Knowledge

Core–mantle boundary

Source 📝

779: 20: 342: 197:
as 'G'. In his 1942 publication of his model, the entire lower mantle was the D layer. In 1949, Bullen found his 'D' layer to actually be two different layers. The upper part of the D layer, about 1,800 km thick, was renamed D′ (D prime) and the lower part (the bottom 200 km) was
168:
The uppermost section of the outer core is thought to be about 500–1,800 K hotter than the overlying mantle, creating a thermal boundary layer. The boundary is thought to harbor topography, much like Earth's surface, that is supported by solid-state convection within the overlying mantle. Variations
214:
A seismic discontinuity occurs within Earth's interior at a depth of about 2,900 km (1,800 mi) below the surface, where there is an abrupt change in the speed of seismic waves (generated by earthquakes or explosions) that travel through Earth. At this depth, primary seismic waves (P waves) decrease
421:
Torsvik, Trond H.; Smethurst, Mark A.; Burke, Kevin; Steinberger, Bernhard (2006). "Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle". Geophysical Journal International. 167 (3): 1447–1460. Bibcode:2006GeoJI.167.1447T.
215:
in velocity while secondary seismic waves (S waves) disappear completely. S waves shear material and cannot transmit through liquids, so it is thought that the unit above the discontinuity is solid, while the unit below is in a liquid or molten form.
198:
named D″. Later it was found that D" is non-spherical. In 1993, Czechowski found that inhomogeneities in D" form structures analogous to continents (i.e. core-continents). They move in time and determine some properties of
149:
do not exist at all in the liquid portion of the core. Recent evidence suggests a distinct boundary layer directly above the CMB possibly made of a novel phase of the basic
394:
Bullen K., Compressibility-pressure hypothesis and the Earth’s interior. Monthly Notices of the Royal Astronomical Society, Geophysical Supplements, 5, 355–368., 1949
185:("D double-prime" or "D prime prime") and is sometimes included in discussions regarding the core–mantle boundary zone. The D″ name originates from geophysicist 222:, a seismologist who made several important contributions to the study and understanding of the Earth's interior. The CMB has also been referred to as the 341:
WR Peltier (2007). "Mantle Dynamics and the D" Layer: Impacts of the Post Perovskite Phase". In Kei Hirose; John Brodholt; Thome Lay; David Yuen (eds.).
230:
is most commonly used in reference to a decrease in seismic velocity with depth that is sometimes observed at about 100 km below the Earth's oceans.
434: 573: 616: 585: 169:
in the thermal properties of the CMB may affect how the outer core's iron-rich fluids flow, which are ultimately responsible for
759: 227: 359: 161:
studies have shown significant irregularities within the boundary zone and appear to be dominated by the African and Pacific
565: 403:
Creager, K.C. and Jordan, T.H. (1986). Asperical structure of the core-mantle boundary. Geophys. Res. Lett. 13, 1497-1500
265: 162: 133:, at a depth of 2,891 km (1,796 mi) below Earth's surface. The boundary is observed via the discontinuity in 553: 226:, the Oldham-Gutenberg discontinuity, or the Wiechert-Gutenberg discontinuity. In modern times, however, the term 808: 782: 239: 189:'s designations for the Earth's layers. His system was to label each layer alphabetically, A through G, with the 706: 263:
Lekic, V.; Cottaar, S.; Dziewonski, A. & Romanowicz, B. (2012). "Cluster analysis of global lower mantle".
194: 609: 181:
An approximately 200 km thick layer of the lower mantle directly above the CMB is referred to as the
625: 477:
Schmerr, N. (2012-03-22). "The Gutenberg Discontinuity: Melt at the Lithosphere-Asthenosphere Boundary".
412:
Czechowski L. (1993) Geodesy and Physics of the Earth pp 392-395, The Origin of Hotspots and The D” Layer
351: 170: 94: 381: 716: 711: 602: 244: 223: 570: 764: 688: 683: 130: 127: 84: 73: 274: 747: 486: 443: 307: 270: 8: 803: 670: 654: 432:
Dziewonski, Adam M.; Anderson, Don L. (1981-06-01). "Preliminary reference Earth model".
296:
Lay, Thorne; Hernlund, John; Buffett, Bruce A. (2008). "Core–mantle boundary heat flow".
186: 150: 582: 490: 447: 311: 518: 369: 158: 138: 16:
Discontinuity where the bottom of the planet's mantle meets the outer layer of the core
752: 644: 522: 510: 502: 459: 455: 355: 323: 298: 203: 199: 123: 54: 32: 545: 639: 494: 451: 315: 278: 190: 731: 678: 589: 577: 154: 262: 282: 219: 538: 797: 659: 506: 463: 327: 43: 498: 666: 649: 514: 145:
velocities are much slower in the outer core than in the deep mantle while
134: 319: 594: 120: 146: 142: 19: 137:
velocities at that depth due to the differences between the
546:"Earth's interior: Redefining the Core–Mantle Boundary" 539:
Earth's Core–Mantle Boundary Has Core-Rigidity Zone
431: 295: 344:Post-Perovskite: The Last Mantle Phase Transition 795: 543: 141:of the solid mantle and the molten outer core. 610: 435:Physics of the Earth and Planetary Interiors 206:. Later research supported this hypothesis. 617: 603: 340: 23:Schematic view of the interior of Earth. 209: 18: 476: 796: 624: 334: 598: 119:) of Earth lies between the planet's 566:Mineral phase change at the boundary 256: 218:The discontinuity was discovered by 153:mineralogy of the deep mantle named 583:About.com article on the name of D″ 266:Earth and Planetary Science Letters 13: 228:Gutenberg discontinuity or the "G" 163:Large low-shear-velocity provinces 14: 820: 554:The American Geological Institute 544:Audrey Slesinger (January 2001), 532: 778: 777: 722:D’’ discontinuity (lower mantle) 717:660 discontinuity (upper mantle) 712:410 discontinuity (upper mantle) 470: 425: 415: 406: 397: 388: 289: 104:outer core–inner core boundary 1: 250: 456:10.1016/0031-9201(81)90046-7 176: 7: 571:Superplumes at the boundary 240:Core–mantle differentiation 233: 10: 825: 707:Mohorovičić (crust–mantle) 352:American Geophysical Union 283:10.1016/j.epsl.2012.09.014 773: 740: 699: 632: 95:Mohorovicic discontinuity 760:Gutenberg (upper mantle) 741:Regional discontinuities 269:. 357–358 (1–3): 68–77. 499:10.1126/science.1215433 275:2012E&PSL.357...68L 245:Ultra low velocity zone 224:Gutenberg discontinuity 809:Structure of the Earth 765:Lehmann (upper mantle) 700:Global discontinuities 171:Earth's magnetic field 108: 210:Seismic discontinuity 193:as 'A' and the inner 22: 727:Core–mantle boundary 354:. pp. 217–227. 320:10.1038/ngeo.2007.44 113:core–mantle boundary 100:core–mantle boundary 732:Inner-core boundary 655:Lithospheric mantle 491:2012Sci...335.1480S 485:(6075): 1480–1483. 448:1981PEPI...25..297D 422:doi:10.1111/j.1365- 312:2008NatGe...1...25L 139:acoustic impedances 626:Structure of Earth 588:2008-10-06 at the 576:2006-02-13 at the 159:Seismic tomography 109: 64: lower mantle 791: 790: 753:continental crust 361:978-0-87590-439-9 299:Nature Geoscience 204:mantle convection 33:continental crust 816: 781: 780: 619: 612: 605: 596: 595: 562: 561: 560: 527: 526: 474: 468: 467: 429: 423: 419: 413: 410: 404: 401: 395: 392: 386: 385: 379: 375: 373: 365: 349: 338: 332: 331: 293: 287: 286: 260: 82: 71: 63: 52: 41: 30: 824: 823: 819: 818: 817: 815: 814: 813: 794: 793: 792: 787: 769: 736: 695: 628: 623: 590:Wayback Machine 578:Wayback Machine 558: 556: 535: 530: 475: 471: 430: 426: 420: 416: 411: 407: 402: 398: 393: 389: 377: 376: 367: 366: 362: 347: 339: 335: 294: 290: 261: 257: 253: 236: 212: 179: 155:post-perovskite 126:and its liquid 107: 90: 87: 80: 76: 69: 65: 61: 57: 50: 46: 39: 35: 28: 17: 12: 11: 5: 822: 812: 811: 806: 789: 788: 786: 785: 774: 771: 770: 768: 767: 762: 757: 756: 755: 744: 742: 738: 737: 735: 734: 729: 724: 719: 714: 709: 703: 701: 697: 696: 694: 693: 692: 691: 686: 676: 675: 674: 664: 663: 662: 657: 642: 636: 634: 630: 629: 622: 621: 614: 607: 599: 593: 592: 580: 568: 563: 541: 534: 533:External links 531: 529: 528: 469: 442:(4): 297–356. 424: 414: 405: 396: 387: 360: 333: 288: 254: 252: 249: 248: 247: 242: 235: 232: 220:Beno Gutenberg 211: 208: 178: 175: 106: 105: 102: 97: 91: 89: 88: 79: 77: 68: 66: 60: 58: 49: 47: 38: 36: 27: 24: 15: 9: 6: 4: 3: 2: 821: 810: 807: 805: 802: 801: 799: 784: 776: 775: 772: 766: 763: 761: 758: 754: 751: 750: 749: 746: 745: 743: 739: 733: 730: 728: 725: 723: 720: 718: 715: 713: 710: 708: 705: 704: 702: 698: 690: 687: 685: 682: 681: 680: 677: 672: 668: 665: 661: 660:Asthenosphere 658: 656: 653: 652: 651: 648: 647: 646: 643: 641: 638: 637: 635: 631: 627: 620: 615: 613: 608: 606: 601: 600: 597: 591: 587: 584: 581: 579: 575: 572: 569: 567: 564: 555: 551: 547: 542: 540: 537: 536: 524: 520: 516: 512: 508: 504: 500: 496: 492: 488: 484: 480: 473: 465: 461: 457: 453: 449: 445: 441: 437: 436: 428: 418: 409: 400: 391: 383: 371: 363: 357: 353: 346: 345: 337: 329: 325: 321: 317: 313: 309: 305: 301: 300: 292: 284: 280: 276: 272: 268: 267: 259: 255: 246: 243: 241: 238: 237: 231: 229: 225: 221: 216: 207: 205: 201: 196: 192: 188: 184: 174: 172: 166: 164: 160: 156: 152: 148: 144: 140: 136: 132: 129: 125: 122: 118: 114: 103: 101: 98: 96: 93: 92: 86: 78: 75: 67: 59: 56: 48: 45: 44:oceanic crust 37: 34: 26: 25: 21: 726: 721: 667:Lower mantle 650:Upper mantle 557:, retrieved 549: 482: 478: 472: 439: 433: 427: 417: 408: 399: 390: 343: 336: 306:(1): 25–32. 303: 297: 291: 264: 258: 217: 213: 187:Keith Bullen 182: 180: 167: 135:seismic wave 116: 112: 110: 99: 53: upper 378:|work= 128:iron–nickel 804:Geophysics 798:Categories 689:Inner core 684:Outer core 671:Mesosphere 559:2011-03-24 251:References 151:perovskite 131:outer core 85:inner core 74:outer core 523:206538202 507:0036-8075 464:0031-9201 380:ignored ( 370:cite book 328:1752-0894 183:D″ region 177:D″ region 165:(LLSVP). 783:Category 586:Archived 574:Archived 550:Geotimes 515:22442480 234:See also 200:hotspots 121:silicate 487:Bibcode 479:Science 444:Bibcode 308:Bibcode 271:Bibcode 147:S-waves 748:Conrad 645:Mantle 633:Shells 521:  513:  505:  462:  358:  326:  143:P-wave 124:mantle 83:  81:  72:  70:  62:  55:mantle 51:  42:  40:  31:  29:  669:(aka 640:Crust 519:S2CID 348:(PDF) 191:crust 679:Core 511:PMID 503:ISSN 460:ISSN 382:help 356:ISBN 324:ISSN 202:and 195:core 111:The 495:doi 483:335 452:doi 316:doi 279:doi 117:CMB 800:: 552:, 548:, 517:. 509:. 501:. 493:. 481:. 458:. 450:. 440:25 438:. 374:: 372:}} 368:{{ 350:. 322:. 314:. 302:. 277:. 173:. 157:. 673:) 618:e 611:t 604:v 525:. 497:: 489:: 466:. 454:: 446:: 384:) 364:. 330:. 318:: 310:: 304:1 285:. 281:: 273:: 115:(

Index


continental crust
oceanic crust
mantle
outer core
inner core
Mohorovicic discontinuity
silicate
mantle
iron–nickel
outer core
seismic wave
acoustic impedances
P-wave
S-waves
perovskite
post-perovskite
Seismic tomography
Large low-shear-velocity provinces
Earth's magnetic field
Keith Bullen
crust
core
hotspots
mantle convection
Beno Gutenberg
Gutenberg discontinuity
Gutenberg discontinuity or the "G"
Core–mantle differentiation
Ultra low velocity zone

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.