Knowledge

Camelback potential

Source 📝

31: 77:
In the magnetic system, the camelback potential effect only occurs when the length of the diamagnetic rod is between two critical lengths. Below the minimum length, the magnet is hypothesized to align with magnetic field lines, hence not maintaining its orientation and touching the magnet. The
78:
maximum length is limited by the distance between the peaks of the camelback humps; thus, a rod longer than that will be unstable and fall out of the trap. Both the radius and the length of the rod determine the damping of the system. The damping is primarily due to
61:
The latter system consists of two parallel diametric cylindrical magnets, that is, magnets that are magnetized perpendicular to their axis, with the north and south poles located on the curved surface as opposed to either end. When a
102:
Hoskinson, E.; Lecocq, F.; Didier, N.; Fay, A.; Hekking, F. W. J.; Guichard, W.; Buisson, O.; Dolata, R.; Mackrodt, B. (2009-03-06). "Quantum Dynamics in a Camelback Potential of a dc SQUID".
85:
Possible practical uses of the concept include being a platform for custom-designed 1D potentials, a highly sensitive force-distance transducer, or a trap for semiconductor nanowires.
74:
when disturbed. This arrangement, also known as a "PDL trap" for "parallel dipole line", was the subject of the 2017 International Physics Olympiad.
50:
with a distinct dip where the peak would be, so named because it resembles the humps on a camel's back. The term was applied to a configuration of a
51: 163:
Zorin, A. B.; Chiarello, F. (2009-12-30). "Superconducting phase qubit based on the Josephson oscillator with strong anharmonicity".
17: 289:"The one-dimensional camelback potential in the parallel dipole line trap: Stability conditions and finite size effect" 269: 71: 216:
Gunawan, Oki; Virgus, Yudistira; Tai, Kong Fai (2015-02-09). "A parallel dipole line system".
300: 235: 182: 121: 8: 47: 304: 239: 186: 125: 350: 225: 198: 172: 145: 111: 326: 318: 251: 202: 137: 149: 70:) is placed between the magnets, it will remain in place and move back and forth in 308: 243: 190: 133: 129: 43: 194: 79: 344: 322: 255: 141: 63: 330: 313: 288: 247: 34:
Graph of magnetic flux density along axis of the magnets in a PDL trap
30: 67: 230: 177: 116: 270:"A New Effect in Electromagnetism Discovered – 150 years later" 55: 101: 342: 215: 287:Gunawan, Oki; Virgus, Yudistira (2017-04-04). 162: 286: 82:, as damping is non-observable under vacuum. 52:superconducting quantum interference device 312: 229: 176: 115: 29: 14: 343: 24: 54:in 2009, and to an arrangement of 25: 362: 280: 262: 209: 156: 134:10.1103/PhysRevLett.102.097004 95: 13: 1: 88: 7: 10: 367: 293:Journal of Applied Physics 195:10.1103/PhysRevB.80.214535 46:curve that looks like a 218:Applied Physics Letters 104:Physical Review Letters 35: 27:Potential energy curve 33: 305:2017JAP...121m3902G 240:2015ApPhL.106f2407G 187:2009PhRvB..80u4535Z 126:2009PhRvL.102i7004H 48:normal distribution 40:camelback potential 18:Camelback Potential 276:. 20 October 2017. 36: 314:10.1063/1.4978876 248:10.1063/1.4907931 165:Physical Review B 16:(Redirected from 358: 335: 334: 316: 284: 278: 277: 266: 260: 259: 233: 213: 207: 206: 180: 160: 154: 153: 119: 99: 44:potential energy 21: 366: 365: 361: 360: 359: 357: 356: 355: 341: 340: 339: 338: 285: 281: 268: 267: 263: 214: 210: 161: 157: 100: 96: 91: 72:harmonic motion 28: 23: 22: 15: 12: 11: 5: 364: 354: 353: 337: 336: 299:(13): 133902. 279: 261: 208: 171:(21): 214535. 155: 93: 92: 90: 87: 26: 9: 6: 4: 3: 2: 363: 352: 349: 348: 346: 332: 328: 324: 320: 315: 310: 306: 302: 298: 294: 290: 283: 275: 271: 265: 257: 253: 249: 245: 241: 237: 232: 227: 224:(6): 062407. 223: 219: 212: 204: 200: 196: 192: 188: 184: 179: 174: 170: 166: 159: 151: 147: 143: 139: 135: 131: 127: 123: 118: 113: 110:(9): 097004. 109: 105: 98: 94: 86: 83: 81: 75: 73: 69: 66:rod (usually 65: 59: 57: 53: 49: 45: 41: 32: 19: 296: 292: 282: 273: 264: 221: 217: 211: 168: 164: 158: 107: 103: 97: 84: 76: 60: 39: 37: 80:Stokes drag 64:diamagnetic 89:References 351:Magnetism 323:0021-8979 256:0003-6951 231:1405.5220 203:118366649 178:0908.3937 117:0810.2372 58:in 2014. 345:Category 150:43819174 142:19392556 68:graphite 331:1465332 301:Bibcode 236:Bibcode 183:Bibcode 122:Bibcode 56:magnets 329:  321:  254:  201:  148:  140:  226:arXiv 199:S2CID 173:arXiv 146:S2CID 112:arXiv 327:OSTI 319:ISSN 252:ISSN 138:PMID 309:doi 297:121 274:IBM 244:doi 222:106 191:doi 130:doi 108:102 42:is 347:: 325:. 317:. 307:. 295:. 291:. 272:. 250:. 242:. 234:. 220:. 197:. 189:. 181:. 169:80 167:. 144:. 136:. 128:. 120:. 106:. 38:A 333:. 311:: 303:: 258:. 246:: 238:: 228:: 205:. 193:: 185:: 175:: 152:. 132:: 124:: 114:: 20:)

Index

Camelback Potential

potential energy
normal distribution
superconducting quantum interference device
magnets
diamagnetic
graphite
harmonic motion
Stokes drag
arXiv
0810.2372
Bibcode
2009PhRvL.102i7004H
doi
10.1103/PhysRevLett.102.097004
PMID
19392556
S2CID
43819174
arXiv
0908.3937
Bibcode
2009PhRvB..80u4535Z
doi
10.1103/PhysRevB.80.214535
S2CID
118366649
arXiv
1405.5220

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.