 282: 276: 268: 255: 254: 253: 251: 247: 243: 239: 235: 231: 213: 209: 188: 181: 171: 169: 165: 160: 158: 154: 150: 145: 141: 137: 129: 125: 123: 119: 115: 110: 102: 93: 91: 87: 83: 79: 75: 71: 66: 64: 60: 57: 53: 49: 45: 41: 37: 29: 25: 21: 2275: 2271: 2265: 2256: 2250: 2242: 2239: 2235: 2230: 2214: 2209: 2200: 2194: 2186: 2183: 2169:: 1154–1156. 2166: 2162: 2156: 2133: 2127: 2117:. New York: 2113: 2106: 2087: 2051: 2047: 2041: 1995: 1950: 1858: 1762: 1668: 1383: 1379: 1377: 1261: 1257: 1255: 1245: 1243: 1235: 1118: 1053: 970: 852: 770: 634: 632: 629:Laminar flow 475: 400: 398: 245: 241: 234:yield stress 230:shear stress 180:shear stress 177: 167: 161: 156: 153:yield stress 152: 140:shear stress 135: 134: 118:yield stress 114:shear stress 108: 107: 67: 44:viscoplastic 39: 33: 2234:Danish, M. 2119:McGraw-Hill 96:Explanation 2306:Categories 2245:: 239–251. 2033:References 238:shear rate 174:Definition 168:false body 144:shear rate 86:toothpaste 48:rigid body 24:Mayonnaise 2322:Viscosity 2312:Materials 1787:− 1205:− 1196:× 1190:− 1165:− 1099:− 1081:× 1027:τ 1004:μ 982:ρ 948:μ 937:τ 923:ρ 887:μ 877:ρ 697:− 366:τ 362:≥ 359:τ 347:∞ 343:μ 332:τ 328:− 325:τ 309:τ 302:τ 274:∂ 266:∂ 210:τ 189:τ 149:viscosity 2259:: 91–92. 2189:: 59–61. 2022:Rheology 2001:See also 534:SI units 164:polymers 136:Figure 2 109:Figure 1 90:pressure 82:slurries 76:flow in 52:stresses 2280:Bibcode 1951:where: 1378:Danish 1119:where: 971:where: 823:is the 771:where: 499:is the 476:where: 56:viscous 50:at low 2236:et al. 2144:  2094:  1669:where 1380:et al. 1337:6.2218 1976:40000 1356:0.958 1182:0.146 1102:0.193 232:(or " 59:fluid 42:is a 2142:ISBN 2092:ISBN 1763:and 1168:1.47 853:The 536:: m) 305:< 38:, a 2288:doi 2219:doi 2064:hdl 2056:doi 1968:1.7 1193:2.9 904:and 240:, ∂ 74:mud 72:of 34:In 2308:: 2286:. 2276:18 2274:. 2243:16 2217:. 2187:28 2175:^ 2167:21 2165:. 2140:. 2136:. 2078:^ 2062:. 2052:13 2050:. 1979:Re 1793:16 1714:16 1695:16 1308:64 1290:64 1214:He 1201:10 1095:Re 1085:10 914:He 868:Re 837:He 811:Re 738:Re 717:He 702:64 691:Re 684:He 666:Re 663:64 407:: 244:/∂ 159:. 124:. 2294:. 2290:: 2282:: 2225:. 2221:: 2203:. 2150:. 2100:. 2072:. 2066:: 2058:: 1971:+ 1965:= 1962:m 1933:m 1930:1 1924:] 1918:m 1911:T 1907:f 1901:+ 1896:m 1889:L 1885:f 1878:[ 1873:= 1870:f 1834:. 1826:8 1821:e 1818:R 1813:3 1806:4 1801:e 1798:H 1784:= 1779:2 1775:K 1748:, 1740:2 1735:e 1732:R 1727:6 1721:e 1718:H 1708:+ 1702:e 1699:R 1690:= 1685:1 1681:K 1646:4 1641:) 1632:2 1628:K 1624:3 1621:+ 1616:4 1611:1 1607:K 1599:2 1595:K 1589:1 1585:K 1578:+ 1573:1 1569:K 1564:( 1556:2 1552:K 1548:3 1541:+ 1538:1 1528:3 1523:) 1514:2 1510:K 1506:3 1503:+ 1498:4 1493:1 1489:K 1481:2 1477:K 1471:1 1467:K 1460:+ 1455:1 1451:K 1446:( 1438:2 1434:K 1430:4 1423:+ 1418:1 1414:K 1407:= 1402:L 1398:f 1384:f 1351:) 1344:e 1341:R 1332:e 1329:H 1323:( 1315:e 1312:R 1303:+ 1297:e 1294:R 1285:= 1280:L 1276:f 1258:f 1246:f 1220:] 1208:5 1186:e 1179:+ 1176:1 1172:[ 1162:= 1159:a 1135:T 1131:f 1089:a 1078:4 1075:= 1070:T 1066:f 1031:o 952:2 941:o 931:2 927:D 917:= 892:, 883:D 880:V 871:= 787:L 783:f 755:] 750:) 742:7 732:3 728:f 721:4 711:( 705:3 688:6 679:+ 676:1 672:[ 658:= 653:L 649:f 612:V 590:L 568:D 546:g 518:f 514:h 487:f 456:2 452:V 448:L 443:D 440:g 435:f 431:h 427:2 421:= 418:f 401:f 370:0 354:, 336:0 313:0 297:, 294:0 288:{ 283:= 277:y 269:u 246:y 242:u 214:0 30:.

Index


Mayonnaise
shear stresses
materials science
viscoplastic
rigid body
stresses
viscous
fluid
Eugene C. Bingham
mathematical model
mud
drilling engineering
slurries
toothpaste
pressure

shear stress
yield stress
Newtonian fluid

shear stress
shear rate
viscosity
polymers
shear stress
shear stress
yield stress
shear rate
article on viscosity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.