Knowledge

Constructible sheaf

Source đź“ť

1442: 893: 1583: 585:
Of particular interest to the theory of constructible Ă©tale sheaves is the case in which one works with constructible Ă©tale sheaves of Abelian groups. The remarkable result is that constructible Ă©tale sheaves of Abelian groups are precisely the Noetherian objects in the category of all torsion Ă©tale
1309: 769: 1453: 302: 459: 1637: 373: 774: 667: 1437:{\displaystyle \mathbf {R} ^{0}\pi _{*}({\underline {\mathbb {Q} }}_{X})\cong \mathbf {R} ^{2}\pi _{*}({\underline {\mathbb {Q} }}_{X})\cong {\underline {\mathbb {Q} }}_{\mathbb {C} }} 1081: 952: 1301: 1210: 1016: 984: 1666: 1040: 920: 580: 536: 509: 162: 115: 1235: 221: 1113: 687: 1267: 1692: 888:{\displaystyle {\begin{aligned}T_{0}={\begin{bmatrix}1&k\\0&1\end{bmatrix}},\quad &T_{1}={\begin{bmatrix}1&l\\0&1\end{bmatrix}}\end{aligned}}} 717: 1578:{\displaystyle \mathbf {R} ^{1}\pi _{*}({\underline {\mathbb {Q} }}_{X})\cong {\mathcal {L}}_{\mathbb {C} -\{0,1\}}\oplus {\underline {\mathbb {Q} }}_{\{0,1\}}} 1133: 761: 741: 556: 482: 393: 322: 241: 182: 135: 464:
This definition allows us to derive, from Noetherian induction and the fact that an Ă©tale sheaf is constant if and only if its restriction from
1714: 610:
One nice set of examples of constructible sheaves come from the derived pushforward (with or without compact support) of a local system on
246: 75: 1755:
Séminaire de Géométrie Algébrique du Bois Marie - 1963-64 - Théorie des topos et cohomologie étale des schémas - (SGA 4) - vol. 3
1812: 1778: 398: 1591: 327: 613: 1846: 1762: 1045: 925: 1272: 1695: 1872: 1152: 989: 957: 1642: 93:
from the book by Freitag and Kiehl referenced below. In what follows in this subsection, all sheaves
78:
in Ă©tale cohomology states that the higher direct images of a constructible sheaf are constructible.
1021: 901: 561: 514: 487: 143: 96: 1218: 187: 1086: 595: 1723: 1833:, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 13, Berlin: Springer-Verlag, 1745: 48: 1877: 672: 44: 1753: 1856: 1822: 1788: 1240: 8: 1671: 696: 25: 56: 1749: 1118: 746: 726: 541: 467: 378: 307: 226: 167: 120: 52: 1842: 1808: 1774: 33: 1115:
compute the cohomology of the local systems restricted to a neighborhood of them in
1834: 1766: 68: 64: 1269:
this family of curves degenerates into a nodal curve. If we denote this family by
1852: 1818: 1804: 1796: 1784: 304:
is a finite locally constant sheaf. In particular, this means for each subscheme
1144: 1838: 90: 1866: 1761:. Lecture Notes in Mathematics (in French). Vol. 305. Berlin; New York: 1741: 29: 599: 81: 17: 1770: 720: 690: 602:
on a family of topological spaces parameterized by a base space.
297:{\displaystyle {\mathcal {F}}|_{Y}=i_{Y}^{\ast }{\mathcal {F}}} 184:
can be written as a finite union of locally closed subschemes
324:
appearing in the finite covering, there is an Ă©tale covering
1083:
we get a constructible sheaf where the stalks at the points
1668:. This local monodromy around of this local system around 1740: 1138: 763:. For example, we can set the monodromy operators to be 60: 850: 795: 454:{\displaystyle (i_{Y})^{\ast }{\mathcal {F}}|_{U_{i}}} 82:
Definition of Ă©tale constructible sheaves on a scheme
1674: 1645: 1632:{\displaystyle {\mathcal {L}}_{\mathbb {C} -\{0,1\}}} 1594: 1456: 1312: 1275: 1243: 1221: 1155: 1121: 1089: 1048: 1024: 992: 960: 928: 904: 772: 749: 729: 699: 675: 616: 564: 544: 517: 490: 470: 401: 381: 368:{\displaystyle \lbrace U_{i}\to Y\mid i\in I\rbrace } 330: 310: 249: 229: 190: 170: 146: 123: 99: 59:
constructible sheaves are defined in a similar way (
558:. It then follows that a representable Ă©tale sheaf 375:such that for all Ă©tale subschemes in the cover of 1686: 1660: 1631: 1577: 1436: 1295: 1261: 1229: 1204: 1127: 1107: 1075: 1034: 1010: 978: 946: 914: 887: 755: 735: 711: 681: 662:{\displaystyle U=\mathbb {P} ^{1}-\{0,1,\infty \}} 661: 586:sheaves (cf. Proposition I.4.8 of Freitag-Kiehl). 574: 550: 530: 503: 476: 453: 387: 367: 316: 296: 235: 215: 176: 156: 129: 109: 1143:For example, consider the family of degenerating 594:Most examples of constructible sheaves come from 589: 1864: 598:sheaves or from the derived pushforward of a 461:is constant and represented by a finite set. 1829:Freitag, Eberhard; Kiehl, Reinhardt (1988), 1828: 1712: 1624: 1612: 1570: 1558: 1536: 1524: 656: 638: 605: 362: 331: 89:Here we use the definition of constructible 954:. Then, if we take the derived pushforward 67:of constructible sheaves, see a section in 137:are Ă©tale sheaves unless otherwise noted. 1648: 1605: 1548: 1517: 1486: 1428: 1417: 1392: 1342: 1289: 1223: 1063: 931: 625: 1831:Etale Cohomology and the Weil Conjecture 1076:{\displaystyle j:U\to \mathbb {P} ^{1}} 947:{\displaystyle \mathbb {Q} ^{\oplus 2}} 1865: 1296:{\displaystyle \pi :X\to \mathbb {C} } 61:Artin, Grothendieck & Verdier 1972 1795: 1588:where the stalks of the local system 1139:Weierstrass family of elliptic curves 898:where the stalks of our local system 43:is the union of a finite number of 13: 1803:, Universitext, Berlin, New York: 1713:Gunningham, Sam; Hughes, Richard, 1598: 1510: 1102: 1027: 907: 676: 653: 567: 427: 289: 252: 149: 102: 14: 1889: 1205:{\displaystyle y^{2}-x(x-1)(x-t)} 1011:{\displaystyle \mathbf {R} j_{!}} 979:{\displaystyle \mathbf {R} j_{*}} 1706: 1661:{\displaystyle \mathbb {Q} ^{2}} 1459: 1365: 1315: 994: 962: 47:on each of which the sheaf is a 1734: 829: 538:is the reduction of the scheme 1501: 1479: 1407: 1385: 1357: 1335: 1285: 1199: 1187: 1184: 1172: 1058: 1035:{\displaystyle {\mathcal {L}}} 915:{\displaystyle {\mathcal {L}}} 590:Examples in algebraic topology 575:{\displaystyle {\mathcal {F}}} 531:{\displaystyle X_{\text{red}}} 504:{\displaystyle X_{\text{red}}} 434: 416: 402: 344: 259: 207: 157:{\displaystyle {\mathcal {F}}} 110:{\displaystyle {\mathcal {F}}} 1: 1701: 719:we only have to describe the 223:such that for each subscheme 1230:{\displaystyle \mathbb {C} } 216:{\displaystyle i_{Y}:Y\to X} 7: 1108:{\displaystyle 0,1,\infty } 511:is constant as well, where 243:of the covering, the sheaf 164:is called constructible if 10: 1894: 1694:can be computed using the 63:, ExposĂ© IX § 2). For the 1839:10.1007/978-3-662-02541-3 582:is itself constructible. 51:]. It has its origins in 1696:Picard–Lefschetz formula 669:. Since any loop around 606:Derived pushforward on P 1746:Grothendieck, Alexandre 682:{\displaystyle \infty } 596:intersection cohomology 1688: 1662: 1633: 1579: 1438: 1297: 1263: 1231: 1206: 1129: 1109: 1077: 1036: 1012: 980: 948: 916: 889: 757: 737: 713: 683: 663: 576: 552: 532: 505: 478: 455: 389: 369: 318: 298: 237: 217: 178: 158: 131: 111: 49:locally constant sheaf 45:locally closed subsets 1689: 1663: 1634: 1580: 1439: 1298: 1264: 1262:{\displaystyle t=0,1} 1232: 1207: 1130: 1110: 1078: 1037: 1013: 981: 949: 917: 890: 758: 738: 714: 684: 664: 577: 553: 533: 506: 479: 456: 390: 370: 319: 299: 238: 218: 179: 159: 132: 112: 1672: 1643: 1592: 1454: 1310: 1273: 1241: 1219: 1153: 1119: 1087: 1046: 1022: 990: 958: 926: 902: 770: 747: 727: 697: 673: 614: 562: 542: 515: 488: 468: 399: 379: 328: 308: 247: 227: 188: 168: 144: 121: 97: 1801:Sheaves in topology 1765:. pp. vi+640. 1750:Verdier, Jean-Louis 1716:Topics in D-Modules 1687:{\displaystyle 0,1} 712:{\displaystyle 0,1} 286: 22:constructible sheaf 1873:Algebraic geometry 1771:10.1007/BFb0070714 1684: 1658: 1639:are isomorphic to 1629: 1575: 1555: 1493: 1434: 1424: 1399: 1349: 1293: 1259: 1227: 1202: 1125: 1105: 1073: 1032: 1008: 976: 944: 922:are isomorphic to 912: 885: 883: 875: 820: 753: 733: 709: 679: 659: 572: 548: 528: 501: 474: 451: 385: 365: 314: 294: 272: 233: 213: 174: 154: 127: 107: 76:finiteness theorem 53:algebraic geometry 1814:978-3-540-20665-1 1780:978-3-540-06118-2 1546: 1484: 1415: 1390: 1340: 1128:{\displaystyle U} 756:{\displaystyle 1} 736:{\displaystyle 0} 693:to a loop around 551:{\displaystyle X} 525: 498: 477:{\displaystyle X} 388:{\displaystyle Y} 317:{\displaystyle Y} 236:{\displaystyle Y} 177:{\displaystyle X} 130:{\displaystyle X} 34:topological space 1885: 1859: 1825: 1797:Dimca, Alexandru 1792: 1760: 1730: 1728: 1722:, archived from 1721: 1693: 1691: 1690: 1685: 1667: 1665: 1664: 1659: 1657: 1656: 1651: 1638: 1636: 1635: 1630: 1628: 1627: 1608: 1602: 1601: 1584: 1582: 1581: 1576: 1574: 1573: 1556: 1551: 1540: 1539: 1520: 1514: 1513: 1500: 1499: 1494: 1489: 1478: 1477: 1468: 1467: 1462: 1443: 1441: 1440: 1435: 1433: 1432: 1431: 1425: 1420: 1406: 1405: 1400: 1395: 1384: 1383: 1374: 1373: 1368: 1356: 1355: 1350: 1345: 1334: 1333: 1324: 1323: 1318: 1302: 1300: 1299: 1294: 1292: 1268: 1266: 1265: 1260: 1236: 1234: 1233: 1228: 1226: 1211: 1209: 1208: 1203: 1165: 1164: 1134: 1132: 1131: 1126: 1114: 1112: 1111: 1106: 1082: 1080: 1079: 1074: 1072: 1071: 1066: 1041: 1039: 1038: 1033: 1031: 1030: 1017: 1015: 1014: 1009: 1007: 1006: 997: 985: 983: 982: 977: 975: 974: 965: 953: 951: 950: 945: 943: 942: 934: 921: 919: 918: 913: 911: 910: 894: 892: 891: 886: 884: 880: 879: 841: 840: 825: 824: 786: 785: 762: 760: 759: 754: 742: 740: 739: 734: 718: 716: 715: 710: 688: 686: 685: 680: 668: 666: 665: 660: 634: 633: 628: 581: 579: 578: 573: 571: 570: 557: 555: 554: 549: 537: 535: 534: 529: 527: 526: 523: 510: 508: 507: 502: 500: 499: 496: 483: 481: 480: 475: 460: 458: 457: 452: 450: 449: 448: 447: 437: 431: 430: 424: 423: 414: 413: 394: 392: 391: 386: 374: 372: 371: 366: 343: 342: 323: 321: 320: 315: 303: 301: 300: 295: 293: 292: 285: 280: 268: 267: 262: 256: 255: 242: 240: 239: 234: 222: 220: 219: 214: 200: 199: 183: 181: 180: 175: 163: 161: 160: 155: 153: 152: 136: 134: 133: 128: 116: 114: 113: 108: 106: 105: 65:derived category 57:Ă©tale cohomology 1893: 1892: 1888: 1887: 1886: 1884: 1883: 1882: 1863: 1862: 1849: 1815: 1805:Springer-Verlag 1781: 1763:Springer-Verlag 1758: 1752:, eds. (1972). 1737: 1726: 1719: 1709: 1704: 1673: 1670: 1669: 1652: 1647: 1646: 1644: 1641: 1640: 1604: 1603: 1597: 1596: 1595: 1593: 1590: 1589: 1557: 1547: 1545: 1544: 1516: 1515: 1509: 1508: 1507: 1495: 1485: 1483: 1482: 1473: 1469: 1463: 1458: 1457: 1455: 1452: 1451: 1427: 1426: 1416: 1414: 1413: 1401: 1391: 1389: 1388: 1379: 1375: 1369: 1364: 1363: 1351: 1341: 1339: 1338: 1329: 1325: 1319: 1314: 1313: 1311: 1308: 1307: 1288: 1274: 1271: 1270: 1242: 1239: 1238: 1222: 1220: 1217: 1216: 1160: 1156: 1154: 1151: 1150: 1145:elliptic curves 1141: 1120: 1117: 1116: 1088: 1085: 1084: 1067: 1062: 1061: 1047: 1044: 1043: 1026: 1025: 1023: 1020: 1019: 1002: 998: 993: 991: 988: 987: 970: 966: 961: 959: 956: 955: 935: 930: 929: 927: 924: 923: 906: 905: 903: 900: 899: 882: 881: 874: 873: 868: 862: 861: 856: 846: 845: 836: 832: 830: 819: 818: 813: 807: 806: 801: 791: 790: 781: 777: 773: 771: 768: 767: 748: 745: 744: 728: 725: 724: 698: 695: 694: 674: 671: 670: 629: 624: 623: 615: 612: 611: 608: 592: 566: 565: 563: 560: 559: 543: 540: 539: 522: 518: 516: 513: 512: 495: 491: 489: 486: 485: 469: 466: 465: 443: 439: 438: 433: 432: 426: 425: 419: 415: 409: 405: 400: 397: 396: 380: 377: 376: 338: 334: 329: 326: 325: 309: 306: 305: 288: 287: 281: 276: 263: 258: 257: 251: 250: 248: 245: 244: 228: 225: 224: 195: 191: 189: 186: 185: 169: 166: 165: 148: 147: 145: 142: 141: 122: 119: 118: 101: 100: 98: 95: 94: 87: 12: 11: 5: 1891: 1881: 1880: 1875: 1861: 1860: 1847: 1826: 1813: 1793: 1779: 1742:Artin, Michael 1736: 1733: 1732: 1731: 1708: 1705: 1703: 1700: 1683: 1680: 1677: 1655: 1650: 1626: 1623: 1620: 1617: 1614: 1611: 1607: 1600: 1586: 1585: 1572: 1569: 1566: 1563: 1560: 1554: 1550: 1543: 1538: 1535: 1532: 1529: 1526: 1523: 1519: 1512: 1506: 1503: 1498: 1492: 1488: 1481: 1476: 1472: 1466: 1461: 1445: 1444: 1430: 1423: 1419: 1412: 1409: 1404: 1398: 1394: 1387: 1382: 1378: 1372: 1367: 1362: 1359: 1354: 1348: 1344: 1337: 1332: 1328: 1322: 1317: 1291: 1287: 1284: 1281: 1278: 1258: 1255: 1252: 1249: 1246: 1225: 1213: 1212: 1201: 1198: 1195: 1192: 1189: 1186: 1183: 1180: 1177: 1174: 1171: 1168: 1163: 1159: 1140: 1137: 1124: 1104: 1101: 1098: 1095: 1092: 1070: 1065: 1060: 1057: 1054: 1051: 1029: 1005: 1001: 996: 973: 969: 964: 941: 938: 933: 909: 896: 895: 878: 872: 869: 867: 864: 863: 860: 857: 855: 852: 851: 849: 844: 839: 835: 831: 828: 823: 817: 814: 812: 809: 808: 805: 802: 800: 797: 796: 794: 789: 784: 780: 776: 775: 752: 732: 708: 705: 702: 678: 658: 655: 652: 649: 646: 643: 640: 637: 632: 627: 622: 619: 607: 604: 591: 588: 569: 547: 521: 494: 473: 446: 442: 436: 429: 422: 418: 412: 408: 404: 384: 364: 361: 358: 355: 352: 349: 346: 341: 337: 333: 313: 291: 284: 279: 275: 271: 266: 261: 254: 232: 212: 209: 206: 203: 198: 194: 173: 151: 126: 104: 86: 80: 30:abelian groups 9: 6: 4: 3: 2: 1890: 1879: 1876: 1874: 1871: 1870: 1868: 1858: 1854: 1850: 1848:3-540-12175-7 1844: 1840: 1836: 1832: 1827: 1824: 1820: 1816: 1810: 1806: 1802: 1798: 1794: 1790: 1786: 1782: 1776: 1772: 1768: 1764: 1757: 1756: 1751: 1747: 1743: 1739: 1738: 1729:on 2017-09-21 1725: 1718: 1717: 1711: 1710: 1707:Seminar notes 1699: 1697: 1681: 1678: 1675: 1653: 1621: 1618: 1615: 1609: 1567: 1564: 1561: 1552: 1541: 1533: 1530: 1527: 1521: 1504: 1496: 1490: 1474: 1470: 1464: 1450: 1449: 1448: 1421: 1410: 1402: 1396: 1380: 1376: 1370: 1360: 1352: 1346: 1330: 1326: 1320: 1306: 1305: 1304: 1282: 1279: 1276: 1256: 1253: 1250: 1247: 1244: 1196: 1193: 1190: 1181: 1178: 1175: 1169: 1166: 1161: 1157: 1149: 1148: 1147: 1146: 1136: 1122: 1099: 1096: 1093: 1090: 1068: 1055: 1052: 1049: 1003: 999: 971: 967: 939: 936: 876: 870: 865: 858: 853: 847: 842: 837: 833: 826: 821: 815: 810: 803: 798: 792: 787: 782: 778: 766: 765: 764: 750: 730: 722: 706: 703: 700: 692: 650: 647: 644: 641: 635: 630: 620: 617: 603: 601: 597: 587: 583: 545: 519: 492: 471: 462: 444: 440: 420: 410: 406: 382: 359: 356: 353: 350: 347: 339: 335: 311: 282: 277: 273: 269: 264: 230: 210: 204: 201: 196: 192: 171: 138: 124: 92: 91:Ă©tale sheaves 85: 79: 77: 72: 70: 66: 62: 58: 54: 50: 46: 42: 38: 35: 31: 27: 23: 19: 1878:Sheaf theory 1830: 1800: 1754: 1724:the original 1715: 1587: 1446: 1214: 1142: 897: 609: 600:local system 593: 584: 463: 395:, the sheaf 139: 88: 83: 73: 69:â„“-adic sheaf 40: 39:, such that 36: 21: 15: 117:on schemes 55:, where in 18:mathematics 1867:Categories 1735:References 1702:References 32:over some 1610:− 1553:_ 1542:⊕ 1522:− 1505:≅ 1491:_ 1475:∗ 1471:π 1422:_ 1411:≅ 1397:_ 1381:∗ 1377:π 1361:≅ 1347:_ 1331:∗ 1327:π 1286:→ 1277:π 1194:− 1179:− 1167:− 1103:∞ 1059:→ 972:∗ 937:⊕ 721:monodromy 691:homotopic 677:∞ 654:∞ 636:− 421:∗ 357:∈ 351:∣ 345:→ 283:∗ 208:→ 1799:(2004), 140:A sheaf 1857:0926276 1823:2050072 1789:0354654 723:around 1855:  1845:  1821:  1811:  1787:  1777:  1759:(PDF) 1727:(PDF) 1720:(PDF) 1303:then 1237:. At 1215:over 26:sheaf 24:is a 1843:ISBN 1809:ISBN 1775:ISBN 1447:and 1042:for 743:and 74:The 20:, a 1835:doi 1767:doi 1018:of 986:or 689:is 524:red 497:red 484:to 28:of 16:In 1869:: 1853:MR 1851:, 1841:, 1819:MR 1817:, 1807:, 1785:MR 1783:. 1773:. 1748:; 1744:; 1698:. 1135:. 71:. 1837:: 1791:. 1769:: 1682:1 1679:, 1676:0 1654:2 1649:Q 1625:} 1622:1 1619:, 1616:0 1613:{ 1606:C 1599:L 1571:} 1568:1 1565:, 1562:0 1559:{ 1549:Q 1537:} 1534:1 1531:, 1528:0 1525:{ 1518:C 1511:L 1502:) 1497:X 1487:Q 1480:( 1465:1 1460:R 1429:C 1418:Q 1408:) 1403:X 1393:Q 1386:( 1371:2 1366:R 1358:) 1353:X 1343:Q 1336:( 1321:0 1316:R 1290:C 1283:X 1280:: 1257:1 1254:, 1251:0 1248:= 1245:t 1224:C 1200:) 1197:t 1191:x 1188:( 1185:) 1182:1 1176:x 1173:( 1170:x 1162:2 1158:y 1123:U 1100:, 1097:1 1094:, 1091:0 1069:1 1064:P 1056:U 1053:: 1050:j 1028:L 1004:! 1000:j 995:R 968:j 963:R 940:2 932:Q 908:L 877:] 871:1 866:0 859:l 854:1 848:[ 843:= 838:1 834:T 827:, 822:] 816:1 811:0 804:k 799:1 793:[ 788:= 783:0 779:T 751:1 731:0 707:1 704:, 701:0 657:} 651:, 648:1 645:, 642:0 639:{ 631:1 626:P 621:= 618:U 568:F 546:X 520:X 493:X 472:X 445:i 441:U 435:| 428:F 417:) 411:Y 407:i 403:( 383:Y 363:} 360:I 354:i 348:Y 340:i 336:U 332:{ 312:Y 290:F 278:Y 274:i 270:= 265:Y 260:| 253:F 231:Y 211:X 205:Y 202:: 197:Y 193:i 172:X 150:F 125:X 103:F 84:X 41:X 37:X

Index

mathematics
sheaf
abelian groups
topological space
locally closed subsets
locally constant sheaf
algebraic geometry
Ă©tale cohomology
Artin, Grothendieck & Verdier 1972
derived category
â„“-adic sheaf
finiteness theorem
Ă©tale sheaves
intersection cohomology
local system
homotopic
monodromy
elliptic curves
Picard–Lefschetz formula
Topics in D-Modules
the original
Artin, Michael
Grothendieck, Alexandre
Verdier, Jean-Louis
Séminaire de Géométrie Algébrique du Bois Marie - 1963-64 - Théorie des topos et cohomologie étale des schémas - (SGA 4) - vol. 3
Springer-Verlag
doi
10.1007/BFb0070714
ISBN
978-3-540-06118-2

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑