Knowledge

Conjugate variables (thermodynamics)

Source đź“ť

1918:. The chemical potential may be thought of as a force which, when imbalanced, pushes an exchange of particles, either with the surroundings, or between phases inside the system. In cases where there are a mixture of chemicals and phases, this is a useful concept. For example, if a container holds liquid water and water vapor, there will be a chemical potential (which is negative) for the liquid which pushes the water molecules into the vapor (evaporation) and a chemical potential for the vapor, pushing vapor molecules into the liquid (condensation). Only when these "forces" equilibrate, and the chemical potential of each phase is equal, is equilibrium obtained. 32: 102: 1672: 3155:. In cases where there are a mixture of chemicals and phases, this is a useful concept. For example, if a container holds water and water vapor, there will be a chemical potential (which is negative) for the liquid, pushing water molecules into the vapor (evaporation) and a chemical potential for the vapor, pushing vapor molecules into the liquid (condensation). Only when these "forces" equilibrate is equilibrium obtained. 1902:, and their product is the energy lost by the system due to work. Here, pressure is the driving force, volume is the associated displacement, and the two form a pair of conjugate variables. In a similar way, temperature differences drive changes in entropy, and their product is the energy transferred by heat transfer. The thermodynamic force is always an 1913:
The theory of thermodynamic potentials is not complete until one considers the number of particles in a system as a variable on par with the other extensive quantities such as volume and entropy. The number of particles is, like volume and entropy, the displacement variable in a conjugate pair. The
1829:
Just as a small increment of energy in a mechanical system is the product of a force times a small displacement, so an increment in the energy of a thermodynamic system can be expressed as the sum of the products of certain generalized "forces" which, when unbalanced, cause certain generalized
1811:
In the above description, the product of two conjugate variables yields an energy. In other words, the conjugate pairs are conjugate with respect to energy. In general, conjugate pairs can be defined with respect to any thermodynamic state function. Conjugate pairs with respect to
3032: 2331: 1773:, a small increment of energy is the product of a force times a small displacement. A similar situation exists in thermodynamics. An increment in the energy of a thermodynamic system can be expressed as the sum of the products of certain 2836: 1910:, yielding an extensive energy. The intensive (force) variable is the derivative of the (extensive) internal energy with respect to the extensive (displacement) variable, with all other extensive variables held constant. 2563:
in the internal energy of the system is given by the sum of the flow of energy across the boundaries of the system due to the corresponding conjugate pair. These concepts will be expanded upon in the following sections.
2907: 1816:
are often used, in which the product of the conjugate pairs yields an entropy. Such conjugate pairs are particularly useful in the analysis of irreversible processes, as exemplified in the derivation of the
2533:
Here, the temperature, pressure, and chemical potential are the generalized forces, which drive the generalized changes in entropy, volume, and particle number respectively. These parameters all affect the
1391: 2922: 3131:. Temperature is the driving force, entropy is the associated displacement, and the two form a pair of conjugate variables. The temperature/entropy pair of conjugate variables is the only 2759: 2145: 3109: 3069: 2723: 2238: 2098: 2561: 1900: 2689: 1226: 1171: 1116: 923: 876: 791: 744: 656: 609: 2461: 827: 695: 1061: 2508: 2178: 2624: 1855: 560: 2528: 2481: 2434: 2414: 2394: 2374: 2354: 2230: 2204: 2046: 2016: 1983: 1953: 1875: 899: 852: 767: 720: 632: 585: 2767: 1701: 1830:"displacements" to occur, with their product being the energy transferred as a result. These forces and their associated displacements are called 1402: 1290: 2851: 524: 1797:
of the internal energy with respect to the extensive (displacement) variable, while all other extensive variables are held constant.
1380: 2587:, namely idealized, "infinitely slow" processes. Time-dependent thermodynamic processes far away from equilibrium are studied by 1413: 1781:, and the product of the two is the energy transferred as a result. These forces and their associated displacements are called 2912:
In the case of pure compression (i.e. no shearing forces), the stress tensor is simply the negative of the pressure times the
3322: 983: 2567:
While dealing with processes in which systems exchange matter or energy, classical thermodynamics is not concerned with the
1694: 1281: 950: 517: 333: 2638:. Pressure is the driving force, volume is the associated displacement, and the two form a pair of conjugate variables. 3174: 3027:{\displaystyle \delta w=V\,(-p\delta _{ij})\,\mathrm {d} \varepsilon _{ij}=-\sum _{k}pV\,\mathrm {d} \varepsilon _{kk}} 1465: 1439: 960: 414: 2729:
component of the strain tensor, then the mechanical work done as the result of a stress-induced infinitesimal strain
3341: 3303: 3270: 366: 75: 53: 46: 1518: 989: 388: 2732: 1687: 2588: 2114: 1618: 150: 3074: 1513: 1593: 1366: 343: 1818: 978: 181: 171: 186: 176: 3044: 2698: 2326:{\displaystyle \mathrm {d} U=T\,\mathrm {d} S-p\,\mathrm {d} V+\sum _{i}\mu _{i}\,\mathrm {d} N_{i}\,,} 1470: 1434: 212: 146: 1508: 1263: 1011: 457: 270: 260: 2072: 2541: 1880: 40: 2664: 2631: 2025: 1805: 1778: 1755: 1675: 1503: 1300: 1181: 1126: 1071: 1003: 942: 478: 467: 133: 3253:. Translated by J.B. Sykes; W.H. Reid. With A. M. Kosevich and L. P. Pitaevskii (3rd ed.). 1758:
are expressed in terms of conjugate pairs. The product of two quantities that are conjugate has
905: 858: 773: 726: 638: 591: 3254: 3200: 3164: 3038: 1608: 1325: 409: 163: 138: 57: 2439: 1528: 809: 674: 3262: 1543: 1120: 433: 279: 128: 1031: 2654: 2650: 2646: 2592: 2486: 2066: 1801: 1723: 1623: 1548: 1538: 338: 200: 2163: 8: 2584: 1568: 1330: 352: 318: 313: 226: 20: 2606: 1837: 1563: 542: 3223: 3148: 2572: 2513: 2466: 2419: 2399: 2379: 2359: 2339: 2215: 2189: 2157: 2031: 2001: 1968: 1938: 1921:
The most commonly considered conjugate thermodynamic variables are (with corresponding
1915: 1907: 1903: 1860: 1790: 1786: 1747: 1657: 1320: 1315: 1268: 884: 837: 752: 705: 617: 570: 500: 484: 371: 323: 308: 298: 107: 101: 3318: 3299: 3266: 3168: 2842: 1774: 1770: 1652: 1613: 1603: 1175: 973: 801: 303: 293: 235: 3227: 3215: 2595:, allowing systems near and far away from equilibrium to be studied, respectively. 1573: 1558: 1498: 1493: 1310: 1305: 955: 423: 288: 3246: 3152: 2913: 2635: 2535: 2183: 1763: 1759: 1751: 1719: 1523: 1371: 1025: 666: 489: 250: 217: 2831:{\displaystyle \delta w=V\sum _{ij}\sigma _{ij}\,\mathrm {d} \varepsilon _{ij}} 1793:, yielding an extensive energy transfer. The intensive (force) variable is the 1715: 1578: 1348: 448: 328: 265: 255: 123: 93: 3335: 3295: 2658: 2108: 2101: 2019: 1647: 965: 534: 495: 207: 3219: 1877:
acts as a generalized force: Pressure differences force a change in volume
1813: 1598: 1583: 1533: 1016: 3120: 1932: 1731: 1553: 361: 2657:, and changes in volume are generalized to the volume multiplied by the 3242: 3179: 2568: 1794: 1642: 1588: 2902:{\displaystyle \delta w=V\sigma _{ij}\,\mathrm {d} \varepsilon _{ij}} 2845:
for the tensors, in which repeated indices are assumed to be summed:
2642: 2630:
acts as a generalized force – pressure differences force a change in
240: 16:
Pair of values which express a thermodynamic system's internal energy
3289: 2627: 1995: 1739: 1356: 1273: 1065: 473: 245: 3171:: analogous conjugate variable pairs found in classical mechanics. 3071:) is the fractional change in volume so that the above reduces to 3124: 2641:
The above holds true only for non-viscous fluids. In the case of
2232:
of particles, a small change in the internal energy is given by:
1962: 1735: 462: 3258: 1956: 1743: 3294:. Revised by Kenneth S. Pitzer and Leo Brewer (2nd ed.). 3251:
Theory of Elasticity (Course of Theoretical Physics Volume 7)
2634:, and their product is the energy lost by the system due to 2591:. This can be done through linear or non-linear analysis of 3135:
term; the other terms are essentially all various forms of
3128: 438: 3142: 2598: 3201:"Use of Legendre transforms in chemical thermodynamics" 1922: 1804:
can be used as a tool to recall and derive some of the
3315:
Thermodynamics and an Introduction to Thermostatistics
3077: 3047: 2925: 2854: 2770: 2735: 2701: 2667: 2609: 2544: 2516: 2489: 2469: 2442: 2422: 2402: 2382: 2362: 2342: 2241: 2218: 2192: 2166: 2117: 2075: 2034: 2004: 1971: 1941: 1883: 1863: 1840: 1184: 1129: 1074: 1034: 908: 887: 861: 840: 812: 776: 755: 729: 708: 677: 641: 620: 594: 573: 545: 3312: 3103: 3063: 3026: 2901: 2830: 2753: 2717: 2683: 2618: 2583:. A central notion for this connection is that of 2555: 2522: 2502: 2475: 2455: 2428: 2408: 2388: 2368: 2348: 2325: 2224: 2198: 2172: 2139: 2092: 2040: 2010: 1977: 1947: 1894: 1869: 1849: 1220: 1165: 1110: 1055: 917: 893: 870: 846: 821: 785: 761: 738: 714: 689: 650: 626: 603: 579: 554: 3317:(2nd ed.). New York: John Wiley & Sons. 3235: 3127:, and their product is the energy transferred by 2653:solids, the pressure force is generalized to the 3333: 1914:generalized force component of this pair is the 19:For a more general mathematical discussion, see 3192: 3290:Lewis, Gilbert Newton; Randall, Merle (1961). 3241: 1695: 3151:is like a force which pushes an increase in 2754:{\displaystyle \mathrm {\varepsilon } _{ij}} 3114: 2571:at which such processes take place, termed 2538:of a thermodynamic system. A small change 1702: 1688: 100: 3005: 2964: 2938: 2880: 2809: 2319: 2303: 2271: 2256: 2140:{\displaystyle V\times \varepsilon _{ij}} 2089: 76:Learn how and when to remove this message 3104:{\displaystyle \delta w=-p\mathrm {d} V} 2661:. These then form a conjugate pair. If 39:This article includes a list of general 3198: 3143:Chemical potential/particle number pair 2599:Pressure/volume and stress/strain pairs 1785:. The thermodynamic force is always an 3334: 1777:that, when unbalanced, cause certain 2695:component of the stress tensor, and 25: 13: 3283: 3175:Intensive and extensive properties 3094: 3007: 2966: 2882: 2811: 2579:is usually used synonymously with 2546: 2305: 2273: 2258: 2243: 2212:For a system with different types 1906:and the displacement is always an 1885: 1789:and the displacement is always an 1726:is expressed in terms of pairs of 909: 862: 777: 730: 642: 595: 415:Intensive and extensive properties 45:it lacks sufficient corresponding 14: 3353: 3064:{\displaystyle \varepsilon _{kk}} 2718:{\displaystyle \varepsilon _{ij}} 2463:is the chemical potential of the 1671: 1670: 990:Table of thermodynamic equations 30: 2530:-type particles in the system. 1466:Maxwell's thermodynamic surface 2961: 2939: 2589:non-equilibrium thermodynamics 2093:{\displaystyle \sigma _{ij}\,} 1808:based on conjugate variables. 1200: 1188: 1145: 1133: 1090: 1078: 1050: 1038: 1: 3185: 3123:differences drive changes in 2556:{\displaystyle \mathrm {d} U} 1895:{\displaystyle \mathrm {d} V} 1857:conjugate pair. The pressure 1367:Mechanical equivalent of heat 2684:{\displaystyle \sigma _{ij}} 2603:As an example, consider the 2575:. For this reason, the term 1834:. For example, consider the 1819:Onsager reciprocal relations 979:Onsager reciprocal relations 7: 3313:Callen, Herbert B. (1998). 3158: 1824: 1779:generalized "displacements" 1471:Entropy as energy dispersal 1282:"Perpetual motion" machines 1221:{\displaystyle G(T,p)=H-TS} 1166:{\displaystyle A(T,V)=U-TS} 1111:{\displaystyle H(S,p)=U+pV} 10: 3358: 2581:equilibrium thermodynamics 2206:  (particles or mole) 918:{\displaystyle \partial T} 871:{\displaystyle \partial V} 786:{\displaystyle \partial p} 739:{\displaystyle \partial V} 651:{\displaystyle \partial T} 604:{\displaystyle \partial S} 18: 1392:An Inquiry Concerning the 3342:Thermodynamic properties 3115:Temperature/entropy pair 2456:{\displaystyle \mu _{i}} 1806:thermodynamic potentials 1756:thermodynamic potentials 1405:Heterogeneous Substances 822:{\displaystyle \alpha =} 690:{\displaystyle \beta =-} 3220:10.1351/pac200173081349 3199:Alberty, R. A. (2001). 2483:-th particle type, and 1992:Mechanical parameters: 60:more precise citations. 3165:Generalized coordinate 3105: 3065: 3041:of the strain tensor ( 3028: 2903: 2832: 2755: 2719: 2685: 2620: 2593:irreversible processes 2557: 2524: 2504: 2477: 2457: 2430: 2410: 2390: 2370: 2350: 2327: 2226: 2200: 2174: 2141: 2094: 2042: 2012: 1979: 1949: 1896: 1871: 1851: 1222: 1167: 1112: 1057: 1056:{\displaystyle U(S,V)} 919: 895: 872: 848: 823: 787: 763: 740: 716: 691: 652: 628: 605: 581: 556: 535:Specific heat capacity 139:Quantum thermodynamics 3263:Butterworth-Heinemann 3106: 3066: 3029: 2904: 2833: 2756: 2720: 2686: 2621: 2585:quasistatic processes 2558: 2525: 2505: 2503:{\displaystyle N_{i}} 2478: 2458: 2431: 2411: 2391: 2371: 2351: 2328: 2227: 2201: 2175: 2154:Material parameters: 2142: 2095: 2043: 2013: 1980: 1950: 1897: 1872: 1852: 1403:On the Equilibrium of 1223: 1168: 1121:Helmholtz free energy 1113: 1058: 920: 896: 873: 849: 824: 788: 764: 741: 717: 692: 653: 629: 606: 582: 557: 3298:: McGraw-Hill Book. 3075: 3045: 2923: 2852: 2768: 2733: 2699: 2665: 2626:conjugate pair. The 2607: 2542: 2514: 2487: 2467: 2440: 2420: 2400: 2380: 2360: 2356:is internal energy, 2340: 2239: 2216: 2190: 2173:{\displaystyle \mu } 2164: 2115: 2073: 2032: 2002: 1969: 1939: 1929:Thermal parameters: 1881: 1861: 1838: 1802:thermodynamic square 1775:generalized "forces" 1416:Motive Power of Fire 1182: 1127: 1072: 1032: 984:Bridgman's equations 961:Fundamental relation 906: 885: 859: 838: 810: 774: 753: 727: 706: 675: 639: 618: 592: 571: 543: 2057:or, more generally, 1832:conjugate variables 1783:conjugate variables 1728:conjugate variables 1394:Source ... Friction 1326:Loschmidt's paradox 518:Material properties 396:Conjugate variables 21:Conjugate variables 3149:chemical potential 3119:In a similar way, 3101: 3061: 3024: 2998: 2899: 2828: 2795: 2751: 2715: 2681: 2619:{\displaystyle pV} 2616: 2553: 2520: 2500: 2473: 2453: 2426: 2406: 2386: 2366: 2346: 2323: 2292: 2222: 2196: 2170: 2158:chemical potential 2137: 2090: 2038: 2008: 1975: 1945: 1916:chemical potential 1908:extensive variable 1904:intensive variable 1892: 1867: 1850:{\displaystyle pV} 1847: 1791:extensive variable 1787:intensive variable 1748:chemical potential 1658:Order and disorder 1414:Reflections on the 1321:Heat death paradox 1218: 1163: 1108: 1053: 915: 891: 868: 844: 819: 783: 759: 736: 712: 687: 648: 624: 601: 577: 555:{\displaystyle c=} 552: 525:Property databases 501:Reduced properties 485:Chemical potential 449:Functions of state 372:Thermal efficiency 108:Carnot heat engine 3324:978-0-471-86256-7 3169:generalized force 2989: 2843:Einstein notation 2783: 2523:{\displaystyle i} 2510:is the number of 2476:{\displaystyle i} 2429:{\displaystyle V} 2409:{\displaystyle p} 2389:{\displaystyle S} 2369:{\displaystyle T} 2349:{\displaystyle U} 2283: 2225:{\displaystyle i} 2199:{\displaystyle N} 2048:  (m = J Pa) 2041:{\displaystyle V} 2011:{\displaystyle p} 1978:{\displaystyle S} 1948:{\displaystyle T} 1870:{\displaystyle p} 1771:mechanical system 1712: 1711: 1653:Self-organization 1478: 1477: 1176:Gibbs free energy 974:Maxwell relations 932: 931: 928: 927: 894:{\displaystyle V} 847:{\displaystyle 1} 802:Thermal expansion 796: 795: 762:{\displaystyle V} 715:{\displaystyle 1} 661: 660: 627:{\displaystyle N} 580:{\displaystyle T} 508: 507: 424:Process functions 410:Property diagrams 389:System properties 379: 378: 344:Endoreversibility 236:Equation of state 86: 85: 78: 3349: 3328: 3309: 3277: 3276: 3239: 3233: 3231: 3214:(8): 1349–1380. 3205: 3196: 3110: 3108: 3107: 3102: 3097: 3070: 3068: 3067: 3062: 3060: 3059: 3033: 3031: 3030: 3025: 3023: 3022: 3010: 2997: 2982: 2981: 2969: 2960: 2959: 2908: 2906: 2905: 2900: 2898: 2897: 2885: 2879: 2878: 2837: 2835: 2834: 2829: 2827: 2826: 2814: 2808: 2807: 2794: 2760: 2758: 2757: 2752: 2750: 2749: 2741: 2724: 2722: 2721: 2716: 2714: 2713: 2690: 2688: 2687: 2682: 2680: 2679: 2625: 2623: 2622: 2617: 2562: 2560: 2559: 2554: 2549: 2529: 2527: 2526: 2521: 2509: 2507: 2506: 2501: 2499: 2498: 2482: 2480: 2479: 2474: 2462: 2460: 2459: 2454: 2452: 2451: 2435: 2433: 2432: 2427: 2415: 2413: 2412: 2407: 2395: 2393: 2392: 2387: 2376:is temperature, 2375: 2373: 2372: 2367: 2355: 2353: 2352: 2347: 2332: 2330: 2329: 2324: 2318: 2317: 2308: 2302: 2301: 2291: 2276: 2261: 2246: 2231: 2229: 2228: 2223: 2205: 2203: 2202: 2197: 2179: 2177: 2176: 2171: 2146: 2144: 2143: 2138: 2136: 2135: 2099: 2097: 2096: 2091: 2088: 2087: 2047: 2045: 2044: 2039: 2017: 2015: 2014: 2009: 1984: 1982: 1981: 1976: 1954: 1952: 1951: 1946: 1901: 1899: 1898: 1893: 1888: 1876: 1874: 1873: 1868: 1856: 1854: 1853: 1848: 1704: 1697: 1690: 1674: 1673: 1381:Key publications 1362: 1361:("living force") 1311:Brownian ratchet 1306:Entropy and life 1301:Entropy and time 1252: 1251: 1227: 1225: 1224: 1219: 1172: 1170: 1169: 1164: 1117: 1115: 1114: 1109: 1062: 1060: 1059: 1054: 956:Clausius theorem 951:Carnot's theorem 924: 922: 921: 916: 900: 898: 897: 892: 877: 875: 874: 869: 853: 851: 850: 845: 832: 831: 828: 826: 825: 820: 792: 790: 789: 784: 768: 766: 765: 760: 745: 743: 742: 737: 721: 719: 718: 713: 700: 699: 696: 694: 693: 688: 657: 655: 654: 649: 633: 631: 630: 625: 610: 608: 607: 602: 586: 584: 583: 578: 565: 564: 561: 559: 558: 553: 531: 530: 404: 403: 223: 222: 104: 90: 89: 81: 74: 70: 67: 61: 56:this article by 47:inline citations 34: 33: 26: 3357: 3356: 3352: 3351: 3350: 3348: 3347: 3346: 3332: 3331: 3325: 3306: 3286: 3284:Further reading 3281: 3280: 3273: 3247:Lifshitz, E. M. 3240: 3236: 3208:Pure Appl. Chem 3203: 3197: 3193: 3188: 3161: 3153:particle number 3145: 3117: 3093: 3076: 3073: 3072: 3052: 3048: 3046: 3043: 3042: 3015: 3011: 3006: 2993: 2974: 2970: 2965: 2952: 2948: 2924: 2921: 2920: 2890: 2886: 2881: 2871: 2867: 2853: 2850: 2849: 2819: 2815: 2810: 2800: 2796: 2787: 2769: 2766: 2765: 2742: 2737: 2736: 2734: 2731: 2730: 2706: 2702: 2700: 2697: 2696: 2672: 2668: 2666: 2663: 2662: 2636:mechanical work 2608: 2605: 2604: 2601: 2545: 2543: 2540: 2539: 2536:internal energy 2515: 2512: 2511: 2494: 2490: 2488: 2485: 2484: 2468: 2465: 2464: 2447: 2443: 2441: 2438: 2437: 2421: 2418: 2417: 2401: 2398: 2397: 2381: 2378: 2377: 2361: 2358: 2357: 2341: 2338: 2337: 2313: 2309: 2304: 2297: 2293: 2287: 2272: 2257: 2242: 2240: 2237: 2236: 2217: 2214: 2213: 2191: 2188: 2187: 2184:particle number 2165: 2162: 2161: 2128: 2124: 2116: 2113: 2112: 2080: 2076: 2074: 2071: 2070: 2033: 2030: 2029: 2003: 2000: 1999: 1970: 1967: 1966: 1940: 1937: 1936: 1884: 1882: 1879: 1878: 1862: 1859: 1858: 1839: 1836: 1835: 1827: 1760:units of energy 1754:. In fact, all 1752:particle number 1720:internal energy 1708: 1663: 1662: 1638: 1630: 1629: 1628: 1488: 1480: 1479: 1458: 1444: 1419: 1415: 1408: 1404: 1397: 1393: 1360: 1353: 1335: 1316:Maxwell's demon 1278: 1249: 1248: 1232: 1231: 1230: 1183: 1180: 1179: 1178: 1128: 1125: 1124: 1123: 1073: 1070: 1069: 1068: 1033: 1030: 1029: 1028: 1026:Internal energy 1021: 1006: 996: 995: 970: 945: 935: 934: 933: 907: 904: 903: 886: 883: 882: 860: 857: 856: 839: 836: 835: 811: 808: 807: 775: 772: 771: 754: 751: 750: 728: 725: 724: 707: 704: 703: 676: 673: 672: 667:Compressibility 640: 637: 636: 619: 616: 615: 593: 590: 589: 572: 569: 568: 544: 541: 540: 520: 510: 509: 490:Particle number 443: 402: 391: 381: 380: 339:Irreversibility 251:State of matter 218:Isolated system 203: 193: 192: 191: 166: 156: 155: 151:Non-equilibrium 143: 118: 110: 82: 71: 65: 62: 52:Please help to 51: 35: 31: 24: 17: 12: 11: 5: 3355: 3345: 3344: 3330: 3329: 3323: 3310: 3304: 3292:Thermodynamics 3285: 3282: 3279: 3278: 3271: 3234: 3190: 3189: 3187: 3184: 3183: 3182: 3177: 3172: 3160: 3157: 3144: 3141: 3116: 3113: 3111:as it should. 3100: 3096: 3092: 3089: 3086: 3083: 3080: 3058: 3055: 3051: 3035: 3034: 3021: 3018: 3014: 3009: 3004: 3001: 2996: 2992: 2988: 2985: 2980: 2977: 2973: 2968: 2963: 2958: 2955: 2951: 2947: 2944: 2941: 2937: 2934: 2931: 2928: 2910: 2909: 2896: 2893: 2889: 2884: 2877: 2874: 2870: 2866: 2863: 2860: 2857: 2839: 2838: 2825: 2822: 2818: 2813: 2806: 2803: 2799: 2793: 2790: 2786: 2782: 2779: 2776: 2773: 2748: 2745: 2740: 2712: 2709: 2705: 2678: 2675: 2671: 2643:viscous fluids 2615: 2612: 2600: 2597: 2577:thermodynamics 2552: 2548: 2519: 2497: 2493: 2472: 2450: 2446: 2425: 2405: 2385: 2365: 2345: 2334: 2333: 2322: 2316: 2312: 2307: 2300: 2296: 2290: 2286: 2282: 2279: 2275: 2270: 2267: 2264: 2260: 2255: 2252: 2249: 2245: 2221: 2210: 2209: 2208: 2207: 2195: 2181: 2169: 2151: 2150: 2149: 2148: 2134: 2131: 2127: 2123: 2120: 2107:Volume × 2105: 2086: 2083: 2079: 2061: 2060: 2059: 2058: 2052: 2051: 2050: 2049: 2037: 2023: 2007: 1989: 1988: 1987: 1986: 1974: 1960: 1944: 1891: 1887: 1866: 1846: 1843: 1826: 1823: 1716:thermodynamics 1710: 1709: 1707: 1706: 1699: 1692: 1684: 1681: 1680: 1679: 1678: 1665: 1664: 1661: 1660: 1655: 1650: 1645: 1639: 1636: 1635: 1632: 1631: 1627: 1626: 1621: 1616: 1611: 1606: 1601: 1596: 1591: 1586: 1581: 1576: 1571: 1566: 1561: 1556: 1551: 1546: 1541: 1536: 1531: 1526: 1521: 1516: 1511: 1506: 1501: 1496: 1490: 1489: 1486: 1485: 1482: 1481: 1476: 1475: 1474: 1473: 1468: 1460: 1459: 1457: 1456: 1453: 1449: 1446: 1445: 1443: 1442: 1437: 1435:Thermodynamics 1431: 1428: 1427: 1423: 1422: 1421: 1420: 1411: 1409: 1400: 1398: 1389: 1384: 1383: 1377: 1376: 1375: 1374: 1369: 1364: 1352: 1351: 1349:Caloric theory 1345: 1342: 1341: 1337: 1336: 1334: 1333: 1328: 1323: 1318: 1313: 1308: 1303: 1297: 1294: 1293: 1287: 1286: 1285: 1284: 1277: 1276: 1271: 1266: 1260: 1257: 1256: 1250: 1247: 1246: 1243: 1239: 1238: 1237: 1234: 1233: 1229: 1228: 1217: 1214: 1211: 1208: 1205: 1202: 1199: 1196: 1193: 1190: 1187: 1173: 1162: 1159: 1156: 1153: 1150: 1147: 1144: 1141: 1138: 1135: 1132: 1118: 1107: 1104: 1101: 1098: 1095: 1092: 1089: 1086: 1083: 1080: 1077: 1063: 1052: 1049: 1046: 1043: 1040: 1037: 1022: 1020: 1019: 1014: 1008: 1007: 1002: 1001: 998: 997: 994: 993: 986: 981: 976: 969: 968: 963: 958: 953: 947: 946: 941: 940: 937: 936: 930: 929: 926: 925: 914: 911: 901: 890: 879: 878: 867: 864: 854: 843: 829: 818: 815: 805: 798: 797: 794: 793: 782: 779: 769: 758: 747: 746: 735: 732: 722: 711: 697: 686: 683: 680: 670: 663: 662: 659: 658: 647: 644: 634: 623: 612: 611: 600: 597: 587: 576: 562: 551: 548: 538: 529: 528: 527: 521: 516: 515: 512: 511: 506: 505: 504: 503: 498: 493: 482: 471: 452: 451: 445: 444: 442: 441: 436: 430: 427: 426: 420: 419: 418: 417: 412: 393: 392: 387: 386: 383: 382: 377: 376: 375: 374: 369: 364: 356: 355: 349: 348: 347: 346: 341: 336: 331: 329:Free expansion 326: 321: 316: 311: 306: 301: 296: 291: 283: 282: 276: 275: 274: 273: 268: 266:Control volume 263: 258: 256:Phase (matter) 253: 248: 243: 238: 230: 229: 221: 220: 215: 210: 204: 199: 198: 195: 194: 190: 189: 184: 179: 174: 168: 167: 162: 161: 158: 157: 154: 153: 142: 141: 136: 131: 126: 120: 119: 116: 115: 112: 111: 106:The classical 105: 97: 96: 94:Thermodynamics 84: 83: 38: 36: 29: 15: 9: 6: 4: 3: 2: 3354: 3343: 3340: 3339: 3337: 3326: 3320: 3316: 3311: 3307: 3305:9780071138093 3301: 3297: 3296:New York City 3293: 3288: 3287: 3274: 3272:9780750626330 3268: 3264: 3260: 3256: 3252: 3248: 3244: 3243:Landau, L. D. 3238: 3229: 3225: 3221: 3217: 3213: 3209: 3202: 3195: 3191: 3181: 3178: 3176: 3173: 3170: 3166: 3163: 3162: 3156: 3154: 3150: 3140: 3138: 3134: 3130: 3126: 3122: 3112: 3098: 3090: 3087: 3084: 3081: 3078: 3056: 3053: 3049: 3040: 3019: 3016: 3012: 3002: 2999: 2994: 2990: 2986: 2983: 2978: 2975: 2971: 2956: 2953: 2949: 2945: 2942: 2935: 2932: 2929: 2926: 2919: 2918: 2917: 2915: 2894: 2891: 2887: 2875: 2872: 2868: 2864: 2861: 2858: 2855: 2848: 2847: 2846: 2844: 2823: 2820: 2816: 2804: 2801: 2797: 2791: 2788: 2784: 2780: 2777: 2774: 2771: 2764: 2763: 2762: 2746: 2743: 2738: 2728: 2710: 2707: 2703: 2694: 2676: 2673: 2669: 2660: 2659:strain tensor 2656: 2655:stress tensor 2652: 2648: 2644: 2639: 2637: 2633: 2629: 2613: 2610: 2596: 2594: 2590: 2586: 2582: 2578: 2574: 2570: 2565: 2550: 2537: 2531: 2517: 2495: 2491: 2470: 2448: 2444: 2423: 2416:is pressure, 2403: 2383: 2363: 2343: 2320: 2314: 2310: 2298: 2294: 2288: 2284: 2280: 2277: 2268: 2265: 2262: 2253: 2250: 2247: 2235: 2234: 2233: 2219: 2193: 2185: 2182: 2167: 2159: 2156: 2155: 2153: 2152: 2132: 2129: 2125: 2121: 2118: 2110: 2106: 2103: 2084: 2081: 2077: 2068: 2065: 2064: 2063: 2062: 2056: 2055: 2054: 2053: 2035: 2027: 2024: 2021: 2005: 1997: 1994: 1993: 1991: 1990: 1972: 1964: 1961: 1958: 1942: 1934: 1931: 1930: 1928: 1927: 1926: 1924: 1919: 1917: 1911: 1909: 1905: 1889: 1864: 1844: 1841: 1833: 1822: 1820: 1815: 1809: 1807: 1803: 1798: 1796: 1792: 1788: 1784: 1780: 1776: 1772: 1767: 1765: 1762:or sometimes 1761: 1757: 1753: 1749: 1745: 1741: 1737: 1733: 1729: 1725: 1721: 1717: 1705: 1700: 1698: 1693: 1691: 1686: 1685: 1683: 1682: 1677: 1669: 1668: 1667: 1666: 1659: 1656: 1654: 1651: 1649: 1648:Self-assembly 1646: 1644: 1641: 1640: 1634: 1633: 1625: 1622: 1620: 1619:van der Waals 1617: 1615: 1612: 1610: 1607: 1605: 1602: 1600: 1597: 1595: 1592: 1590: 1587: 1585: 1582: 1580: 1577: 1575: 1572: 1570: 1567: 1565: 1562: 1560: 1557: 1555: 1552: 1550: 1547: 1545: 1544:von Helmholtz 1542: 1540: 1537: 1535: 1532: 1530: 1527: 1525: 1522: 1520: 1517: 1515: 1512: 1510: 1507: 1505: 1502: 1500: 1497: 1495: 1492: 1491: 1484: 1483: 1472: 1469: 1467: 1464: 1463: 1462: 1461: 1454: 1451: 1450: 1448: 1447: 1441: 1438: 1436: 1433: 1432: 1430: 1429: 1425: 1424: 1418: 1417: 1410: 1407: 1406: 1399: 1396: 1395: 1388: 1387: 1386: 1385: 1382: 1379: 1378: 1373: 1370: 1368: 1365: 1363: 1359: 1355: 1354: 1350: 1347: 1346: 1344: 1343: 1339: 1338: 1332: 1329: 1327: 1324: 1322: 1319: 1317: 1314: 1312: 1309: 1307: 1304: 1302: 1299: 1298: 1296: 1295: 1292: 1289: 1288: 1283: 1280: 1279: 1275: 1272: 1270: 1267: 1265: 1262: 1261: 1259: 1258: 1254: 1253: 1244: 1241: 1240: 1236: 1235: 1215: 1212: 1209: 1206: 1203: 1197: 1194: 1191: 1185: 1177: 1174: 1160: 1157: 1154: 1151: 1148: 1142: 1139: 1136: 1130: 1122: 1119: 1105: 1102: 1099: 1096: 1093: 1087: 1084: 1081: 1075: 1067: 1064: 1047: 1044: 1041: 1035: 1027: 1024: 1023: 1018: 1015: 1013: 1010: 1009: 1005: 1000: 999: 992: 991: 987: 985: 982: 980: 977: 975: 972: 971: 967: 966:Ideal gas law 964: 962: 959: 957: 954: 952: 949: 948: 944: 939: 938: 912: 902: 888: 881: 880: 865: 855: 841: 834: 833: 830: 816: 813: 806: 803: 800: 799: 780: 770: 756: 749: 748: 733: 723: 709: 702: 701: 698: 684: 681: 678: 671: 668: 665: 664: 645: 635: 621: 614: 613: 598: 588: 574: 567: 566: 563: 549: 546: 539: 536: 533: 532: 526: 523: 522: 519: 514: 513: 502: 499: 497: 496:Vapor quality 494: 492: 491: 486: 483: 481: 480: 475: 472: 469: 465: 464: 459: 456: 455: 454: 453: 450: 447: 446: 440: 437: 435: 432: 431: 429: 428: 425: 422: 421: 416: 413: 411: 408: 407: 406: 405: 401: 397: 390: 385: 384: 373: 370: 368: 365: 363: 360: 359: 358: 357: 354: 351: 350: 345: 342: 340: 337: 335: 334:Reversibility 332: 330: 327: 325: 322: 320: 317: 315: 312: 310: 307: 305: 302: 300: 297: 295: 292: 290: 287: 286: 285: 284: 281: 278: 277: 272: 269: 267: 264: 262: 259: 257: 254: 252: 249: 247: 244: 242: 239: 237: 234: 233: 232: 231: 228: 225: 224: 219: 216: 214: 211: 209: 208:Closed system 206: 205: 202: 197: 196: 188: 185: 183: 180: 178: 175: 173: 170: 169: 165: 160: 159: 152: 148: 145: 144: 140: 137: 135: 132: 130: 127: 125: 122: 121: 114: 113: 109: 103: 99: 98: 95: 92: 91: 88: 80: 77: 69: 59: 55: 49: 48: 42: 37: 28: 27: 22: 3314: 3291: 3250: 3237: 3211: 3207: 3194: 3146: 3136: 3132: 3118: 3036: 2911: 2840: 2726: 2692: 2640: 2602: 2580: 2576: 2566: 2532: 2396:is entropy, 2335: 2211: 1985:  (J K) 1920: 1912: 1831: 1828: 1810: 1799: 1782: 1768: 1727: 1713: 1509:CarathĂ©odory 1440:Heat engines 1412: 1401: 1390: 1372:Motive power 1357: 1017:Free entropy 988: 488: 487: / 477: 476: / 468:introduction 461: 460: / 399: 395: 362:Heat engines 149: / 87: 72: 63: 44: 3121:temperature 2914:unit tensor 2436:is volume, 1933:Temperature 1732:temperature 1331:Synergetics 1012:Free energy 458:Temperature 319:Quasistatic 314:Isenthalpic 271:Instruments 261:Equilibrium 213:Open system 147:Equilibrium 129:Statistical 58:introducing 3255:Waltham MA 3186:References 3180:Bond graph 2841:or, using 2147:(m = J Pa) 1795:derivative 1643:Nucleation 1487:Scientists 1291:Philosophy 1004:Potentials 367:Heat pumps 324:Polytropic 309:Isentropic 299:Isothermal 41:references 3088:− 3079:δ 3050:ε 3013:ε 2991:∑ 2987:− 2972:ε 2950:δ 2943:− 2927:δ 2888:ε 2869:σ 2856:δ 2817:ε 2798:σ 2785:∑ 2772:δ 2739:ε 2704:ε 2670:σ 2445:μ 2295:μ 2285:∑ 2266:− 2168:μ 2126:ε 2122:× 2078:σ 1624:Waterston 1574:von Mayer 1529:de Donder 1519:Clapeyron 1499:Boltzmann 1494:Bernoulli 1455:Education 1426:Timelines 1210:− 1155:− 943:Equations 910:∂ 863:∂ 814:α 778:∂ 731:∂ 685:− 679:β 643:∂ 596:∂ 304:Adiabatic 294:Isochoric 280:Processes 241:Ideal gas 124:Classical 66:July 2019 3336:Category 3249:(1986). 3232:p. 1353. 3228:98264934 3159:See also 2916:so that 2628:pressure 2573:kinetics 2018:  ( 1996:Pressure 1955:  ( 1925:units): 1825:Overview 1740:pressure 1730:such as 1676:Category 1614:Thompson 1524:Clausius 1504:Bridgman 1358:Vis viva 1340:Theories 1274:Gas laws 1066:Enthalpy 474:Pressure 289:Isobaric 246:Real gas 134:Chemical 117:Branches 3129:heating 3125:entropy 2725:is the 2691:is the 2651:elastic 2647:plastic 1963:Entropy 1814:entropy 1736:entropy 1599:Smeaton 1594:Rankine 1584:Onsager 1569:Maxwell 1564:Massieu 1269:Entropy 1264:General 1255:History 1245:Culture 1242:History 466: ( 463:Entropy 400:italics 201:Systems 54:improve 3321:  3302:  3269:  3259:Oxford 3226:  2632:volume 2336:where 2109:Strain 2104:= J m) 2067:Stress 2026:Volume 2022:= J m) 1769:For a 1744:volume 1724:system 1718:, the 1589:Planck 1579:Nernst 1554:Kelvin 1514:Carnot 804:  669:  537:  479:Volume 394:Note: 353:Cycles 182:Second 172:Zeroth 43:, but 3224:S2CID 3204:(PDF) 3039:trace 1764:power 1746:, or 1722:of a 1637:Other 1604:Stahl 1559:Lewis 1549:Joule 1539:Gibbs 1534:Duhem 227:State 187:Third 177:First 3319:ISBN 3300:ISBN 3267:ISBN 3167:and 3147:The 3137:work 3133:heat 3037:The 2761:is: 2649:and 2569:rate 1800:The 1750:and 1742:and 1734:and 1609:Tait 439:Heat 434:Work 164:Laws 3216:doi 2180:(J) 1714:In 1452:Art 398:in 3338:: 3265:. 3261:: 3257:, 3245:; 3222:. 3212:73 3210:. 3206:. 3139:. 2727:ij 2693:ij 2645:, 2186:: 2160:: 2111:: 2102:Pa 2069:: 2028:: 2020:Pa 1998:: 1965:: 1935:: 1923:SI 1821:. 1766:. 1738:, 3327:. 3308:. 3275:. 3230:. 3218:: 3099:V 3095:d 3091:p 3085:= 3082:w 3057:k 3054:k 3020:k 3017:k 3008:d 3003:V 3000:p 2995:k 2984:= 2979:j 2976:i 2967:d 2962:) 2957:j 2954:i 2946:p 2940:( 2936:V 2933:= 2930:w 2895:j 2892:i 2883:d 2876:j 2873:i 2865:V 2862:= 2859:w 2824:j 2821:i 2812:d 2805:j 2802:i 2792:j 2789:i 2781:V 2778:= 2775:w 2747:j 2744:i 2711:j 2708:i 2677:j 2674:i 2614:V 2611:p 2551:U 2547:d 2518:i 2496:i 2492:N 2471:i 2449:i 2424:V 2404:p 2384:S 2364:T 2344:U 2321:, 2315:i 2311:N 2306:d 2299:i 2289:i 2281:+ 2278:V 2274:d 2269:p 2263:S 2259:d 2254:T 2251:= 2248:U 2244:d 2220:i 2194:N 2133:j 2130:i 2119:V 2100:( 2085:j 2082:i 2036:V 2006:p 1973:S 1959:) 1957:K 1943:T 1890:V 1886:d 1865:p 1845:V 1842:p 1703:e 1696:t 1689:v 1216:S 1213:T 1207:H 1204:= 1201:) 1198:p 1195:, 1192:T 1189:( 1186:G 1161:S 1158:T 1152:U 1149:= 1146:) 1143:V 1140:, 1137:T 1134:( 1131:A 1106:V 1103:p 1100:+ 1097:U 1094:= 1091:) 1088:p 1085:, 1082:S 1079:( 1076:H 1051:) 1048:V 1045:, 1042:S 1039:( 1036:U 913:T 889:V 866:V 842:1 817:= 781:p 757:V 734:V 710:1 682:= 646:T 622:N 599:S 575:T 550:= 547:c 470:) 79:) 73:( 68:) 64:( 50:. 23:.

Index

Conjugate variables
references
inline citations
improve
introducing
Learn how and when to remove this message
Thermodynamics

Carnot heat engine
Classical
Statistical
Chemical
Quantum thermodynamics
Equilibrium
Non-equilibrium
Laws
Zeroth
First
Second
Third
Systems
Closed system
Open system
Isolated system
State
Equation of state
Ideal gas
Real gas
State of matter
Phase (matter)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑