Knowledge

Cardiac action potential

Source 📝

655:(i.e. the membrane potential at which sodium is no longer drawn into or out of the cell). As the membrane potential becomes more positive, the sodium channels then close and lock, this is known as the "inactivated" state. During this state the channels cannot be opened regardless of the strength of the excitatory stimulus—this gives rise to the absolute refractory period. The relative refractory period is due to the leaking of potassium ions, which makes the membrane potential more negative (i.e. it is hyperpolarised), this resets the sodium channels; opening the inactivation gate, but still leaving the channel closed. Because some of the voltage-gated sodium ion channels have recovered and the voltage-gated potassium ion channels remain open, it is possible to initiate another action potential if the stimulus is stronger than a stimulus which can fire an action potential when the membrane is at rest. 554:, which allow Cl to enter the cell. Increased calcium concentration in the cell also increases activity of the sodium-calcium exchangers, while increased sodium concentration (from the depolarisation of phase 0) increases activity of the sodium-potassium pumps. The movement of all these ions results in the membrane potential remaining relatively constant, with K outflux, Cl influx as well as Na/K pumps contributing to repolarisation and Ca influx as well as Na/Ca exchangers contributing to depolarisation. This phase is responsible for the large duration of the action potential and is important in preventing irregular heartbeat (cardiac arrhythmia). 70: 326: 31: 1383: 1219: 1269:
or Purkinje fibres reach the threshold potential for an action potential, they are depolarized by the oncoming impulse from the SAN This is called "overdrive suppression". Pacemaker activity of these cells is vital, as it means that if the SAN were to fail, then the heart could continue to beat, albeit at a lower rate (AVN= 40-60 beats per minute, Purkinje fibres = 20-40 beats per minute). These pacemakers will keep a patient alive until the emergency team arrives.
1070:
increases, these channels then close and lock (become inactive). Due to the rapid influx sodium ions (steep phase 0 in action potential waveform) activation and inactivation of these channels happens almost at exactly the same time. During the inactivation state, Na cannot pass through (absolute refractory period). However they begin to recover from inactivation as the membrane potential becomes more negative (relative refractory period).
1029:. Figure 3 shows the important ion channels involved in the cardiac action potential, the current (ions) that flows through the channels, their main protein subunits (building blocks of the channel), some of their controlling genes that code for their structure, and the phases that are active during the cardiac action potential. Some of the most important ion channels involved in the cardiac action potential are described briefly below. 484:(approximately −70 mV) it causes the Na channels to open. This produces a larger influx of sodium into the cell, rapidly increasing the voltage further to around +50 mV, i.e. towards the Na equilibrium potential. However, if the initial stimulus is not strong enough, and the threshold potential is not reached, the rapid sodium channels will not be activated and an action potential will not be produced; this is known as the 1051:). These poorly selective, cation (positively charged ions) channels conduct more current as the membrane potential becomes more negative (hyperpolarised). The activity of these channels in the SAN cells causes the membrane potential to depolarise slowly and so they are thought to be responsible for the pacemaker potential. Sympathetic nerves directly affect these channels, resulting in an increased heart rate (see below). 547:) allow potassium to leave the cell while L-type calcium channels (activated by the influx of sodium during phase 0) allow the movement of calcium ions into the cell. These calcium ions bind to and open more calcium channels (called ryanodine receptors) located on the sarcoplasmic reticulum within the cell, allowing the flow of calcium out of the SR. These calcium ions are responsible for the contraction of the heart. 342: 636:, the first from the beginning of phase 0 until part way through phase 3; this is known as the absolute refractory period during which it is impossible for the cell to produce another action potential. This is immediately followed, until the end of phase 3, by a relative refractory period, during which a stronger-than-usual stimulus is required to produce another action potential. 1370:(I for inhibitory), which is made up of 3 subunits (α, β and γ) which, when activated, separate from the receptor. The β and γ subunits activate a special set of potassium channels, increasing potassium flow out of the cell and decreasing membrane potential, meaning that the pacemaker cells take longer to reach their threshold value. The G 429:. These channels open at very negative voltages (i.e. immediately after phase 3 of the previous action potential; see below) and allow the passage of both K and Na into the cell. Due to their unusual property of being activated by very negative membrane potentials, the movement of ions through the HCN channels is referred to as the 62:. They produce roughly 60–100 action potentials every minute. The action potential passes along the cell membrane causing the cell to contract, therefore the activity of the sinoatrial node results in a resting heart rate of roughly 60–100 beats per minute. All cardiac muscle cells are electrically linked to one another, by 1331:). cAMP binds to the HCN channels (see above), increasing the funny current and therefore increasing the rate of depolarization, during the pacemaker potential. The increased cAMP also increases the opening time of L -type calcium channels, increasing the Ca current through the channel, speeding up phase 0. 372:
electrical gradient, for they represent a net displacement of charges across the membrane, which are unable to immediately re-enter the cell to restore the electrical equilibrium. Therefore, their slow re-entrance in the cell needs to be counterbalanced or the cell would slowly lose its membrane potential.
683:
at peak depolarization causes the conduction of cell to cell depolarization, not potassium.) These connections allow for the rapid conduction of the action potential throughout the heart and are responsible for allowing all of the cells in the atria to contract together as well as all of the cells in
1268:
In addition to the SAN, the AVN and Purkinje fibres also have pacemaker activity and can therefore spontaneously generate an action potential. However, these cells usually do not depolarize spontaneously, simply because action potential production in the SAN is faster. This means that before the AVN
993:
Ion channels are proteins that change shape in response to different stimuli to either allow or prevent the movement of specific ions across a membrane. They are said to be selectively permeable. Stimuli, which can either come from outside the cell or from within the cell, can include the binding of
1389:
affecting the cardiac action potential. The sharp rise in voltage ("0") corresponds to the influx of sodium ions, whereas the two decays ("1" and "3", respectively) correspond to the sodium-channel inactivation and the repolarizing efflux of potassium ions. The characteristic plateau ("2") results
678:
of proteins, that form a pore through which ions (including Na, Ca and K) can pass. As potassium is highest within the cell, it is mainly potassium that passes through. This increased potassium in the neighbour cell causes the membrane potential to increase slightly, activating the sodium channels
444:
resulting in the increase in membrane potential (as a +3 charge is being brought into the cell (by the 3Na) but only a +2 charge is leaving the cell (by the Ca) therefore there is a net charge of +1 entering the cell). This calcium is then pumped back into the cell and back into the SR via calcium
1069:
are voltage-dependent, opening rapidly due to depolarization of the membrane, which usually occurs from neighboring cells, through gap junctions. They allow for a rapid flow of sodium into the cell, depolarizing the membrane completely and initiating an action potential. As the membrane potential
375:
The second purpose, intricately linked to the first, is to keep the intracellular concentration more or less constant, and in this case to re-establish the original chemical gradients, that is to force the sodium and calcium which previously flowed into the cell out of it, and the potassium which
371:
serve two purposes. The first is to maintain the existence of the resting membrane potential by countering the depolarisation due to the leakage of ions not at the electrochemical equilibrium (e.g. sodium and calcium). These ions not being at the equilibrium is the reason for the existence of an
1209:
These channels respond to voltage changes across the membrane differently: L-type channels are activated by more positive membrane potentials, take longer to open and remain open longer than T-type channels. This means that the T-type channels contribute more to depolarization (phase 0) whereas
1152:
Another form of voltage-gated potassium channels are the delayed rectifier potassium channels. These channels carry potassium currents which are responsible for the plateau phase of the action potential, and are named based on the speed at which they activate: slowly activating
512:(phase 4) or an oncoming action potential. The L-type calcium channels are activated more slowly than the sodium channels, therefore, the depolarization slope in the pacemaker action potential waveform is less steep than that in the non-pacemaker action potential waveform. 363:
results from the flux of ions having flowed into the cell (e.g. sodium and calcium), the flux of ions having flowed out of the cell (e.g. potassium, chloride and bicarbonate), as well as the flux of ions generated by the different membrane pumps, being perfectly balanced.
224:
is around −90 millivolts (mV; 1 mV = 0.001 V), i.e. the inside of the membrane is more negative than the outside. The main ions found outside the cell at rest are sodium (Na), and chloride (Cl), whereas inside the cell it is mainly potassium (K).
376:
previously flowed out of the cell back into it (though as the potassium is mostly at the electrochemical equilibrium, its chemical gradient will naturally reequilibrate itself opposite to the electrical gradient, without the need for an active transport mechanism).
345:
Figure 2a: Ventricular action potential (left) and sinoatrial node action potential (right) waveforms. The main ionic currents responsible for the phases are below (upwards deflections represent ions flowing out of cell, downwards deflection represents inward
616:
restore ion concentrations back to balanced states pre-action potential. This means that the intracellular calcium is pumped out, which was responsible for cardiac myocyte contraction. Once this is lost, the contraction stops and the heart muscles relax.
422:. During this phase, the membrane potential slowly becomes more positive, until it reaches a set value (around -40 mV; known as the threshold potential) or until it is depolarized by another action potential, coming from a neighboring cell. 1280:, where the signal from the SAN is impaired in its path to the ventricles. This leads to uncoordinated contractions between the atria and ventricles, without the correct delay in between and in severe cases can result in sudden death. 337:
The standard model used to understand the cardiac action potential is that of the ventricular myocyte. Outlined below are the five phases of the ventricular myocyte action potential, with reference also to the SAN action potential.
85:(ECG). This is a series of upward and downward spikes (labelled P, Q, R, S and T) that represent the depolarization (voltage becoming more positive) and repolarization (voltage becoming more negative) of the action potential in the 402:
During this phase the membrane is most permeable to K, which can travel into or out of cell through leak channels, including the inwardly rectifying potassium channel. Therefore, the resting membrane potential is mostly equal to K
601:. This net outward, positive current (equal to loss of positive charge from the cell) causes the cell to repolarize. The delayed rectifier K channels close when the membrane potential is restored to about -85 to -90 mV, while I 2531:
Lacerda, AE; Kim, HS; Ruth, P; Perez-Reyes, E; et al. (August 1991). "Normalization of current kinetics by interaction between the alpha 1 and beta subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel".
1006:) and can act to open or close the channel. The pore formed by an ion channel is aqueous (water-filled) and allows the ion to rapidly travel across the membrane. Ion channels can be selective for specific ions, so there are 496:
also constitutes a minor part of the depolarisation effect. The slope of phase 0 on the action potential waveform (see figure 2) represents the maximum rate of voltage change of the cardiac action potential and is known as
1106:
is responsible for maintaining the resting membrane potential and initiating the depolarization phase. However, as the membrane potential continues to become more positive, the channel begins to allow the passage of K
2636:
Hibino, Hiroshi; Inanobe, Atsushi; Furutani, Kazuharu; Murakami, Shingo; Findlay, Ian; Kurachi, Yoshihisa (2010-01-01). "Inwardly rectifying potassium channels: their structure, function, and physiological roles".
1046:
are located mainly in pacemaker cells, these channels become active at very negative membrane potentials and allow for the passage of both Na and K into the cell (which is a movement known as a funny current,
524:) open and close rapidly, allowing for a brief flow of potassium ions out of the cell, making the membrane potential slightly more negative. This is referred to as a 'notch' on the action potential waveform. 508:), however, the increase in membrane voltage is mainly due to activation of L-type calcium channels. These channels are also activated by an increase in voltage, however this time it is either due to the 2583:
Purves, Dale; Augustine, George J.; Fitzpatrick, David; Katz, Lawrence C.; LaMantia, Anthony-Samuel; McNamara, James O.; Williams, S. Mark (2001-01-01). "The Molecular Structure of Ion Channels".
520:
This phase begins with the rapid inactivation of the Na channels by the inner gate (inactivation gate), reducing the movement of sodium into the cell. At the same time potassium channels (called I
2285:
Clark RB, Mangoni ME, Lueger A, Couette B, Nargeot J, Giles WR (May 2004). "A rapidly activating delayed rectifier K+ current regulates pacemaker activity in adult mouse sinoatrial node cells".
2242:
Kubo, Y; Adelman, JP; Clapham, DE; Jan, LY; et al. (2005). "International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels".
620:
In the sinoatrial node, this phase is also due to the closure of the L-type calcium channels, preventing inward flux of Ca and the opening of the rapid delayed rectifier potassium channels (I
1882:
Santana, L.F., Cheng, E.P. and Lederer, J.W. (2010a) 'How does the shape of the cardiac action potential control calcium signaling and contraction in the heart?', 49(6).
3066:
Demir, Semahat S.; Clark, John W.; Giles, Wayne R. (1999-06-01). "Parasympathetic modulation of sinoatrial node pacemaker activity in rabbit heart: a unifying model".
1098:
for K (~-90 mV). As the membrane potential becomes more positive (i.e. during cell stimulation from a neighbouring cell), the flow of potassium into the cell via the K
244:), the action potential terminates as potassium channels open, allowing K to leave the cell and causing the membrane potential to return to negative, this is known as 539:
remaining almost constant, as the membrane slowly begins to repolarize. This is due to the near balance of charge moving into and out of the cell. During this phase
3015:
Osterrieder, W.; Noma, A.; Trautwein, W. (1980-07-01). "On the kinetics of the potassium channel activated by acetylcholine in the S-A node of the rabbit heart".
208:
Although intracellular Ca content is about 2 mM, most of this is bound or sequestered in intracellular organelles (mitochondria and sarcoplasmic reticulum).
66:
which allow the action potential to pass from one cell to the next. This means that all atrial cells can contract together, and then all ventricular cells.
1276:. Sustained training of athletes causes a cardiac adaptation where the resting SAN rate is lower (sometimes around 40 beats per minute). This can lead to 3287: 283:
expressed and mechanisms by which they are activated results in differences in the configuration of the action potential waveform, as shown in figure 2.
1712:"Impact of Sarcoplasmic Reticulum Calcium Release on Calcium Dynamics and Action Potential Morphology in Human Atrial Myocytes: A Computational Study" 2688:
Dhamoon, Amit S.; Jalife, José (2005-03-01). "The inward rectifier current (IK1) controls cardiac excitability and is involved in arrhythmogenesis".
1257:. This delay allows the ventricles to fully fill with blood before contraction. The signal then passes down through a bundle of fibres called the 77:
Rate dependence of the action potential is a fundamental property of cardiac cells and alterations can lead to severe cardiac diseases including
2175: 2203:"Repolarization of the cardiac action potential. Does an increase in repolarization capacity constitute a new anti-arrhythmic principle?" 1929:"Repolarization of the cardiac action potential. Does an increase in repolarization capacity constitute a new anti-arrhythmic principle?" 1127: 17: 1769:
Issa ZF, Miller JM, Zipes DP (2019). "Electrophysiological Mechanisms of Cardiac Arrhythmias: Abnormal Automaticity". In Issa ZF (ed.).
1437:
Zhao, G; Qiu, Y; Zhang, HM; Yang, D (January 2019). "Intercalated discs: cellular adhesion and signaling in heart health and diseases".
1245:
network, the fastest conduction pathway within the heart. The electrical signal travels from the sinoatrial node, which stimulates the
1094:
favour the flow of K into the cell. This influx of potassium, however, is larger when the membrane potential is more negative than the
3510: 1230: 1223: 299: 581:
remain open as more potassium leak channels open. This ensures a net outward positive current, corresponding to negative change in
46:, the cardiac action potential is not initiated by nervous activity. Instead, it arises from a group of specialized cells known as 3782: 3280: 261: 1087: 882: 594: 2389: 1786: 305:
of the heart to generate spontaneous cardiac action potentials. Automaticity can be normal or abnormal, caused by temporary
1359: 329:
Action potentials recorded from sheep atrial and ventricular cardiomyocytes with phases shown. Ion currents approximate to
2956:
DiFrancesco, D.; Tortora, P. (1991-05-09). "Direct activation of cardiac pacemaker channels by intracellular cyclic AMP".
275:, that spontaneously generate the cardiac action potential and those non-pacemaker cells that simply conduct it, such as 1025:
Each channel is coded by a set of DNA instructions that tell the cell how to make it. These instructions are known as a
3879: 3273: 2352: 1126:) are activated by depolarization. The currents produced by these channels include the transient out potassium current 1084:
The two main types of potassium channels in cardiac cells are inward rectifiers and voltage-gated potassium channels.
3236: 3213: 3194: 3171: 2151: 1642: 1183: 566: 256:(SR) where calcium is stored, and is also found outside of the cell. Release of Ca from the SR, via a process called 359:. In the standard non-pacemaker cell the voltage during this phase is more or less constant, at roughly -90 mV. The 309:
characteristic changes such as certain medication usage, or in the case of abnormal automaticity the changes are in
3228: 2829:
Tsien, R. W.; Carpenter, D. O. (1978-06-01). "Ionic mechanisms of pacemaker activity in cardiac Purkinje fibers".
1119: 257: 1374:-protein also inhibits the cAMP pathway therefore reducing the sympathetic effects caused by the spinal nerves. 1335: 1324: 633: 3423: 679:
and initiating an action potential in this cell. (A brief chemical gradient driven efflux of Na+ through the
1663:"How does the shape of the cardiac action potential control calcium signaling and contraction in the heart?" 3800: 3555: 3533: 1599: 1194:('T' for Transient, i.e. short). L-type channels are more common and are most densely populated within the 480:. When this happens, the voltage within the cell increases slightly. If this increased voltage reaches the 330: 260:, is vital for the plateau phase of the action potential (see phase 2, below) and is a fundamental step in 1111:
of the cell. This outward flow of potassium ions at the more positive membrane potentials means that the K
684:
the ventricles. Uncoordinated contraction of heart muscles is the basis for arrhythmia and heart failure.
436:
Another hypothesis regarding the pacemaker potential is the 'calcium clock'. Calcium is released from the
3795: 3540: 325: 3884: 3621: 1316: 1296: 1022:
specific channels. They can also be specific for a certain charge of ions (i.e. positive or negative).
1003: 360: 241: 217: 69: 50:, that have automatic action potential generation capability. In healthy hearts, these cells form the 3825: 3772: 3648: 3628: 3592: 3515: 3475: 3296: 1414: 999: 468:
In non-pacemaker cells (i.e. ventricular cells), this is produced predominantly by the activation of
81:
and sometimes sudden death. Action potential activity within the heart can be recorded to produce an
3643: 3633: 1892:
Morad M., Tung L. (1982). "Ionic events responsible for the cardiac resting and action potential".
1300: 1289: 1288:
The speed of action potential production in pacemaker cells is affected, but not controlled by the
920: 609: 476:). These channels are activated when an action potential arrives from a neighbouring cell, through 441: 396: 2601: 3830: 3762: 3707: 3608: 3528: 3412: 3390: 2332: 1418: 1273: 1149:. These currents contribute to the early repolarization phase (phase 1) of the action potential. 3408: 3767: 3757: 3671: 3417: 3375: 3370: 1406: 1328: 1277: 1191: 1187: 493: 437: 392: 310: 253: 2344: 1632: 1346:), by increasing the time taken to produce an action potential in the SAN. A nerve called the 3616: 1250: 314: 1002:) or a change in membrane potential around the channel, detected by a sensor (also known as 3365: 3348: 3122: 2965: 2870: 2541: 2518:"SCN5A sodium channel, voltage-gated, type V, alpha subunit [Homo sapiens (human)]" 2146:. Boron, Walter F.,, Boulpaep, Emile L. (Updated ed.). Philadelphia, PA. p. 508. 1852: 1723: 1398: 1386: 3265: 355:
In the ventricular myocyte, phase 4 occurs when the cell is at rest, in a period known as
8: 3712: 3550: 3545: 3380: 3353: 666:
allow the action potential to be transferred from one cell to the next (they are said to
605:
remains conducting throughout phase 4, which helps to set the resting membrane potential
509: 481: 419: 3126: 3113:
Rudy, Yoram (March 2008). "Molecular Basis of Cardiac Action Potential Repolarization".
2969: 2545: 1727: 1323:-protein (s for stimulatory). Activation of this G-protein leads to increased levels of 3820: 3685: 3438: 3146: 3048: 2997: 2933: 2908: 2670: 2565: 2439: 2406: 2267: 2169: 2046: 2021: 1828: 1803: 1778: 1746: 1711: 1687: 1662: 1608: 1583: 1559: 1532: 1508: 1481: 1462: 1095: 1011: 652: 644: 582: 578: 536: 404: 249: 3079: 2749: 2732: 2095: 2070: 1905: 1771:
Clinical arrhythmology and electrophysiology: a companion to Braunwald's heart disease
1405:
that are too fast. Other drugs used to influence the cardiac action potential include
565:
During phase 3 (the "rapid repolarization" phase) of the action potential, the L-type
228:
The action potential begins with the voltage becoming more positive; this is known as
3456: 3428: 3232: 3209: 3190: 3167: 3138: 3091: 3083: 3040: 3032: 2989: 2981: 2938: 2889: 2846: 2838: 2811: 2803: 2762: 2754: 2713: 2705: 2662: 2654: 2557: 2487: 2479: 2444: 2426: 2385: 2348: 2337: 2302: 2259: 2224: 2219: 2202: 2157: 2147: 2100: 2082: 2051: 2002: 1994: 1950: 1945: 1928: 1909: 1833: 1782: 1751: 1692: 1638: 1613: 1564: 1513: 1454: 1307:), by decreasing the time to produce an action potential in the SAN. Nerves from the 1254: 1203: 1079: 1019: 457:
This phase consists of a rapid, positive change in voltage across the cell membrane (
276: 221: 90: 82: 63: 51: 3150: 3052: 2271: 1466: 425:
The pacemaker potential is thought to be due to a group of channels, referred to as
3805: 3400: 3186: 3163: 3130: 3075: 3024: 3001: 2973: 2928: 2920: 2879: 2793: 2744: 2697: 2646: 2569: 2549: 2471: 2434: 2418: 2294: 2251: 2214: 2090: 2041: 2033: 1984: 1940: 1901: 1823: 1815: 1774: 1741: 1731: 1682: 1674: 1603: 1595: 1554: 1544: 1503: 1493: 1446: 1198:
membrane of ventricular cells, whereas the T-type channels are found mainly within
1015: 671: 408: 395:) to move three Na out of the cell and two K into the cell. Another example is the 39: 2674: 1989: 1972: 1358:
which binds to a receptor located on the outside of the pacemaker cell, called an
3655: 3385: 1736: 1391: 1342:
dominant while the body is resting and digesting) decreases heart rate (negative
1262: 1242: 1234: 1007: 951: 613: 505: 485: 469: 462: 415: 388: 368: 272: 268: 55: 43: 30: 2701: 2422: 2298: 1678: 651:
of the cell, during phase 0, causes the membrane potential to approach sodium's
3815: 3740: 3732: 3326: 3313: 2650: 2584: 2022:"The role of the calcium and the voltage clocks in sinoatrial node dysfunction" 1819: 1315:, which binds to and activates receptors on the pacemaker cell membrane called 1312: 1246: 1199: 1066: 1060: 977: 648: 640: 458: 302: 245: 233: 229: 86: 59: 47: 3121:(Control and Regulation of Transport Phenomena in the Cardiac System): 113–8. 2462:
Severs, Nicholas J. (2002-12-01). "Gap junction remodeling in heart failure".
2037: 1549: 1450: 73:
Different shapes of the cardiac action potential in various parts of the heart
3873: 3433: 3343: 3336: 3321: 3087: 3036: 2985: 2924: 2842: 2807: 2758: 2709: 2658: 2483: 2475: 2430: 2161: 2086: 1998: 1498: 1355: 1258: 1238: 1218: 477: 430: 3134: 2884: 2865: 2798: 2781: 1253:, which slows down conduction of the action potential from the atria to the 3847: 3837: 3810: 3699: 3690: 3487: 3461: 3253: 3142: 3095: 2942: 2815: 2766: 2717: 2666: 2491: 2448: 2306: 2263: 2228: 2055: 2006: 1954: 1837: 1755: 1696: 1617: 1568: 1517: 1458: 1410: 1382: 1343: 1304: 1044:
Hyperpolarization-activated cyclic nucleotide-gated channels (HCN channels)
663: 280: 3259: 3044: 2993: 2561: 2104: 1913: 1533:"Sinoatrial node dysfunction induces cardiac arrhythmias in diabetic mice" 1350:, that begins in the brain and travels to the sinoatrial node, releases a 585:, thus allowing more types of K channels to open. These are primarily the 3852: 3842: 3570: 3565: 3560: 3471: 2893: 2850: 2517: 1347: 1308: 1135:. This current has two components. Both components activate rapidly, but 1043: 1038: 426: 306: 108: 3204:
Purves, D; Augustine, GJ; Fitzpatrick, D; Hall, WC; et al. (2008).
461:) lasting less than 2 ms in ventricular cells and 10–20 ms in 3790: 3575: 3465: 3448: 3331: 3028: 2255: 1661:
Santana, Luis F.; Cheng, Edward P.; Lederer, W. Jonathan (2010-12-01).
1531:
Soltysinska E, Speerschneider T, Winther SV, Thomsen MB (August 2014).
1530: 1402: 465:
cells. This occurs due to a net flow of positive charge into the cell.
78: 3722: 3493: 3360: 2977: 2553: 1363: 384: 1265:
at the bottom (apex) of the heart, causing ventricular contraction.
639:
These two refractory periods are caused by changes in the states of
3750: 3481: 1351: 1195: 995: 680: 675: 356: 2866:"The relationship among cardiac pacemakers: Overdrive suppression" 557:
There is no plateau phase present in pacemaker action potentials.
427:
HCN channels (Hyperpolarization-activated cyclic nucleotide-gated)
3745: 1482:"Gap junction modulation and its implications for heart function" 769: 489: 3068:
American Journal of Physiology. Heart and Circulatory Physiology
2287:
American Journal of Physiology. Heart and Circulatory Physiology
2123: 418:
are never at rest. In these cells, phase 4 is also known as the
3585: 3580: 3262:
of cardiac action potential and other generic action potentials
1272:
An example of premature ventricular contraction is the classic
929: 895: 570: 540: 440:
within the cell. This calcium then increases activation of the
399:
which removes one Ca from the cell for three Na into the cell.
380: 341: 237: 2582: 2331: 2111: 1773:(Third ed.). Philadelphia, PA: Elsevier. pp. 51–80. 1710:
Koivumäki, Jussi T.; Korhonen, Topi; Tavi, Pasi (2011-01-01).
696:
Major currents during the cardiac ventricular action potential
3717: 3304: 2635: 1339: 1283: 899: 891: 861: 829: 801: 797: 741: 446: 112: 3295: 2313: 2144:
Medical physiology : a cellular and molecular approach
1026: 855: 586: 535:
This phase is also known as the "plateau" phase due to the
2498: 472:, which increases the membrane conductance (flow) of Na (g 267:
There are important physiological differences between the
3256:
illustrating the generation of a cardiac action potential
2617: 2530: 2284: 1479: 104: 3014: 527:
There is no obvious phase 1 present in pacemaker cells.
2361: 2182: 1801: 220:(voltage when the cell is not electrically excited) of 2733:"Structure and function of cardiac potassium channels" 1600:
10.2344/0003-3006(2006)53[53:foei]2.0.co;2
1973:"The role of the funny current in pacemaker activity" 1709: 1210:
L-type channels contribute to the plateau (phase 2).
1206:, but still to a lesser degree than L-type channels. 3225:
Medical Physiology: Principles for Clinical Medicine
3208:(4th ed.). Sunderland, MA: Sinauer Associates. 2405:
Goodenough, Daniel A.; Paul, David L. (2009-07-01).
2194: 1966: 1964: 1804:"Overview of Basic Mechanisms of Cardiac Arrhythmia" 1584:"Fundamentals of Electrocardiography Interpretation" 1660: 240:to flow into the cell. After a delay (known as the 3222: 2955: 2336: 2129: 1261:, located between the ventricles, and then to the 1961: 1891: 1656: 1654: 1115:can also aid the final stages of repolarisation. 550:Calcium also activates chloride channels called I 3871: 2520:. National Center for Biotechnology Information. 1436: 3065: 3017:Pflügers Archiv: European Journal of Physiology 2325: 1768: 1581: 2828: 2404: 2071:"Anatomy of the action potential in the heart" 1878: 1876: 1874: 1872: 1853:"Cardiac Arrhythmias - Textbook of Cardiology" 1651: 3281: 3203: 2687: 2319: 2142:Boron, Walter F.; Boulpaep, Emile L. (2012). 2141: 2117: 1233:electrical activity that originates from the 2857: 2278: 2019: 2013: 1802:Antzelevitch C, Burashnikov A (March 2011). 1667:Journal of Molecular and Cellular Cardiology 1480:Kurtenbach S, Kurtenbach S, Zoidl G (2014). 998:to a receptor on the channel (also known as 279:). The specific differences in the types of 252:, which can be found inside the cell in the 2524: 2241: 1970: 1869: 1624: 1524: 1473: 3288: 3274: 3115:Annals of the New York Academy of Sciences 2411:Cold Spring Harbor Perspectives in Biology 2200: 2174:: CS1 maint: location missing publisher ( 1284:Regulation by the autonomic nervous system 1054: 2932: 2883: 2797: 2748: 2438: 2384:. Cover Publishing Company. p. 145. 2218: 2094: 2045: 1988: 1944: 1926: 1827: 1745: 1735: 1686: 1607: 1558: 1548: 1507: 1497: 1224:electrical conduction system of the heart 608:Ionic pumps as discussed above, like the 3180: 3157: 2906: 2863: 2623: 2504: 2367: 2235: 2188: 1381: 1377: 1217: 340: 324: 205: 68: 29: 3297:Physiology of the cardiovascular system 3183:Human Physiology, From Cells to Systems 3160:Human Physiology, From Cells to Systems 2779: 2730: 2382:Ion Adventure in the Heartland Volume 1 2020:Joung B, Chen PS, Lin SF (March 2011). 1637:(5th ed.). Springer. p. 150. 286: 262:cardiac excitation-contraction coupling 14: 3872: 3223:Rhoades, R.; Bell, D.R., eds. (2009). 2461: 1390:from the opening of voltage-sensitive 1319:. This activates a protein, called a G 1088:Inwardly rectifying potassium channels 3269: 2379: 1073: 409:Goldman-Hodgkin-Katz voltage equation 298:, is the property of the specialized 3112: 2068: 1630: 1213: 627: 541:delayed rectifier potassium channels 232:and is mainly due to the opening of 2343:. New York: W. H. Freeman. p.  1430: 1299:(nerves dominant during the body's 1177: 103:Figure 1: Intra- and extracellular 24: 2782:"A tale of two (Calcium) channels" 1894:The American Journal of Cardiology 1779:10.1016/B978-0-323-52356-1.00003-7 391:which uses energy (in the form of 25: 3896: 3247: 3229:Lippincott Williams & Wilkins 3080:10.1152/ajpheart.1999.276.6.H2221 2599: 2335:; Orkand, R; Grinnell, A (1977). 1971:DiFrancesco, Dario (2010-02-19). 1808:Cardiac Electrophysiology Clinics 2220:10.1111/j.1748-1716.2009.02072.x 1946:10.1111/j.1748-1716.2009.02072.x 1850: 1303:) increase heart rate (positive 1120:voltage-gated potassium channels 658: 407:and can be calculated using the 216:Similar to skeletal muscle, the 3260:Interactive mathematical models 3105: 3059: 3008: 2949: 2900: 2822: 2773: 2724: 2681: 2629: 2593: 2576: 2510: 2455: 2398: 2373: 2339:Introduction to Nervous Systems 2135: 2062: 1920: 1885: 1844: 1032: 691: 258:calcium-induced calcium release 27:Biological process in the heart 1795: 1762: 1703: 1634:Principles of Renal Physiology 1575: 1336:parasympathetic nervous system 1184:voltage-gated calcium channels 1142:inactivates more rapidly than 34:Basic cardiac action potential 13: 1: 3424:Aortic valve area calculation 2750:10.1016/s0008-6363(99)00071-1 2731:Snyders, D. J. (1999-05-01). 2075:Texas Heart Institute Journal 1990:10.1161/CIRCRESAHA.109.208041 1906:10.1016/s0002-9149(82)80016-7 1424: 1167:and ultra-rapidly activating 2602:"Ion channels and receptors" 1857:www.textbookofcardiology.org 1737:10.1371/journal.pcbi.1001067 1237:(SAN) is propagated via the 393:adenosine triphosphate (ATP) 331:ventricular action potential 7: 3541:Effective refractory period 3420:) / End-diastolic dimension 2702:10.1016/j.hrthm.2004.11.012 2423:10.1101/cshperspect.a002576 2299:10.1152/ajpheart.00753.2003 1679:10.1016/j.yjmcc.2010.09.005 1251:atrioventricular node (AVN) 1190:('L' for Long-lasting) and 687: 387:ions are maintained by the 248:. Another important ion is 96: 18:Cardiac muscle automaticity 10: 3901: 2780:Nargeot, J. (2000-03-31). 2651:10.1152/physrev.00021.2009 2464:Journal of Cardiac Failure 1820:10.1016/j.ccep.2010.10.012 1716:PLOS Computational Biology 1537:Cardiovascular Diabetology 1415:potassium channel blockers 1311:release a molecule called 1297:sympathetic nervous system 1077: 1058: 1036: 1004:voltage-gated ion channels 674:). They are made from the 560: 530: 515: 452: 361:resting membrane potential 350: 313:, caused, for example, by 242:absolute refractory period 218:resting membrane potential 3880:Cardiac electrophysiology 3826:Tubuloglomerular feedback 3781: 3773:Critical closing pressure 3731: 3698: 3684: 3664: 3601: 3593:Hexaxial reference system 3516:Cardiac electrophysiology 3503: 3447: 3399: 3312: 3303: 2038:10.3349/ymj.2011.52.2.211 1550:10.1186/s12933-014-0122-y 1451:10.1007/s10741-018-9743-7 1231:heart's conduction system 1000:ligand-gated ion channels 504:In pacemaker cells (e.g. 320: 3801:Renin–angiotensin system 2925:10.1136/heart.89.12.1455 2476:10.1054/jcaf.2002.129255 2069:Shih, H T (1994-01-01). 1582:Becker Daniel E (2006). 1499:10.3389/fphys.2014.00082 1419:calcium channel blockers 1301:fight-or-flight response 1290:autonomic nervous system 717: 714: 711: 704: 702: 610:sodium-calcium exchanger 442:sodium-calcium exchanger 397:sodium-calcium exchanger 311:electrotonic environment 132: 129: 126: 123: 120: 3831:Cerebral autoregulation 3796:Kinin–kallikrein system 3763:Jugular venous pressure 3413:End-diastolic dimension 3391:Pressure volume diagram 3135:10.1196/annals.1420.013 2907:Fagard R (2003-12-01). 2885:10.1161/01.res.41.3.269 2799:10.1161/01.res.86.6.613 2737:Cardiovascular Research 2130:Rhoades & Bell 2009 1486:Frontiers in Physiology 1407:sodium channel blockers 1274:athletic heart syndrome 1192:T-type calcium channels 1188:L-type calcium channels 1186:within cardiac muscle: 1102:decreases. Therefore, K 1055:The fast sodium channel 632:Cardiac cells have two 587:rapid delayed rectifier 494:L-type calcium channels 3768:Portal venous pressure 3758:Mean arterial pressure 3672:Ventricular remodeling 3418:End-systolic dimension 3376:Cardiac function curve 2831:Federation Proceedings 2026:Yonsei Medical Journal 1395: 1360:M2 muscarinic receptor 1278:atrioventricular block 1226: 978:Ca-transporting ATPase 571:slow delayed rectifier 438:sarcoplasmic reticulum 367:The activity of these 347: 334: 254:sarcoplasmic reticulum 74: 35: 3409:Fractional shortening 3254:Interactive animation 3181:Sherwood, L. (2012). 3158:Sherwood, L. (2008). 2864:Vassalle, M. (1977). 2639:Physiological Reviews 2470:(6 Suppl): S293–299. 1439:Heart Failure Reviews 1401:are used to regulate 1385: 1378:Clinical significance 1327:in the cell (via the 1221: 1160:, rapidly activating 1096:equilibrium potential 653:equilibrium potential 614:sodium-potassium pump 506:sinoatrial node cells 445:pumps (including the 405:equilibrium potential 389:sodium-potassium pump 344: 328: 315:myocardial infarction 72: 54:and are found in the 44:skeletal muscle cells 33: 3349:End-diastolic volume 2871:Circulation Research 2786:Circulation Research 1977:Circulation Research 1399:Antiarrhythmic drugs 1249:to contract, to the 292:Cardiac automaticity 287:Cardiac automaticity 277:ventricular myocytes 3713:Vascular resistance 3551:Electrocardiography 3546:Pacemaker potential 3476:Conduction velocity 3381:Venous return curve 3354:End-systolic volume 3127:2008NYASA1123..113R 2970:1991Natur.351..145D 2546:1991Natur.352..527L 2201:Grunnet M (2010b). 1728:2011PLSCB...7E1067K 1588:Anesthesia Progress 1362:. This activates a 1356:acetylcholine (ACh) 699: 668:electrically couple 595:inwardly rectifying 510:pacemaker potential 482:threshold potential 420:pacemaker potential 117: 3821:Myogenic mechanism 3439:Left atrial volume 3371:Frank–Starling law 3074:(6): H2221–H2244. 3029:10.1007/bf00584196 2507:, pp. 248–50. 2320:Purves et al. 2008 2256:10.1124/pr.57.4.11 2118:Purves et al. 2008 1927:Grunnet M (2010). 1396: 1227: 1074:Potassium channels 712:α subunit protein 692: 645:potassium channels 634:refractory periods 583:membrane potential 537:membrane potential 348: 335: 101: 79:cardiac arrhythmia 75: 64:intercalated discs 36: 3885:Action potentials 3867: 3866: 3863: 3862: 3680: 3679: 3520:Action potential 3511:Conduction system 3457:Cardiac pacemaker 3429:Ejection fraction 3185:(8th  ed.). 2964:(6322): 145–147. 2909:"Athlete's heart" 2626:, pp. 310–1. 2391:978-0-912912-11-0 2207:Acta Physiologica 2120:, pp. 26–28. 1933:Acta Physiologica 1788:978-0-323-52356-1 1631:Lote, C. (2012). 1214:Conduction system 1080:Potassium channel 991: 990: 921:3Na-1Ca-exchanger 698: 628:Refractory period 569:close, while the 379:For example, the 222:ventricular cells 214: 213: 83:electrocardiogram 52:cardiac pacemaker 16:(Redirected from 3892: 3806:Vasoconstrictors 3783:Regulation of BP 3696: 3695: 3629:pulmonary artery 3602:Chamber pressure 3310: 3309: 3290: 3283: 3276: 3267: 3266: 3242: 3219: 3200: 3187:Cengage Learning 3177: 3164:Cengage Learning 3162:(7th ed.). 3154: 3100: 3099: 3063: 3057: 3056: 3012: 3006: 3005: 2978:10.1038/351145a0 2953: 2947: 2946: 2936: 2904: 2898: 2897: 2887: 2861: 2855: 2854: 2837:(8): 2127–2131. 2826: 2820: 2819: 2801: 2777: 2771: 2770: 2752: 2728: 2722: 2721: 2685: 2679: 2678: 2633: 2627: 2621: 2615: 2614: 2612: 2611: 2606: 2597: 2591: 2590: 2580: 2574: 2573: 2554:10.1038/352527a0 2540:(6335): 527–30. 2528: 2522: 2521: 2514: 2508: 2502: 2496: 2495: 2459: 2453: 2452: 2442: 2402: 2396: 2395: 2377: 2371: 2365: 2359: 2358: 2342: 2329: 2323: 2317: 2311: 2310: 2282: 2276: 2275: 2239: 2233: 2232: 2222: 2198: 2192: 2186: 2180: 2179: 2173: 2165: 2139: 2133: 2127: 2121: 2115: 2109: 2108: 2098: 2066: 2060: 2059: 2049: 2017: 2011: 2010: 1992: 1968: 1959: 1958: 1948: 1924: 1918: 1917: 1889: 1883: 1880: 1867: 1866: 1864: 1863: 1848: 1842: 1841: 1831: 1799: 1793: 1792: 1766: 1760: 1759: 1749: 1739: 1707: 1701: 1700: 1690: 1658: 1649: 1648: 1628: 1622: 1621: 1611: 1579: 1573: 1572: 1562: 1552: 1528: 1522: 1521: 1511: 1501: 1477: 1471: 1470: 1434: 1392:calcium channels 1317:β1 adrenoceptors 1178:Calcium channels 987:ion homeostasis 961:ion homeostasis 935:ion homeostasis 700: 697: 488:. The influx of 210: 118: 107:concentrations ( 100: 40:action potential 21: 3900: 3899: 3895: 3894: 3893: 3891: 3890: 3889: 3870: 3869: 3868: 3859: 3777: 3727: 3689: 3686:Vascular system 3676: 3660: 3597: 3499: 3484:(Contractility) 3443: 3395: 3386:Wiggers diagram 3299: 3294: 3250: 3245: 3239: 3216: 3197: 3174: 3108: 3103: 3064: 3060: 3013: 3009: 2954: 2950: 2919:(12): 1455–61. 2905: 2901: 2862: 2858: 2827: 2823: 2778: 2774: 2729: 2725: 2686: 2682: 2634: 2630: 2622: 2618: 2609: 2607: 2604: 2600:Sheng, Morgan. 2598: 2594: 2589:(2nd ed.). 2581: 2577: 2529: 2525: 2516: 2515: 2511: 2503: 2499: 2460: 2456: 2407:"Gap junctions" 2403: 2399: 2392: 2378: 2374: 2366: 2362: 2355: 2330: 2326: 2318: 2314: 2293:(5): H1757–66. 2283: 2279: 2240: 2236: 2199: 2195: 2187: 2183: 2167: 2166: 2154: 2140: 2136: 2128: 2124: 2116: 2112: 2067: 2063: 2018: 2014: 1969: 1962: 1925: 1921: 1890: 1886: 1881: 1870: 1861: 1859: 1849: 1845: 1800: 1796: 1789: 1767: 1763: 1722:(1): e1001067. 1708: 1704: 1659: 1652: 1645: 1629: 1625: 1580: 1576: 1529: 1525: 1478: 1474: 1435: 1431: 1427: 1380: 1373: 1367: 1322: 1286: 1263:Purkinje fibers 1235:sinoatrial node 1216: 1204:pacemaker cells 1180: 1173: 1166: 1159: 1148: 1141: 1133: 1125: 1114: 1105: 1101: 1093: 1082: 1076: 1067:sodium channels 1063: 1057: 1050: 1041: 1035: 974: 948: 917: 886: 879: 853: 847: 825: 819: 793: 787: 765: 759: 737: 731: 715:α subunit gene 690: 676:connexin family 661: 630: 623: 604: 600: 592: 576: 563: 553: 546: 533: 523: 518: 500: 486:all-or-none law 475: 455: 416:pacemaker cells 353: 323: 296:autorhythmicity 289: 273:sinoatrial node 269:pacemaker cells 234:sodium channels 206: 99: 56:sinoatrial node 48:pacemaker cells 28: 23: 22: 15: 12: 11: 5: 3898: 3888: 3887: 3882: 3865: 3864: 3861: 3860: 3858: 3857: 3856: 3855: 3850: 3845: 3835: 3834: 3833: 3828: 3823: 3816:Autoregulation 3813: 3808: 3803: 3798: 3793: 3787: 3785: 3779: 3778: 3776: 3775: 3770: 3765: 3760: 3755: 3754: 3753: 3748: 3741:Pulse pressure 3737: 3735: 3733:Blood pressure 3729: 3728: 3726: 3725: 3720: 3715: 3710: 3704: 3702: 3693: 3682: 3681: 3678: 3677: 3675: 3674: 3668: 3666: 3662: 3661: 3659: 3658: 3653: 3652: 3651: 3646: 3638: 3637: 3636: 3626: 3625: 3624: 3619: 3611: 3609:Central venous 3605: 3603: 3599: 3598: 3596: 3595: 3590: 3589: 3588: 3583: 3578: 3573: 3568: 3563: 3558: 3548: 3543: 3538: 3537: 3536: 3531: 3526: 3518: 3513: 3507: 3505: 3501: 3500: 3498: 3497: 3491: 3490:(Excitability) 3485: 3479: 3469: 3459: 3453: 3451: 3445: 3444: 3442: 3441: 3436: 3431: 3426: 3421: 3415: 3405: 3403: 3397: 3396: 3394: 3393: 3388: 3383: 3378: 3373: 3368: 3363: 3358: 3357: 3356: 3351: 3341: 3340: 3339: 3334: 3327:Cardiac output 3324: 3318: 3316: 3314:Cardiac output 3307: 3301: 3300: 3293: 3292: 3285: 3278: 3270: 3264: 3263: 3257: 3249: 3248:External links 3246: 3244: 3243: 3237: 3220: 3214: 3201: 3195: 3178: 3172: 3155: 3109: 3107: 3104: 3102: 3101: 3058: 3023:(2): 101–109. 3007: 2948: 2899: 2856: 2821: 2792:(6): 613–615. 2772: 2743:(2): 377–390. 2723: 2696:(3): 316–324. 2680: 2645:(1): 291–366. 2628: 2616: 2592: 2575: 2523: 2509: 2497: 2454: 2417:(1): a002576. 2397: 2390: 2380:Dubin (2003). 2372: 2370:, p. 316. 2360: 2354:978-0716700302 2353: 2324: 2312: 2277: 2234: 2193: 2191:, p. 311. 2181: 2152: 2134: 2122: 2110: 2061: 2012: 1983:(3): 434–446. 1960: 1919: 1900:(3): 584–594. 1884: 1868: 1843: 1794: 1787: 1761: 1702: 1673:(6): 901–903. 1650: 1643: 1623: 1574: 1523: 1472: 1445:(1): 115–132. 1428: 1426: 1423: 1379: 1376: 1371: 1365: 1320: 1285: 1282: 1215: 1212: 1182:There are two 1179: 1176: 1171: 1164: 1157: 1146: 1139: 1131: 1123: 1112: 1103: 1099: 1091: 1078:Main article: 1075: 1072: 1061:Sodium channel 1059:Main article: 1056: 1053: 1048: 1037:Main article: 1034: 1031: 989: 988: 985: 980: 975: 972: 967: 963: 962: 959: 954: 949: 946: 941: 937: 936: 933: 923: 918: 915: 910: 906: 905: 902: 889: 884: 880: 877: 872: 868: 867: 864: 859: 851: 848: 845: 840: 836: 835: 832: 827: 823: 820: 817: 812: 808: 807: 804: 795: 791: 788: 785: 780: 776: 775: 772: 767: 763: 760: 757: 752: 748: 747: 744: 739: 735: 732: 729: 724: 720: 719: 716: 713: 710: 703: 689: 686: 660: 657: 649:depolarization 629: 626: 621: 602: 598: 590: 574: 562: 559: 551: 544: 532: 529: 521: 517: 514: 498: 473: 459:depolarization 454: 451: 352: 349: 322: 319: 294:also known as 288: 285: 246:repolarization 230:depolarization 212: 211: 203: 202: 199: 196: 193: 190: 186: 185: 182: 179: 176: 173: 169: 168: 165: 162: 159: 156: 152: 151: 148: 145: 142: 139: 135: 134: 131: 130:Intracellular 128: 127:Extracellular 125: 122: 98: 95: 26: 9: 6: 4: 3: 2: 3897: 3886: 3883: 3881: 3878: 3877: 3875: 3854: 3851: 3849: 3846: 3844: 3841: 3840: 3839: 3836: 3832: 3829: 3827: 3824: 3822: 3819: 3818: 3817: 3814: 3812: 3809: 3807: 3804: 3802: 3799: 3797: 3794: 3792: 3789: 3788: 3786: 3784: 3780: 3774: 3771: 3769: 3766: 3764: 3761: 3759: 3756: 3752: 3749: 3747: 3744: 3743: 3742: 3739: 3738: 3736: 3734: 3730: 3724: 3721: 3719: 3716: 3714: 3711: 3709: 3706: 3705: 3703: 3701: 3697: 3694: 3692: 3687: 3683: 3673: 3670: 3669: 3667: 3663: 3657: 3654: 3650: 3647: 3645: 3642: 3641: 3639: 3635: 3632: 3631: 3630: 3627: 3623: 3620: 3618: 3615: 3614: 3612: 3610: 3607: 3606: 3604: 3600: 3594: 3591: 3587: 3584: 3582: 3579: 3577: 3574: 3572: 3569: 3567: 3564: 3562: 3559: 3557: 3554: 3553: 3552: 3549: 3547: 3544: 3542: 3539: 3535: 3532: 3530: 3527: 3525: 3522: 3521: 3519: 3517: 3514: 3512: 3509: 3508: 3506: 3502: 3495: 3492: 3489: 3486: 3483: 3480: 3477: 3473: 3470: 3467: 3463: 3460: 3458: 3455: 3454: 3452: 3450: 3446: 3440: 3437: 3435: 3434:Cardiac index 3432: 3430: 3427: 3425: 3422: 3419: 3416: 3414: 3410: 3407: 3406: 3404: 3402: 3398: 3392: 3389: 3387: 3384: 3382: 3379: 3377: 3374: 3372: 3369: 3367: 3364: 3362: 3359: 3355: 3352: 3350: 3347: 3346: 3345: 3344:Stroke volume 3342: 3338: 3337:Stroke volume 3335: 3333: 3330: 3329: 3328: 3325: 3323: 3322:Cardiac cycle 3320: 3319: 3317: 3315: 3311: 3308: 3306: 3302: 3298: 3291: 3286: 3284: 3279: 3277: 3272: 3271: 3268: 3261: 3258: 3255: 3252: 3251: 3240: 3238:9780781768528 3234: 3230: 3226: 3221: 3217: 3215:9780878936977 3211: 3207: 3202: 3198: 3196:9781111577438 3192: 3188: 3184: 3179: 3175: 3173:9780495391845 3169: 3165: 3161: 3156: 3152: 3148: 3144: 3140: 3136: 3132: 3128: 3124: 3120: 3116: 3111: 3110: 3097: 3093: 3089: 3085: 3081: 3077: 3073: 3069: 3062: 3054: 3050: 3046: 3042: 3038: 3034: 3030: 3026: 3022: 3018: 3011: 3003: 2999: 2995: 2991: 2987: 2983: 2979: 2975: 2971: 2967: 2963: 2959: 2952: 2944: 2940: 2935: 2930: 2926: 2922: 2918: 2914: 2910: 2903: 2895: 2891: 2886: 2881: 2878:(3): 269–77. 2877: 2873: 2872: 2867: 2860: 2852: 2848: 2844: 2840: 2836: 2832: 2825: 2817: 2813: 2809: 2805: 2800: 2795: 2791: 2787: 2783: 2776: 2768: 2764: 2760: 2756: 2751: 2746: 2742: 2738: 2734: 2727: 2719: 2715: 2711: 2707: 2703: 2699: 2695: 2691: 2684: 2676: 2672: 2668: 2664: 2660: 2656: 2652: 2648: 2644: 2640: 2632: 2625: 2624:Sherwood 2012 2620: 2603: 2596: 2588: 2587: 2579: 2571: 2567: 2563: 2559: 2555: 2551: 2547: 2543: 2539: 2535: 2527: 2519: 2513: 2506: 2505:Sherwood 2008 2501: 2493: 2489: 2485: 2481: 2477: 2473: 2469: 2465: 2458: 2450: 2446: 2441: 2436: 2432: 2428: 2424: 2420: 2416: 2412: 2408: 2401: 2393: 2387: 2383: 2376: 2369: 2368:Sherwood 2008 2364: 2356: 2350: 2346: 2341: 2340: 2334: 2328: 2322:, p. 49. 2321: 2316: 2308: 2304: 2300: 2296: 2292: 2288: 2281: 2273: 2269: 2265: 2261: 2257: 2253: 2250:(4): 509–26. 2249: 2245: 2244:Pharmacol Rev 2238: 2230: 2226: 2221: 2216: 2212: 2208: 2204: 2197: 2190: 2189:Sherwood 2012 2185: 2177: 2171: 2163: 2159: 2155: 2153:9781437717532 2149: 2145: 2138: 2132:, p. 45. 2131: 2126: 2119: 2114: 2106: 2102: 2097: 2092: 2088: 2084: 2080: 2076: 2072: 2065: 2057: 2053: 2048: 2043: 2039: 2035: 2031: 2027: 2023: 2016: 2008: 2004: 2000: 1996: 1991: 1986: 1982: 1978: 1974: 1967: 1965: 1956: 1952: 1947: 1942: 1938: 1934: 1930: 1923: 1915: 1911: 1907: 1903: 1899: 1895: 1888: 1879: 1877: 1875: 1873: 1858: 1854: 1847: 1839: 1835: 1830: 1825: 1821: 1817: 1813: 1809: 1805: 1798: 1790: 1784: 1780: 1776: 1772: 1765: 1757: 1753: 1748: 1743: 1738: 1733: 1729: 1725: 1721: 1717: 1713: 1706: 1698: 1694: 1689: 1684: 1680: 1676: 1672: 1668: 1664: 1657: 1655: 1646: 1644:9781461437840 1640: 1636: 1635: 1627: 1619: 1615: 1610: 1605: 1601: 1597: 1593: 1589: 1585: 1578: 1570: 1566: 1561: 1556: 1551: 1546: 1542: 1538: 1534: 1527: 1519: 1515: 1510: 1505: 1500: 1495: 1491: 1487: 1483: 1476: 1468: 1464: 1460: 1456: 1452: 1448: 1444: 1440: 1433: 1429: 1422: 1420: 1416: 1412: 1411:beta blockers 1408: 1404: 1403:heart rhythms 1400: 1393: 1388: 1384: 1375: 1369: 1361: 1357: 1353: 1349: 1345: 1341: 1337: 1332: 1330: 1326: 1318: 1314: 1313:noradrenaline 1310: 1306: 1302: 1298: 1293: 1291: 1281: 1279: 1275: 1270: 1266: 1264: 1260: 1259:bundle of His 1256: 1252: 1248: 1244: 1240: 1236: 1232: 1225: 1220: 1211: 1207: 1205: 1201: 1197: 1193: 1189: 1185: 1175: 1170: 1163: 1156: 1150: 1145: 1138: 1134: 1130: 1121: 1116: 1110: 1097: 1089: 1085: 1081: 1071: 1068: 1062: 1052: 1045: 1040: 1030: 1028: 1023: 1021: 1017: 1013: 1009: 1005: 1001: 997: 986: 984: 981: 979: 976: 971: 968: 965: 964: 960: 958: 955: 953: 952:3Na-2K-ATPase 950: 945: 942: 939: 938: 934: 931: 927: 924: 922: 919: 914: 911: 908: 907: 903: 901: 897: 893: 890: 888: 881: 876: 873: 870: 869: 865: 863: 860: 857: 849: 844: 841: 838: 837: 833: 831: 828: 821: 816: 813: 810: 809: 805: 803: 799: 796: 789: 784: 781: 778: 777: 773: 771: 768: 761: 756: 753: 750: 749: 745: 743: 740: 733: 728: 725: 722: 721: 718:Phase / role 708: 701: 695: 685: 682: 677: 673: 672:cardiac cells 670:neighbouring 669: 665: 664:Gap junctions 659:Gap junctions 656: 654: 650: 646: 642: 637: 635: 625: 618: 615: 611: 606: 596: 589:K channels (I 588: 584: 580: 572: 568: 558: 555: 548: 542: 538: 528: 525: 513: 511: 507: 502: 495: 492:(Ca) through 491: 487: 483: 479: 478:gap junctions 471: 466: 464: 460: 450: 448: 443: 439: 434: 433:(see below). 432: 431:funny current 428: 423: 421: 417: 412: 410: 406: 400: 398: 394: 390: 386: 385:potassium (K) 382: 377: 373: 370: 365: 362: 358: 343: 339: 332: 327: 318: 316: 312: 308: 304: 301: 297: 293: 284: 282: 278: 274: 270: 265: 263: 259: 255: 251: 247: 243: 239: 235: 231: 226: 223: 219: 209: 204: 200: 197: 194: 191: 188: 187: 183: 180: 177: 174: 171: 170: 166: 163: 160: 157: 154: 153: 149: 146: 143: 140: 137: 136: 119: 116: 114: 110: 106: 94: 92: 88: 84: 80: 71: 67: 65: 61: 58:in the right 57: 53: 49: 45: 41: 32: 19: 3848:Carotid body 3811:Vasodilators 3691:hemodynamics 3523: 3496:(Relaxation) 3488:Bathmotropic 3462:Chronotropic 3224: 3206:Neuroscience 3205: 3182: 3159: 3118: 3114: 3106:Bibliography 3071: 3067: 3061: 3020: 3016: 3010: 2961: 2957: 2951: 2916: 2912: 2902: 2875: 2869: 2859: 2834: 2830: 2824: 2789: 2785: 2775: 2740: 2736: 2726: 2693: 2690:Heart Rhythm 2689: 2683: 2642: 2638: 2631: 2619: 2608:. Retrieved 2595: 2586:Neuroscience 2585: 2578: 2537: 2533: 2526: 2512: 2500: 2467: 2463: 2457: 2414: 2410: 2400: 2381: 2375: 2363: 2338: 2327: 2315: 2290: 2286: 2280: 2247: 2243: 2237: 2210: 2206: 2196: 2184: 2143: 2137: 2125: 2113: 2081:(1): 30–41. 2078: 2074: 2064: 2032:(2): 211–9. 2029: 2025: 2015: 1980: 1976: 1936: 1932: 1922: 1897: 1893: 1887: 1860:. Retrieved 1856: 1846: 1814:(1): 23–45. 1811: 1807: 1797: 1770: 1764: 1719: 1715: 1705: 1670: 1666: 1633: 1626: 1594:(2): 53–64. 1591: 1587: 1577: 1540: 1536: 1526: 1489: 1485: 1475: 1442: 1438: 1432: 1397: 1333: 1329:cAMP pathway 1294: 1287: 1271: 1267: 1228: 1208: 1181: 1168: 1161: 1154: 1151: 1143: 1136: 1128: 1117: 1108: 1086: 1083: 1064: 1042: 1033:HCN channels 1024: 992: 982: 969: 956: 943: 925: 912: 874: 842: 814: 782: 754: 726: 706: 693: 667: 662: 647:. The rapid 638: 631: 619: 607: 597:K current, I 564: 556: 549: 534: 526: 519: 503: 490:calcium ions 467: 456: 435: 424: 413: 401: 378: 374: 366: 354: 336: 303:muscle cells 295: 291: 290: 281:ion channels 266: 250:calcium (Ca) 227: 215: 207: 102: 76: 37: 3853:Glomus cell 3843:Aortic body 3838:Paraganglia 3649:ventricular 3622:ventricular 3571:QT interval 3566:QRS complex 3561:PR interval 3534:ventricular 3472:Dromotropic 2333:Bullock, TH 1348:vagus nerve 1344:chronotropy 1309:spinal cord 1305:chronotropy 1039:HCN channel 994:a specific 887:2.1/2.2/2.3 567:Ca channels 470:Na channels 381:sodium (Na) 307:ion channel 236:that allow 38:Unlike the 3874:Categories 3791:Baroreflex 3708:Compliance 3700:Blood flow 3576:ST segment 3504:Conduction 3494:Lusitropic 3466:Heart rate 3449:Heart rate 3401:Ultrasound 3332:Heart rate 2610:2013-03-14 1862:2022-05-17 1425:References 1255:ventricles 593:) and the 579:K channels 300:conductive 91:ventricles 3751:Diastolic 3723:Perfusion 3482:Inotropic 3361:Afterload 3088:0363-6135 3037:0031-6768 2986:0028-0836 2843:0014-9446 2808:0009-7330 2759:0008-6363 2710:1547-5271 2659:1522-1210 2484:1071-9164 2431:1943-0264 2170:cite book 2162:756281854 2087:0730-2347 1999:1524-4571 806:1, notch 705:Current ( 694:Figure 3: 414:However, 346:current). 201:2 x 10:1 161:3.5 - 5.0 155:Potassium 144:135 - 145 3746:Systolic 3524:cardiac 3151:13231624 3143:18375583 3096:10362707 3053:32845421 2943:14617564 2816:10746994 2767:10533574 2718:15851327 2667:20086079 2492:12555135 2449:20066080 2307:14693686 2272:11588492 2264:16382105 2229:20132149 2213:: 1–48. 2056:21319337 2007:20167941 1955:20132149 1939:: 1–48. 1851:Krul S. 1838:21892379 1756:21298076 1697:20850450 1618:16863387 1569:25113792 1518:24578694 1467:52919432 1459:30288656 1368:-protein 1352:molecule 1243:Purkinje 1196:T-tubule 1147:to, slow 996:molecule 688:Channels 681:connexon 612:and the 357:diastole 189:Calcium 178:95 - 110 172:Chloride 121:Element 97:Overview 3366:Preload 3123:Bibcode 3045:6253873 3002:4326191 2994:1709448 2966:Bibcode 2934:1767992 2570:4246540 2562:1650913 2542:Bibcode 2440:2742079 2105:7514060 2047:3051220 1914:6277179 1829:3164530 1747:3029229 1724:Bibcode 1688:3623268 1609:1614214 1560:4149194 1543:: 122. 1509:3936571 1354:called 1229:In the 1140:to,fast 794:4.2/4.3 770:CACNA1C 561:Phase 3 531:Phase 2 516:Phase 1 453:Phase 0 351:Phase 4 271:of the 181:10 - 20 3656:Aortic 3644:atrial 3617:atrial 3613:Right 3586:U wave 3581:T wave 3556:P wave 3529:atrial 3235:  3212:  3193:  3170:  3149:  3141:  3094:  3086:  3051:  3043:  3035:  3000:  2992:  2984:  2958:Nature 2941:  2931:  2894:330018 2892:  2851:350631 2849:  2841:  2814:  2806:  2765:  2757:  2716:  2708:  2675:472259 2673:  2665:  2657:  2568:  2560:  2534:Nature 2490:  2482:  2447:  2437:  2429:  2388:  2351:  2305:  2270:  2262:  2227:  2160:  2150:  2103:  2096:325129 2093:  2085:  2054:  2044:  2005:  1997:  1953:  1912:  1836:  1826:  1785:  1754:  1744:  1695:  1685:  1641:  1616:  1606:  1567:  1557:  1516:  1506:  1492:: 82. 1465:  1457:  1417:, and 1340:nerves 1200:atrial 1065:These 1018:, and 930:SLC8A1 909:Na, Ca 896:KCNJ12 854:11.1 ( 641:sodium 321:Phases 138:Sodium 133:Ratio 60:atrium 3718:Pulse 3665:Other 3640:Left 3634:wedge 3305:Heart 3147:S2CID 3049:S2CID 2998:S2CID 2913:Heart 2671:S2CID 2605:(PDF) 2566:S2CID 2268:S2CID 1463:S2CID 1387:Drugs 1247:atria 983:ATP1B 957:ATP1A 940:Na, K 900:KCNJ4 892:KCNJ2 862:KCNH2 830:KCNQ1 802:KCND3 798:KCND2 758:Ca(L) 742:SCN5A 497:dV/dt 447:SERCA 369:pumps 167:1:30 150:14:1 87:atria 3233:ISBN 3210:ISBN 3191:ISBN 3168:ISBN 3139:PMID 3119:1123 3092:PMID 3084:ISSN 3041:PMID 3033:ISSN 2990:PMID 2982:ISSN 2939:PMID 2890:PMID 2847:PMID 2839:ISSN 2812:PMID 2804:ISSN 2763:PMID 2755:ISSN 2714:PMID 2706:ISSN 2663:PMID 2655:ISSN 2558:PMID 2488:PMID 2480:ISSN 2445:PMID 2427:ISSN 2386:ISBN 2349:ISBN 2303:PMID 2260:PMID 2225:PMID 2176:link 2158:OCLC 2148:ISBN 2101:PMID 2083:ISSN 2052:PMID 2003:PMID 1995:ISSN 1951:PMID 1910:PMID 1834:PMID 1783:ISBN 1752:PMID 1693:PMID 1639:ISBN 1614:PMID 1565:PMID 1514:PMID 1455:PMID 1334:The 1325:cAMP 1295:The 1222:The 1202:and 1118:The 1027:gene 926:NCX1 916:NaCa 904:3,4 856:hERG 834:2,3 774:0-2 643:and 383:and 184:4:1 124:Ion 109:mmol 89:and 3411:= ( 3131:doi 3076:doi 3072:276 3025:doi 3021:386 2974:doi 2962:351 2929:PMC 2921:doi 2880:doi 2794:doi 2745:doi 2698:doi 2647:doi 2550:doi 2538:352 2472:doi 2435:PMC 2419:doi 2345:151 2295:doi 2291:286 2252:doi 2215:doi 2211:198 2091:PMC 2042:PMC 2034:doi 1985:doi 1981:106 1941:doi 1937:198 1902:doi 1824:PMC 1816:doi 1775:doi 1742:PMC 1732:doi 1683:PMC 1675:doi 1604:PMC 1596:doi 1555:PMC 1545:doi 1504:PMC 1494:doi 1447:doi 1239:His 1172:Kur 1132:to1 1109:out 1092:ir) 973:pCa 947:NaK 826:7.1 786:to1 766:1.2 738:1.5 624:). 552:to2 522:to1 499:max 463:SAN 449:). 198:10 192:Ca 164:155 105:ion 42:in 3876:: 3231:. 3227:. 3189:. 3166:. 3145:. 3137:. 3129:. 3117:. 3090:. 3082:. 3070:. 3047:. 3039:. 3031:. 3019:. 2996:. 2988:. 2980:. 2972:. 2960:. 2937:. 2927:. 2917:89 2915:. 2911:. 2888:. 2876:41 2874:. 2868:. 2845:. 2835:37 2833:. 2810:. 2802:. 2790:86 2788:. 2784:. 2761:. 2753:. 2741:42 2739:. 2735:. 2712:. 2704:. 2692:. 2669:. 2661:. 2653:. 2643:90 2641:. 2564:. 2556:. 2548:. 2536:. 2486:. 2478:. 2466:. 2443:. 2433:. 2425:. 2413:. 2409:. 2347:. 2301:. 2289:. 2266:. 2258:. 2248:57 2246:. 2223:. 2209:. 2205:. 2172:}} 2168:{{ 2156:. 2099:. 2089:. 2079:21 2077:. 2073:. 2050:. 2040:. 2030:52 2028:. 2024:. 2001:. 1993:. 1979:. 1975:. 1963:^ 1949:. 1935:. 1931:. 1908:. 1898:49 1896:. 1871:^ 1855:. 1832:. 1822:. 1810:. 1806:. 1781:. 1750:. 1740:. 1730:. 1718:. 1714:. 1691:. 1681:. 1671:49 1669:. 1665:. 1653:^ 1612:. 1602:. 1592:53 1590:. 1586:. 1563:. 1553:. 1541:13 1539:. 1535:. 1512:. 1502:. 1488:. 1484:. 1461:. 1453:. 1443:24 1441:. 1421:. 1413:, 1409:, 1292:. 1174:. 1165:Kr 1158:Ks 1122:(K 1113:ir 1104:ir 1100:ir 1090:(K 1020:Cl 1016:Ca 1014:, 1010:, 1008:Na 966:Ca 885:ir 878:K1 866:3 846:Kr 818:Ks 762:Ca 751:Ca 746:0 734:Na 730:Na 723:Na 709:) 622:Kr 603:K1 599:K1 591:Kr 577:) 575:Ks 573:(I 545:ks 543:(I 501:. 474:Na 411:. 317:. 264:. 238:Na 195:2 175:Cl 147:10 141:Na 93:. 3688:/ 3478:) 3474:( 3468:) 3464:( 3289:e 3282:t 3275:v 3241:. 3218:. 3199:. 3176:. 3153:. 3133:: 3125:: 3098:. 3078:: 3055:. 3027:: 3004:. 2976:: 2968:: 2945:. 2923:: 2896:. 2882:: 2853:. 2818:. 2796:: 2769:. 2747:: 2720:. 2700:: 2694:2 2677:. 2649:: 2613:. 2572:. 2552:: 2544:: 2494:. 2474:: 2468:8 2451:. 2421:: 2415:1 2394:. 2357:. 2309:. 2297:: 2274:. 2254:: 2231:. 2217:: 2178:) 2164:. 2107:. 2058:. 2036:: 2009:. 1987:: 1957:. 1943:: 1916:. 1904:: 1865:. 1840:. 1818:: 1812:3 1791:. 1777:: 1758:. 1734:: 1726:: 1720:7 1699:. 1677:: 1647:. 1620:. 1598:: 1571:. 1547:: 1520:. 1496:: 1490:5 1469:. 1449:: 1394:. 1372:i 1366:i 1364:G 1338:( 1321:s 1241:- 1169:I 1162:I 1155:I 1144:I 1137:I 1129:I 1124:v 1049:f 1047:I 1012:K 970:I 944:I 932:) 928:( 913:I 898:/ 894:/ 883:K 875:I 871:K 858:) 852:V 850:K 843:I 839:K 824:V 822:K 815:I 811:K 800:/ 792:V 790:K 783:I 779:K 764:V 755:I 736:V 727:I 707:I 333:. 158:K 115:) 113:L 111:/ 20:)

Index

Cardiac muscle automaticity

action potential
skeletal muscle cells
pacemaker cells
cardiac pacemaker
sinoatrial node
atrium
intercalated discs

cardiac arrhythmia
electrocardiogram
atria
ventricles
ion
mmol
L
resting membrane potential
ventricular cells
depolarization
sodium channels
Na
absolute refractory period
repolarization
calcium (Ca)
sarcoplasmic reticulum
calcium-induced calcium release
cardiac excitation-contraction coupling
pacemaker cells
sinoatrial node

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.