Knowledge

Compactification (mathematics)

Source šŸ“

1113: 73:
direction or + direction) is still preserved on the circle; for if a number approaches towards infinity from the - direction on the number line, then the corresponding point on the circle can approach āˆž from the left for example. Then if a number approaches infinity from the + direction on the number line, then the corresponding point on the circle can approach āˆž from the right.
72:
to a circle in the plane (which, as a closed and bounded subset of the Euclidean plane, is compact). Every sequence that ran off to infinity in the real line will then converge to āˆž in this compactification. The direction in which a number approaches infinity on the number line (either in the -
210:, and every subspace of a Tychonoff space is Tychonoff, we conclude that any space possessing a Hausdorff compactification must be a Tychonoff space. In fact, the converse is also true; being a Tychonoff space is both necessary and sufficient for possessing a Hausdorff compactification. 67:
with its ordinary topology. This space is not compact; in a sense, points can go off to infinity to the left or to the right. It is possible to turn the real line into a compact space by adding a single "point at infinity" which we will denote by āˆž. The resulting compactification is
813: 54:
of the space contains a finite subcover. The methods of compactification are various, but each is a way of controlling points from "going off to infinity" by in some way adding "points at infinity" or preventing such an "escape".
636:ā€“ the cohomology of affine space is trivial, while the cohomology of projective space is non-trivial and reflects the key features of intersection theory (dimension and degree of a subvariety, with intersection being 820: 101:-direction) and move them towards each other, until you get a circle with one point (the topmost one) missing. This point is our new point āˆž "at infinity"; adding it in completes the compact circle. 914:, their additional linear structure allowing e.g. for developing a differential calculus and more advanced considerations e.g. in relaxation in variational calculus or optimization theory. 651:
generally require allowing certain degeneracies ā€“ for example, allowing certain singularities or reducible varieties. This is notably used in the Deligneā€“Mumford compactification of the
816: 848: 213:
The fact that large and interesting classes of non-compact spaces do in fact have compactifications of particular sorts makes compactification a common technique in topology.
726: 295: 824: 1116: 1075: 557:
can "escape", one new point at infinity is added (but each direction is identified with its opposite). The Alexandroff one-point compactification of
1129: 628:, holds in projective space but not affine space. This distinct behavior of intersections in affine space and projective space is reflected in 706:, and those lattices can degenerate ('go off to infinity'), often in a number of ways (taking into account some auxiliary structure of 17: 1167: 612:
because the added points at infinity lead to simpler formulations of many theorems. For example, any two different lines in
339: 318: 1145: 961: 893: 155:
of the real line, discussed in more generality below. It is also possible to compactify the real line by adding
370: 323:
Of particular interest are Hausdorff compactifications, i.e., compactifications in which the compact space is
532: 882: 904: 652: 528: 222: 808:{\displaystyle {\text{SO}}(n)\setminus {\text{SL}}_{n}({\textbf {R}})/{\text{SL}}_{n}({\textbf {Z}}).} 897: 672: 875: 583: 512: 910:
The compactifications that are simultaneously convex subsets in a locally convex space are called
274: 911: 527:
in real projective four-space. The method is similar to that used to provide a base manifold for
520: 489: 355: 351: 621: 1025: 986: 924: 867: 543: 151:
between the real line and the unit circle without āˆž. What we have constructed is called the
860: 1007: 496:
as a subset of that space will also be compact. This is the Stoneā€“ÄŒech compactification.
147:
Since tangents and inverse tangents are both continuous, our identification function is a
8: 625: 1094: 1052: 691: 629: 609: 366: 160: 76:
Intuitively, the process can be pictured as follows: first shrink the real line to the
1141: 1070: 977: 957: 871: 398: 192: 43: 815:
This is harder to compactify. There are a variety of compactifications, such as the
1084: 1042: 1034: 1003: 995: 886: 566: 35: 637: 856: 852: 720: 703: 702:). Here the cusps are there for a good reason: the curves parametrize a space of 699: 695: 633: 328: 324: 306: 207: 203: 837: 664: 602: 1047: 1020: 460:
The Stoneā€“ÄŒech compactification can be constructed explicitly as follows: let
1161: 1137: 1112: 953: 945: 687: 335: 196: 148: 77: 69: 47: 327:. A topological space has a Hausdorff compactification if and only if it is 1073:(1937), "Applications of the theory of Boolean rings to general topology", 648: 508: 641: 516: 504: 105: 31: 658: 206:
may be of particular interest. Since every compact Hausdorff space is a
1098: 1056: 999: 51: 841: 668: 180: 172: 144:/2) is undefined; we will identify this point with our point āˆž. 64: 1089: 1038: 710:). The cusps stand in for those different 'directions to infinity'. 27:
Embedding a topological space into a compact space as a dense subset
982:"Ɯber die Metrisation der im Kleinen kompakten topologischen RƤume" 252: 616:
intersect in precisely one point, a statement that is not true in
524: 129: 97:-axis; then bend the ends of this interval upwards (in positive 981: 683:
to preserve structure at a richer level than just topological.
561:
we constructed in the example above is in fact homeomorphic to
431:
is a compact Hausdorff space, there is a unique continuous map
113: 676: 361:"Most general" or formally "reflective" means that the space 332: 109: 128:
on the circle with the corresponding point on the real line
690:
are compactified by the addition of single points for each
1134:
Relaxation in Optimization Theory and Variational Calculus
593:; the Alexandroff one-point compactification of the plane 358:
of the category of Tychonoff spaces and continuous maps.
297:
is closed and compact. The one-point compactification of
216: 199:, because of the special properties compact spaces have. 247:
is obtained by adding one extra point āˆž (often called a
1110:
15 parameter conformal group of spacetime described in
82: 927: ā€“ Way to extend a non-compact topological space 729: 659:
Compactification and discrete subgroups of Lie groups
601:, which in turn can be identified with a sphere, the 354:
of Compact Hausdorff spaces and continuous maps as a
277: 723:the same questions can be posed, for example about 553:. For each possible "direction" in which points in 830: 807: 480:can be identified with a subset of , the space of 289: 1076:Transactions of the American Mathematical Society 597:is (homeomorphic to) the complex projective line 472:can be identified with an evaluation function on 338:) "most general" Hausdorff compactification, the 104:A bit more formally: we represent a point on the 1159: 608:Passing to projective space is a common tool in 381:can be extended to a continuous function from 312: 136:/2). This function is undefined at the point 499: 468:to the closed interval . Then each point in 1117:Associative Composition Algebra/Homographies 576:the one-point compactification of the plane 50:. A compact space is a space in which every 976: 713:That is all for lattices in the plane. In 521:compactification for split complex numbers 124:for simplicity. Identify each such point 1088: 1046: 549:is a compactification of Euclidean space 1128: 523:. In fact, the hyperboloid is part of a 464:be the set of continuous functions from 393:is a compact Hausdorff space containing 255:of the new space to be the open sets of 944: 159:points, +āˆž and āˆ’āˆž; this results in the 14: 1160: 821:reductive Borelā€“Serre compactification 217:Alexandroff one-point compactification 183:subset of a compact space is called a 153:Alexandroff one-point compactification 1069: 847:Some 'boundary' theories such as the 679:is often a candidate for more subtle 488:to . Since the latter is compact by 409:is the same as the given topology on 227:For any noncompact topological space 42:is the process or result of making a 1019: 580:since more than one point is added. 794: 764: 538: 331:. In this case, there is a unique ( 259:together with the sets of the form 24: 907:of a quotient of algebraic groups. 389:in a unique way. More explicitly, 25: 1179: 874:arises from the consideration of 744: 698:(and so, since they are compact, 281: 1111: 653:moduli space of algebraic curves 1023:(1937). "On bicompact spaces". 831:Other compactification theories 589:is also a compactification of 1168:Compactification (mathematics) 1122: 1104: 1063: 1013: 970: 938: 799: 789: 769: 759: 741: 735: 350:; formally, this exhibits the 191:. It is often useful to embed 13: 1: 931: 849:collaring of an open manifold 413:, and for any continuous map 377:to a compact Hausdorff space 166: 58: 894:Bailyā€“Borel compactification 817:Borelā€“Serre compactification 533:conformal group of spacetime 301:is Hausdorff if and only if 290:{\displaystyle X\setminus G} 7: 918: 883:projective line over a ring 340:Stoneā€“ÄŒech compactification 319:Stoneā€“ÄŒech compactification 313:Stoneā€“ÄŒech compactification 10: 1184: 905:wonderful compactification 624:, which is fundamental in 500:Spacetime compactification 316: 237:one-point compactification 223:One-point compactification 220: 18:Conformal compactification 898:Hermitian symmetric space 876:almost periodic functions 519:can be used to provide a 912:convex compactifications 825:Satake compactifications 584:Complex projective space 565:. Note however that the 513:stereographic projection 365:is characterized by the 263: āˆŖ {āˆž}, where 202:Embeddings into compact 175:of a topological space 827:, that can be formed. 809: 356:reflective subcategory 291: 1026:Annals of Mathematics 987:Mathematische Annalen 978:Alexandroff, Pavel S. 925:Alexandroff extension 868:Bohr compactification 810: 544:Real projective space 292: 267:is an open subset of 861:Furstenberg boundary 727: 647:Compactification of 515:onto a single-sheet 453:is identically  275: 896:of a quotient of a 626:intersection theory 490:Tychonoff's theorem 371:continuous function 251:) and defining the 1071:Stone, Marshall H. 1048:10338.dmlcz/100420 1000:10.1007/BF01448011 889:may compactify it. 805: 630:algebraic topology 620:. More generally, 610:algebraic geometry 367:universal property 287: 193:topological spaces 161:extended real line 946:Munkres, James R. 872:topological group 796: 781: 766: 751: 733: 492:, the closure of 305:is Hausdorff and 249:point at infinity 44:topological space 16:(Redirected from 1175: 1152: 1151: 1126: 1120: 1115: 1108: 1102: 1101: 1092: 1067: 1061: 1060: 1050: 1017: 1011: 1010: 994:(3ā€“4): 294ā€“301, 974: 968: 967: 952:(2nd ed.). 942: 887:topological ring 836:The theories of 814: 812: 811: 806: 798: 797: 788: 787: 782: 779: 776: 768: 767: 758: 757: 752: 749: 734: 731: 718: 700:algebraic curves 696:Riemann surfaces 681:compactification 663:In the study of 634:cohomology rings 622:BĆ©zout's theorem 567:projective plane 539:Projective space 444: 426: 399:induced topology 296: 294: 293: 288: 204:Hausdorff spaces 185:compactification 143: 139: 123: 119: 92: 90: 85: 40:compactification 36:general topology 21: 1183: 1182: 1178: 1177: 1176: 1174: 1173: 1172: 1158: 1157: 1156: 1155: 1148: 1127: 1123: 1109: 1105: 1090:10.2307/1989788 1068: 1064: 1039:10.2307/1968839 1018: 1014: 975: 971: 964: 943: 939: 934: 921: 857:Shilov boundary 853:Martin boundary 838:ends of a space 833: 793: 792: 783: 778: 777: 772: 763: 762: 753: 748: 747: 730: 728: 725: 724: 721:Euclidean space 714: 661: 541: 511:have shown how 502: 484:functions from 432: 414: 321: 315: 307:locally compact 276: 273: 272: 225: 219: 208:Tychonoff space 169: 141: 137: 121: 117: 88: 83: 80: 61: 28: 23: 22: 15: 12: 11: 5: 1181: 1171: 1170: 1154: 1153: 1146: 1121: 1103: 1083:(3): 375ā€“481, 1062: 1033:(4): 823ā€“844. 1012: 969: 962: 936: 935: 933: 930: 929: 928: 920: 917: 916: 915: 908: 901: 890: 879: 864: 845: 832: 829: 804: 801: 791: 786: 775: 771: 761: 756: 746: 743: 740: 737: 694:, making them 688:modular curves 673:quotient space 660: 657: 603:Riemann sphere 540: 537: 501: 498: 449:restricted to 397:such that the 317:Main article: 314: 311: 286: 283: 280: 221:Main article: 218: 215: 197:compact spaces 168: 165: 116:, going from āˆ’ 60: 57: 26: 9: 6: 4: 3: 2: 1180: 1169: 1166: 1165: 1163: 1149: 1147:3-11-014542-1 1143: 1139: 1138:W. de Gruyter 1135: 1131: 1125: 1118: 1114: 1107: 1100: 1096: 1091: 1086: 1082: 1078: 1077: 1072: 1066: 1058: 1054: 1049: 1044: 1040: 1036: 1032: 1028: 1027: 1022: 1016: 1009: 1005: 1001: 997: 993: 989: 988: 983: 979: 973: 965: 963:0-13-181629-2 959: 955: 954:Prentice Hall 951: 947: 941: 937: 926: 923: 922: 913: 909: 906: 902: 899: 895: 891: 888: 884: 880: 877: 873: 869: 865: 862: 858: 854: 850: 846: 843: 839: 835: 834: 828: 826: 822: 818: 802: 784: 773: 754: 738: 722: 719:-dimensional 717: 711: 709: 705: 701: 697: 693: 689: 686:For example, 684: 682: 678: 674: 670: 667:subgroups of 666: 656: 654: 650: 649:moduli spaces 645: 643: 639: 638:PoincarĆ© dual 635: 631: 627: 623: 619: 615: 611: 606: 604: 600: 596: 592: 588: 585: 581: 579: 575: 571: 568: 564: 560: 556: 552: 548: 545: 536: 534: 530: 526: 522: 518: 514: 510: 506: 497: 495: 491: 487: 483: 479: 475: 471: 467: 463: 458: 456: 452: 448: 443: 439: 435: 430: 425: 421: 417: 412: 408: 404: 400: 396: 392: 388: 384: 380: 376: 372: 368: 364: 359: 357: 353: 349: 346:, denoted by 345: 341: 337: 336:homeomorphism 334: 330: 326: 320: 310: 308: 304: 300: 284: 278: 270: 266: 262: 258: 254: 250: 246: 242: 238: 234: 230: 224: 214: 211: 209: 205: 200: 198: 194: 190: 186: 182: 178: 174: 164: 162: 158: 154: 150: 149:homeomorphism 145: 135: 131: 127: 115: 111: 107: 102: 100: 96: 86: 79: 78:open interval 74: 71: 66: 63:Consider the 56: 53: 49: 48:compact space 45: 41: 37: 33: 19: 1133: 1130:Roubƭček, T. 1124: 1119:at Wikibooks 1106: 1080: 1074: 1065: 1030: 1024: 1021:Čech, Eduard 1015: 991: 985: 972: 949: 940: 715: 712: 707: 685: 680: 662: 646: 617: 613: 607: 598: 594: 590: 586: 582: 577: 573: 569: 562: 558: 554: 550: 546: 542: 529:group action 509:Isaak Yaglom 503: 493: 485: 481: 477: 473: 469: 465: 461: 459: 454: 450: 446: 441: 437: 433: 428: 423: 419: 415: 410: 406: 402: 394: 390: 386: 382: 378: 374: 362: 360: 347: 343: 322: 302: 298: 268: 264: 260: 256: 248: 244: 240: 236: 232: 228: 226: 212: 201: 188: 184: 176: 170: 156: 152: 146: 140:, since tan( 133: 125: 103: 98: 94: 75: 70:homeomorphic 62: 39: 29: 642:cup product 517:hyperboloid 505:Walter Benz 233:Alexandroff 106:unit circle 32:mathematics 1136:. Berlin: 1008:50.0128.04 932:References 842:prime ends 823:, and the 669:Lie groups 445:for which 271:such that 167:Definition 59:An example 52:open cover 745:∖ 369:that any 329:Tychonoff 325:Hausdorff 282:∖ 253:open sets 173:embedding 65:real line 1162:Category 1132:(1997). 980:(1924), 950:Topology 948:(2000). 919:See also 704:lattices 665:discrete 476:. Thus 436: : 427:, where 418: : 352:category 1099:1989788 1057:1968839 640:to the 632:in the 531:of the 525:quadric 114:radians 108:by its 93:on the 46:into a 1144:  1097:  1055:  1006:  960:  885:for a 819:, the 677:cosets 671:, the 1095:JSTOR 1053:JSTOR 870:of a 708:level 373:from 333:up to 231:the ( 181:dense 179:as a 112:, in 110:angle 34:, in 1142:ISBN 958:ISBN 903:The 892:The 881:The 866:The 859:and 840:and 692:cusp 507:and 1085:doi 1043:hdl 1035:doi 1004:JFM 996:doi 675:of 644:). 574:not 572:is 482:all 405:by 401:on 385:to 342:of 243:of 195:in 187:of 171:An 157:two 130:tan 120:to 30:In 1164:: 1140:. 1093:, 1081:41 1079:, 1051:. 1041:. 1031:38 1029:. 1002:, 992:92 990:, 984:, 956:. 855:, 851:, 780:SL 750:SL 732:SO 655:. 614:RP 605:. 599:CP 587:CP 570:RP 563:RP 547:RP 535:. 457:. 440:ā†’ 438:Ī²X 422:ā†’ 407:Ī²X 391:Ī²X 383:Ī²X 363:Ī²X 348:Ī²X 309:. 235:) 163:. 87:, 81:(āˆ’ 38:, 1150:. 1087:: 1059:. 1045:: 1037:: 998:: 966:. 900:. 878:. 863:. 844:. 803:. 800:) 795:Z 790:( 785:n 774:/ 770:) 765:R 760:( 755:n 742:) 739:n 736:( 716:n 618:R 595:C 591:C 578:R 559:R 555:R 551:R 494:X 486:C 478:X 474:C 470:X 466:X 462:C 455:f 451:X 447:g 442:K 434:g 429:K 424:K 420:X 416:f 411:X 403:X 395:X 387:K 379:K 375:X 344:X 303:X 299:X 285:G 279:X 269:X 265:G 261:G 257:X 245:X 241:X 239:Ī± 229:X 189:X 177:X 142:Ļ€ 138:Ļ€ 134:Īø 132:( 126:Īø 122:Ļ€ 118:Ļ€ 99:y 95:x 91:) 89:Ļ€ 84:Ļ€ 20:)

Index

Conformal compactification
mathematics
general topology
topological space
compact space
open cover
real line
homeomorphic
open interval
Ļ€
unit circle
angle
radians
tan
homeomorphism
extended real line
embedding
dense
topological spaces
compact spaces
Hausdorff spaces
Tychonoff space
One-point compactification
open sets
locally compact
Stoneā€“ÄŒech compactification
Hausdorff
Tychonoff
up to
homeomorphism

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘