Knowledge

Chaperone-assisted selective autophagy

Source πŸ“

118:-containing protein complex that mediates the fusion of autophagosome membrane precursors. The formed autophagosomes finally fuse with lysosomes, resulting in client degradation. There are 5 main components for the chaperone-assisted selective autophagy complex are the molecular chaperones, autophagy receptors, autophagy equipment, lysosomes, and the substrates. The damaged and misfolded proteins inside the cell are recognized by the molecular chaperones, which afterwards bind to them. The receptors attach themselves to substrates that are connected to chaperones. This helps the substrate degrade. The chaperone-assisted selective autophagy substrates could be sent to specific areas like aggresomes for additional processing. The aggresomes are stress-induced juxta-nuclear inclusion bodies that requires an intact microtubular network to colocalize misfolded proteins, molecular chaperones, and UPS components at the microtubule organizing center. The chaperone-assisted selective autophagy is dependent on the formation of a heteromeric complex. This consists of the heat shock proteins and BAG3. The BAG family has 6 cochaperone members and BAG1 was identified as an interactor of Bcl-2 proteins which is an anti-apoptotic protein. The activation of HSF1 is the primary mechanism by which heat shock, proteasome inhibition, oxidative stress, and other stressors increase BAG3 expression. 98:. The cochaperone BAG3 plays a vital role in maintaining homeostasis. BAG3 facilitates the cooperation of HSPA8 and HSPB8 during the recognition of nonnative client proteins. HSPBs are chaperones that interact with misfolded substrates without the need for ATP to avoid aggregation. HSPB8 interacts with other HSPBs weakly and mostly forms homodimers. STUB1 mediates the 53:
ligases. The ubiquitinated proteins are enclosed in autophagosomes, which eventually fuse with lysosomes, leading to the degradation of the dysfunctional proteins. Chaperone-assisted selective autophagy is a vital part of the cellular protein quality control system. It is essential for protein
145:. The adaptor simultaneously interacts with the ubiquitinated client and autophagosome membrane precursors, thereby inducing the autophagic engulfment of the client. Autophagosome formation during chaperone-assisted selective autophagy depends on an interaction of 106:. The adaptor simultaneously interacts with the ubiquitinated client and autophagosome membrane precursors, thereby inducing the autophagic engulfment of the client. Autophagosome formation during chaperone-assisted selective autophagy depends on an interaction of 173:. Furthermore, the expression of the cochaperone BAG3 is upregulated in aged neuronal cells, which correlates with an increased necessity to dispose oxidatively damaged proteins through autophagy. Chaperone-assisted selective autophagy is thus essential for 41:(Greek: β€˜self-eating’) was initially identified as a catabolic process for the unselective degradation of cellular content in lysosomes under starvation conditions. However, autophagy also comprises selective degradation pathways, which depend on 192:. Mechanical tension results in unfolding of filamin, leading to recognition by the chaperone complex and to the autophagic degradation of damaged filamin. This is a prerequisite for the maintenance of the 157:-containing protein complex that mediates the fusion of autophagosome membrane precursors. The formed autophagosomes finally fuse with lysosomes, resulting in client degradation. 45:
conjugation to initiate sorting to lysosomes. In the case of chaperone-assisted selective autophagy, dysfunctional, nonnative proteins are recognized by molecular
196:
cytoskeleton in mechanically strained cells and tissues. Impairment of chaperone-assisted selective autophagy in patients and animal models causes
137:. BAG3 facilitates the cooperation of HSPA8 and HSPB8 during the recognition of nonnative client proteins. STUB1 mediates the 184:
In mechanically strained cells and tissues, chaperone-assisted selective autophagy mediates the degradation of the
737:"Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy" 165:
Proteins that are degraded by chaperone-assisted selective autophagy include pathogenic forms of the
344:"Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3" 170: 141:
of the chaperone-bound client, which induces the recruitment of the autophagic ubiquitin adaptor
102:
of the chaperone-bound client, which induces the recruitment of the autophagic ubiquitin adaptor
735:
Sarparanta J, Jonson PH, Golzio C, Sandell S, Luque H, Screen M, et al. (February 2012).
230:
Ulbricht A, Eppler FJ, Tapia VE, van der Ven PF, Hampe N, Hersch N, et al. (March 2013).
790: 488:"Development by self-digestion: molecular mechanisms and biological functions of autophagy" 301: 243: 8: 232:"Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy" 46: 24: 614: 589: 398:"HspB8 and Bag3: a new chaperone complex targeting misfolded proteins to macroautophagy" 305: 247: 761: 736: 712: 687: 663: 638: 637:
Selcen D, Muntoni F, Burton BK, Pegoraro E, Sewry C, Bite AV, Engel AG (January 2009).
558: 533: 368: 343: 288:
Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, et al. (January 2010).
504: 487: 463: 438: 121:
The chaperone-assisted selective autophagy complex comprises the molecular chaperones
82:
The chaperone-assisted selective autophagy complex comprises the molecular chaperones
766: 717: 668: 619: 563: 509: 468: 419: 373: 319: 261: 756: 748: 707: 699: 658: 650: 609: 601: 553: 545: 499: 458: 450: 409: 363: 355: 309: 251: 197: 605: 686:
Homma S, Iwasaki M, Shelton GD, Engvall E, Reed JC, Takayama S (September 2006).
63: 703: 454: 201: 138: 99: 590:"The chaperone-assisted selective autophagy complex dynamics and dysfunctions" 314: 289: 256: 231: 784: 342:
Gamerdinger M, Hajieva P, Kaya AM, Wolfrum U, Hartl FU, Behl C (April 2009).
290:"Chaperone-assisted selective autophagy is essential for muscle maintenance" 770: 721: 672: 623: 567: 513: 472: 423: 377: 323: 265: 174: 55: 359: 549: 166: 654: 639:"Mutation in BAG3 causes severe dominant childhood muscular dystrophy" 414: 397: 50: 42: 38: 32: 20: 752: 688:"BAG3 deficiency results in fulminant myopathy and early lethality" 28: 189: 178: 59: 587: 150: 142: 111: 103: 229: 734: 341: 193: 185: 154: 134: 126: 122: 115: 95: 87: 83: 67: 636: 588:
Tedesco B, Vendredy L, Timmerman V, Poletti A (June 2023).
146: 130: 107: 91: 71: 685: 287: 62:
and in mechanically strained cells and tissues such as
532:
Shaid S, Brandts CH, Serve H, Dikic I (January 2013).
531: 395: 160: 49:and become ubiquitinated by chaperone-associated 782: 436: 583: 581: 579: 577: 527: 525: 523: 485: 396:Carra S, Seguin SJ, Landry J (February 2008). 391: 389: 387: 337: 335: 333: 283: 281: 279: 277: 275: 225: 223: 221: 219: 217: 728: 679: 630: 574: 520: 479: 430: 384: 330: 272: 214: 77: 760: 711: 662: 613: 557: 503: 462: 437:Reggiori F, Klionsky DJ (February 2002). 413: 367: 313: 255: 19:is a cellular process for the selective, 534:"Ubiquitination and selective autophagy" 153:, which triggers the cooperation with a 114:, which triggers the cooperation with a 783: 17:Chaperone-assisted selective autophagy 486:Levine B, Klionsky DJ (April 2004). 13: 439:"Autophagy in the eukaryotic cell" 14: 802: 692:The American Journal of Pathology 538:Cell Death and Differentiation 161:Clients and physiological role 1: 606:10.1080/15548627.2022.2160564 505:10.1016/S1534-5807(04)00099-1 207: 7: 10: 807: 704:10.2353/ajpath.2006.060250 455:10.1128/EC.01.1.11-21.2002 23:-dependent degradation of 315:10.1016/j.cub.2009.11.022 257:10.1016/j.cub.2013.01.064 78:Components and mechanism 129:, and the cochaperones 90:, and the cochaperones 188:-crosslinking protein 360:10.1038/emboj.2009.29 169:protein, which cause 171:Huntington's disease 643:Annals of Neurology 550:10.1038/cdd.2012.72 306:2010CBio...20..143A 248:2013CBio...23..430U 492:Developmental Cell 655:10.1002/ana.21553 415:10.4161/auto.5407 798: 775: 774: 764: 732: 726: 725: 715: 683: 677: 676: 666: 634: 628: 627: 617: 600:(6): 1619–1641. 585: 572: 571: 561: 529: 518: 517: 507: 483: 477: 476: 466: 434: 428: 427: 417: 393: 382: 381: 371: 348:The EMBO Journal 339: 328: 327: 317: 285: 270: 269: 259: 227: 198:muscle dystrophy 806: 805: 801: 800: 799: 797: 796: 795: 781: 780: 779: 778: 753:10.1038/ng.1103 741:Nature Genetics 733: 729: 684: 680: 635: 631: 586: 575: 530: 521: 484: 480: 443:Eukaryotic Cell 435: 431: 394: 385: 340: 331: 294:Current Biology 286: 273: 236:Current Biology 228: 215: 210: 163: 80: 64:skeletal muscle 12: 11: 5: 804: 794: 793: 777: 776: 727: 698:(3): 761–773. 678: 629: 573: 519: 498:(4): 463–477. 478: 429: 408:(2): 237–239. 383: 354:(7): 889–901. 329: 300:(2): 143–148. 271: 242:(5): 430–435. 212: 211: 209: 206: 202:cardiomyopathy 162: 159: 139:ubiquitination 100:ubiquitination 79: 76: 9: 6: 4: 3: 2: 803: 792: 789: 788: 786: 772: 768: 763: 758: 754: 750: 746: 742: 738: 731: 723: 719: 714: 709: 705: 701: 697: 693: 689: 682: 674: 670: 665: 660: 656: 652: 648: 644: 640: 633: 625: 621: 616: 611: 607: 603: 599: 595: 591: 584: 582: 580: 578: 569: 565: 560: 555: 551: 547: 543: 539: 535: 528: 526: 524: 515: 511: 506: 501: 497: 493: 489: 482: 474: 470: 465: 460: 456: 452: 448: 444: 440: 433: 425: 421: 416: 411: 407: 403: 399: 392: 390: 388: 379: 375: 370: 365: 361: 357: 353: 349: 345: 338: 336: 334: 325: 321: 316: 311: 307: 303: 299: 295: 291: 284: 282: 280: 278: 276: 267: 263: 258: 253: 249: 245: 241: 237: 233: 226: 224: 222: 220: 218: 213: 205: 203: 199: 195: 191: 187: 182: 180: 176: 172: 168: 158: 156: 152: 148: 144: 140: 136: 132: 128: 124: 119: 117: 113: 109: 105: 101: 97: 93: 89: 85: 75: 73: 69: 65: 61: 57: 54:homeostasis ( 52: 48: 44: 40: 36: 34: 30: 26: 22: 18: 791:Cell biology 747:(4): 450–5. 744: 740: 730: 695: 691: 681: 649:(1): 83–89. 646: 642: 632: 597: 593: 544:(1): 21–30. 541: 537: 495: 491: 481: 449:(1): 11–21. 446: 442: 432: 405: 401: 351: 347: 297: 293: 239: 235: 183: 175:proteostasis 164: 120: 81: 56:proteostasis 37: 16: 15: 208:References 167:Huntingtin 47:chaperones 594:Autophagy 402:Autophagy 51:ubiquitin 43:ubiquitin 39:Autophagy 33:lysosomes 25:chaperone 21:ubiquitin 785:Category 771:22366786 722:16936253 673:19085932 624:36594740 615:10262806 568:22722335 514:15068787 473:12455967 424:18094623 378:19229298 324:20060297 266:23434281 29:proteins 762:3315599 713:1698816 664:2639628 559:3524631 369:2647772 302:Bibcode 244:Bibcode 190:filamin 179:neurons 60:neurons 27:-bound 769:  759:  720:  710:  671:  661:  622:  612:  566:  556:  512:  471:  464:118053 461:  422:  376:  366:  322:  264:  151:SYNPO2 143:SQSTM1 112:SYNPO2 104:SQSTM1 194:actin 186:actin 155:VPS18 149:with 135:STUB1 127:HSPB8 123:HSPA8 116:VPS18 110:with 96:STUB1 88:HSPB8 84:HSPA8 68:heart 58:) in 767:PMID 718:PMID 669:PMID 620:PMID 564:PMID 510:PMID 469:PMID 420:PMID 374:PMID 320:PMID 262:PMID 200:and 147:BAG3 133:and 131:BAG3 125:and 108:BAG3 94:and 92:BAG3 86:and 72:lung 70:and 757:PMC 749:doi 708:PMC 700:doi 696:169 659:PMC 651:doi 610:PMC 602:doi 554:PMC 546:doi 500:doi 459:PMC 451:doi 410:doi 364:PMC 356:doi 310:doi 252:doi 177:in 31:in 787:: 765:. 755:. 745:44 743:. 739:. 716:. 706:. 694:. 690:. 667:. 657:. 647:65 645:. 641:. 618:. 608:. 598:19 596:. 592:. 576:^ 562:. 552:. 542:20 540:. 536:. 522:^ 508:. 494:. 490:. 467:. 457:. 445:. 441:. 418:. 404:. 400:. 386:^ 372:. 362:. 352:28 350:. 346:. 332:^ 318:. 308:. 298:20 296:. 292:. 274:^ 260:. 250:. 240:23 238:. 234:. 216:^ 204:. 181:. 74:. 66:, 35:. 773:. 751:: 724:. 702:: 675:. 653:: 626:. 604:: 570:. 548:: 516:. 502:: 496:6 475:. 453:: 447:1 426:. 412:: 406:4 380:. 358:: 326:. 312:: 304:: 268:. 254:: 246::

Index

ubiquitin
chaperone
proteins
lysosomes
Autophagy
ubiquitin
chaperones
ubiquitin
proteostasis
neurons
skeletal muscle
heart
lung
HSPA8
HSPB8
BAG3
STUB1
ubiquitination
SQSTM1
BAG3
SYNPO2
VPS18
HSPA8
HSPB8
BAG3
STUB1
ubiquitination
SQSTM1
BAG3
SYNPO2

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑