Knowledge

Brouwer–Haemers graph

Source 📝

26: 240:
with parameters (81, 20, 1, 6). This means that it has 81 vertices, 20 edges per vertex, 1 triangle per edge, and 6 length-two paths connecting each non-adjacent pair of distinct vertices. As a strongly regular graph with the third parameter equal to 1, the Brouwer–Haemers graph
443: 490:; a 9-coloring of this graph describes a solved Sudoku puzzle. In contrast, for the Brouwer–Haemers graph, the largest cliques are the triangles and the number of colors needed is 7. 685: 480: 312: 222: 570:; Haemers, W. H. (1992), "Structure and uniqueness of the (81,20,1,6) strongly regular graph", A collection of contributions in honour of Jack van Lint, 741:
Gago-Vargas, Jesús; Hartillo-Hermoso, Maria Isabel; Martín-Morales, Jorge; Ucha-Enríquez, Jose Maria (2006), "Sudokus and Gröbner bases: Not only a
456:
puzzles by making a vertex for each square of the puzzle and connecting two squares by an edge when they belong to the same row, column, or
324: 793: 747:
Computer Algebra in Scientific Computing, 9th International Workshop, CASC 2006, Chisinau, Moldova, September 11-15, 2006, Proceedings
134: 272:
and Willem H. Haemers, who in 1992 published a proof that it is the only strongly regular graph with the same parameters.
185:
The Brouwer–Haemers graph has several related algebraic constructions. One of the simplest is as a degree-4 generalized
264:
Although Brouwer writes that this graph's "construction is folklore", and cites as an early reference a 1964 paper on
830: 689: 246: 825: 253: 166: 114: 661:
Bondarenko, Andriy V.; Radchenko, Danylo V. (2013), "On a family of strongly regular graphs with
63: 53: 664: 459: 291: 237: 162: 109: 483: 33: 195: 806: 720: 620: 587: 242: 124: 73: 640: 514: 321:, it is one of only three possible strongly regular graphs whose parameters have the form 8: 43: 724: 698: 601: 545: 83: 785: 740: 777: 637: 579: 728: 758: 750: 708: 575: 158: 93: 245:. Finding large dense graphs with this property is one of the formulations of the 802: 749:, Lecture Notes in Computer Science, vol. 4194, Springer, pp. 155–165, 716: 616: 583: 567: 510: 314: 281: 269: 174: 170: 119: 712: 487: 241:
has the property that every edge belongs to a unique triangle; that is, it is
177:
and Willem H. Haemers, who proved its uniqueness as a strongly regular graph.
819: 155: 781: 452:, a different 20-regular 81-vertex graph. The Sudoku graph is derived from 449: 265: 225: 190: 147: 318: 285: 186: 143: 754: 745:", in Ganzha, Victor G.; Mayr, Ernst W.; Vorozhtsov, Evgenii V. (eds.), 25: 763: 600:
Clark, L. H.; Entringer, R. C.; McCanna, J. E.; Székely, L. A. (1991),
438:{\displaystyle {\bigl (}(n^{2}+3n-1)^{2},n^{2}(n+3),1,n(n+1){\bigr )}} 645: 550: 703: 280:
The Brouwer–Haemers graph is the first in an infinite family of
453: 189:: it can be defined by making a vertex for each element in the 635: 599: 173:. Although its construction is folklore, it was named after 542:
The spectra of generalized Paley graphs and applications
667: 462: 327: 294: 198: 224:
and an edge for every two elements that differ by a
660: 679: 602:"Extremal problems for local properties of graphs" 474: 437: 306: 216: 817: 566: 540:Podestá, Ricardo A.; Videla, Denis E. (2018), 288:over fields of characteristic three. With the 776: 539: 430: 330: 794:Notices of the American Mathematical Society 786:"Sudoku squares and chromatic polynomials" 482:block of the puzzle. It has many 9-vertex 252:As well as being strongly regular it is a 762: 702: 609:The Australasian Journal of Combinatorics 549: 236:The Brouwer–Haemers graph is the unique 161:with 81 vertices and 810 edges. It is a 818: 636: 268:by Dale M. Mesner, it is named after 631: 629: 562: 560: 535: 533: 448:It should be distinguished from the 734: 593: 509: 505: 503: 13: 14: 842: 770: 654: 626: 557: 530: 275: 500: 24: 690:Journal of Combinatorial Theory 180: 519:Descriptions of various graphs 425: 413: 398: 386: 364: 335: 211: 205: 135:Table of graphs and parameters 1: 493: 486:and requires 9 colors in any 231: 580:10.1016/0012-365X(92)90532-K 7: 152:Brouwer–Haemers graph 19:Brouwer–Haemers graph 10: 847: 713:10.1016/j.jctb.2013.05.005 680:{\displaystyle \lambda =1} 259: 475:{\displaystyle 3\times 3} 307:{\displaystyle 3\times 3} 254:distance-transitive graph 167:distance-transitive graph 133: 102: 92: 82: 72: 62: 52: 42: 32: 23: 18: 831:Strongly regular graphs 641:"Brouwer–Haemers Graph" 515:"Brouwer–Haemers graph" 284:defined as generalized 247:Ruzsa–Szemerédi problem 681: 476: 439: 308: 238:strongly regular graph 218: 217:{\displaystyle GF(81)} 163:strongly regular graph 682: 477: 440: 309: 219: 665: 572:Discrete Mathematics 460: 325: 292: 196: 755:10.1007/11870814_13 115:distance-transitive 778:Herzberg, Agnes M. 677: 638:Weisstein, Eric W. 574:, 106/107: 77–82, 472: 435: 304: 214: 826:Individual graphs 140: 139: 838: 810: 809: 790: 774: 768: 767: 766: 738: 732: 731: 706: 686: 684: 683: 678: 658: 652: 651: 650: 633: 624: 623: 606: 597: 591: 590: 564: 555: 554: 553: 537: 528: 527: 526: 525: 511:Brouwer, Andries 507: 481: 479: 478: 473: 444: 442: 441: 436: 434: 433: 385: 384: 372: 371: 347: 346: 334: 333: 313: 311: 310: 305: 282:Ramanujan graphs 223: 221: 220: 215: 159:undirected graph 110:strongly regular 94:Chromatic number 28: 16: 15: 846: 845: 841: 840: 839: 837: 836: 835: 816: 815: 814: 813: 788: 775: 771: 739: 735: 666: 663: 662: 659: 655: 634: 627: 604: 598: 594: 565: 558: 538: 531: 523: 521: 508: 501: 496: 461: 458: 457: 429: 428: 380: 376: 367: 363: 342: 338: 329: 328: 326: 323: 322: 293: 290: 289: 278: 270:Andries Brouwer 262: 234: 197: 194: 193: 183: 175:Andries Brouwer 171:Ramanujan graph 129: 12: 11: 5: 844: 834: 833: 828: 812: 811: 801:(6): 708–717, 769: 733: 697:(4): 521–531, 676: 673: 670: 653: 625: 592: 568:Brouwer, A. E. 556: 529: 498: 497: 495: 492: 488:graph coloring 471: 468: 465: 432: 427: 424: 421: 418: 415: 412: 409: 406: 403: 400: 397: 394: 391: 388: 383: 379: 375: 370: 366: 362: 359: 356: 353: 350: 345: 341: 337: 332: 303: 300: 297: 277: 276:Related graphs 274: 261: 258: 243:locally linear 233: 230: 213: 210: 207: 204: 201: 182: 179: 138: 137: 131: 130: 128: 127: 125:locally linear 122: 117: 112: 106: 104: 100: 99: 96: 90: 89: 86: 80: 79: 76: 70: 69: 66: 60: 59: 56: 50: 49: 46: 40: 39: 36: 30: 29: 21: 20: 9: 6: 4: 3: 2: 843: 832: 829: 827: 824: 823: 821: 808: 804: 800: 796: 795: 787: 783: 782:Murty, M. Ram 779: 773: 765: 760: 756: 752: 748: 744: 737: 730: 726: 722: 718: 714: 710: 705: 700: 696: 692: 691: 674: 671: 668: 657: 648: 647: 642: 639: 632: 630: 622: 618: 614: 610: 603: 596: 589: 585: 581: 577: 573: 569: 563: 561: 552: 547: 543: 536: 534: 520: 516: 512: 506: 504: 499: 491: 489: 485: 469: 466: 463: 455: 451: 446: 422: 419: 416: 410: 407: 404: 401: 395: 392: 389: 381: 377: 373: 368: 360: 357: 354: 351: 348: 343: 339: 320: 316: 301: 298: 295: 287: 283: 273: 271: 267: 266:Latin squares 257: 255: 250: 248: 244: 239: 229: 227: 208: 202: 199: 192: 188: 178: 176: 172: 168: 164: 160: 157: 153: 149: 145: 136: 132: 126: 123: 121: 118: 116: 113: 111: 108: 107: 105: 101: 97: 95: 91: 87: 85: 84:Automorphisms 81: 77: 75: 71: 67: 65: 61: 57: 55: 51: 47: 45: 41: 37: 35: 31: 27: 22: 17: 798: 792: 772: 746: 743:divertimento 742: 736: 694: 693:, Series B, 688: 656: 644: 612: 608: 595: 571: 541: 522:, retrieved 518: 450:Sudoku graph 447: 315:Rook's graph 286:Paley graphs 279: 263: 251: 235: 226:fourth power 191:finite field 184: 181:Construction 151: 148:graph theory 144:mathematical 141: 764:11441/23605 319:Games graph 187:Paley graph 820:Categories 551:1812.03332 524:2019-02-11 494:References 232:Properties 103:Properties 704:1201.0383 669:λ 646:MathWorld 615:: 25–31, 467:× 358:− 299:× 146:field of 120:Ramanujan 784:(2007), 729:19220680 317:and the 169:, and a 154:is a 20- 64:Diameter 34:Vertices 807:2327972 721:3071380 621:1129266 588:1181899 484:cliques 260:History 156:regular 142:In the 88:233,280 805:  727:  719:  619:  586:  454:Sudoku 150:, the 54:Radius 789:(PDF) 725:S2CID 699:arXiv 605:(PDF) 546:arXiv 74:Girth 44:Edges 165:, a 759:hdl 751:doi 709:doi 695:103 687:", 576:doi 48:810 822:: 803:MR 799:54 797:, 791:, 780:; 757:, 723:, 717:MR 715:, 707:, 643:. 628:^ 617:MR 611:, 607:, 584:MR 582:, 559:^ 544:, 532:^ 517:, 513:, 502:^ 445:. 256:. 249:. 228:. 209:81 38:81 761:: 753:: 711:: 701:: 675:1 672:= 649:. 613:4 578:: 548:: 470:3 464:3 431:) 426:) 423:1 420:+ 417:n 414:( 411:n 408:, 405:1 402:, 399:) 396:3 393:+ 390:n 387:( 382:2 378:n 374:, 369:2 365:) 361:1 355:n 352:3 349:+ 344:2 340:n 336:( 331:( 302:3 296:3 212:) 206:( 203:F 200:G 98:7 78:3 68:2 58:2

Index


Vertices
Edges
Radius
Diameter
Girth
Automorphisms
Chromatic number
strongly regular
distance-transitive
Ramanujan
locally linear
Table of graphs and parameters
mathematical
graph theory
regular
undirected graph
strongly regular graph
distance-transitive graph
Ramanujan graph
Andries Brouwer
Paley graph
finite field
fourth power
strongly regular graph
locally linear
Ruzsa–Szemerédi problem
distance-transitive graph
Latin squares
Andries Brouwer

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.