Knowledge

Cosmic inflation

Source 📝

9747: 931:
inflation, the cosmological horizon moves out, bringing new regions into view. Yet as a local observer sees such a region for the first time, it looks no different from any other region of space the local observer has already seen: Its background radiation is at nearly the same temperature as the background radiation of other regions, and its space-time curvature is evolving lock-step with the others. This presents a mystery: how did these new regions know what temperature and curvature they were supposed to have? They could not have learned it by getting signals, because they were not previously in communication with our past
2860:(and, presumably, annihilate) is three. Therefore, the most likely number of non-compact (large) spatial dimensions is three. Current work on this model centers on whether it can succeed in stabilizing the size of the compactified dimensions and produce the correct spectrum of primordial density perturbations. The original model did not "solve the entropy and flatness problems of standard cosmology", although Brandenburger and coauthors later argued that these problems can be eliminated by implementing string gas cosmology in the context of a bouncing-universe scenario. 2573:
physical volume. It has been shown that any inflationary theory with an unbounded potential is eternal. There are well-known theorems that this steady state cannot continue forever into the past. Inflationary spacetime, which is similar to de Sitter space, is incomplete without a contracting region. However, unlike de Sitter space, fluctuations in a contracting inflationary space collapse to form a gravitational singularity, a point where densities become infinite. Therefore, it is necessary to have a theory for the Universe's initial conditions.
2950:"Not only is bad inflation more likely than good inflation, but no inflation is more likely than either ... Roger Penrose considered all the possible configurations of the inflaton and gravitational fields. Some of these configurations lead to inflation ... Other configurations lead to a uniform, flat universe directly – without inflation. Obtaining a flat universe is unlikely overall. Penrose's shocking conclusion, though, was that obtaining a flat universe without inflation is much more likely than with inflation – by a factor of 2005:(solid line) as a function of the linear expansion (scale factor) of the universe. During cosmological inflation, the Hubble radius is constant. The physical wavelength of a perturbation mode (dashed line) is also shown. The plot illustrates how the perturbation mode grows larger than the horizon during cosmological inflation before coming back inside the horizon, which grows rapidly during radiation domination. If cosmological inflation had never happened, and radiation domination continued back until a 2653:
perpetuates itself and quickly dominates the Universe. However, Albrecht and Lorenzo Sorbo argued that the probability of an inflationary cosmos, consistent with today's observations, emerging by a random fluctuation from some pre-existent state is much higher than that of a non-inflationary cosmos. This is because the "seed" amount of non-gravitational energy required for the inflationary cosmos is so much less than that for a non-inflationary alternative, which outweighs any entropic considerations.
899: 1998: 9819: 1264:). During inflation, the energy density in the inflaton field is roughly constant. However, the energy density in everything else, including inhomogeneities, curvature, anisotropies, exotic particles, and standard-model particles is falling, and through sufficient inflation these all become negligible. This leaves the Universe flat and symmetric, and (apart from the homogeneous inflaton field) mostly empty, at the moment inflation ends and reheating begins. 572: 1630:—water below the freezing temperature or above the boiling point—a quantum field would need to nucleate a large enough bubble of the new vacuum, the new phase, in order to make a transition. Coleman found the most likely decay pathway for vacuum decay and calculated the inverse lifetime per unit volume. He eventually noted that gravitational effects would be significant, but he did not calculate these effects and did not apply the results to cosmology. 1685:. The solution to Einstein's equations in the presence of curvature squared terms, when the curvatures are large, leads to an effective cosmological constant. Therefore, he proposed that the early universe went through an inflationary de Sitter era. This resolved the cosmology problems and led to specific predictions for the corrections to the microwave background radiation, corrections that were then calculated in detail. Starobinsky used the action 49: 1351:. For example, molecules in a canister of gas are distributed homogeneously and isotropically because they are in thermal equilibrium: gas throughout the canister has had enough time to interact to dissipate inhomogeneities and anisotropies. The situation is quite different in the big bang model without inflation, because gravitational expansion does not give the early universe enough time to equilibrate. In a big bang with only the 9783: 2059:. Guth recognized that this model was problematic because the model did not reheat properly: when the bubbles nucleated, they did not generate radiation. Radiation could only be generated in collisions between bubble walls. But if inflation lasted long enough to solve the initial conditions problems, collisions between bubbles became exceedingly rare. In any one causal patch it is likely that only one bubble would nucleate. 2577:
inflation eventually ends as seen by any single pre-inflationary observer. Scientists disagree about how to assign a probability distribution to this hypothetical anthropic landscape. If the probability of different regions is counted by volume, one should expect that inflation will never end or applying boundary conditions that a local observer exists to observe it, that inflation will end as late as possible.
9807: 9759: 584: 9795: 2565:, one of the original architects of the inflationary model, introduced the first example of eternal inflation in 1983. He showed that the inflation could proceed forever by producing bubbles of non-inflating space filled with hot matter and radiation surrounded by empty space that continues to inflate. The bubbles could not grow fast enough to keep up with the inflation. Later that same year, 2673:
inflation termination, while fluctuations in the latter would not affect the rate of expansion. Therefore, hybrid inflation is not eternal. When the second (slow-rolling) inflaton reaches the bottom of its potential, it changes the location of the minimum of the first inflaton's potential, which leads to a fast roll of the inflaton down its potential, leading to termination of inflation.
9771: 2808:; in Tolman's model, however, the total age of the Universe is necessarily finite, while in these models this is not necessarily so. Whether the correct spectrum of density fluctuations can be produced, and whether the Universe can successfully navigate the Big Bang/Big Crunch transition, remains a topic of controversy and current research. Ekpyrotic models avoid the 2173:, which is the basis of the standard model of physical cosmology: it accounts for the homogeneity and isotropy of the observable universe. In addition, it accounts for the observed flatness and absence of magnetic monopoles. Since Guth's early work, each of these observations has received further confirmation, most impressively by the detailed observations of the 2922:"There is something fundamentally misconceived about trying to explain the uniformity of the early universe as resulting from a thermalization process. ... For, if the thermalization is actually doing anything ... then it represents a definite increasing of the entropy. Thus, the universe would have been even more special before the thermalization than after." 2430:, the field that explains the mass of the elementary particles. It is now believed by some that the inflaton cannot be the Higgs field although the recent discovery of the Higgs boson has increased the number of works considering the Higgs field as inflaton. One problem of this identification is the current tension with experimental data at the 2669:, is an extension of new inflation. It introduces additional scalar fields, so that while one of the scalar fields is responsible for normal slow roll inflation, another triggers the end of inflation: when inflation has continued for sufficiently long, it becomes favorable to the second field to decay into a much lower energy state. 2905:
Since its introduction by Alan Guth in 1980, the inflationary paradigm has become widely accepted. Nevertheless, many physicists, mathematicians, and philosophers of science have voiced criticisms, claiming untestable predictions and a lack of serious empirical support. In 1999, John Earman and JesĂșs
2576:
In eternal inflation, regions with inflation have an exponentially growing volume, while regions that are not inflating do not. This suggests that the volume of the inflating part of the Universe in the global picture is always unimaginably larger than the part that has stopped inflating, even though
2572:
Although new inflation is classically rolling down the potential, quantum fluctuations can sometimes lift it to previous levels. These regions in which the inflaton fluctuates upwards, expand much faster than regions in which the inflaton has a lower potential energy, and tend to dominate in terms of
2554:
In many models, the inflationary phase of the Universe's expansion lasts forever in at least some regions of the Universe. This occurs because inflating regions expand very rapidly, reproducing themselves. Unless the rate of decay to the non-inflating phase is sufficiently fast, new inflating regions
1988:
In 1978, Zeldovich noted the magnetic monopole problem, which was an unambiguous quantitative version of the horizon problem, this time in a subfield of particle physics, which led to several speculative attempts to resolve it. In 1980, Alan Guth realized that false vacuum decay in the early universe
975:
In a space that expands exponentially (or nearly exponentially) with time, any pair of free-floating objects that are initially at rest will move apart from each other at an accelerating rate, at least as long as they are not bound together by any force. From the point of view of one such object, the
2762:
generates a spin-spin interaction that is significant in fermionic matter at extremely high densities. Such an interaction averts the unphysical Big Bang singularity, replacing it with a cusp-like bounce at a finite minimum scale factor, before which the Universe was contracting. The rapid expansion
2656:
Another problem that has occasionally been mentioned is the trans-Planckian problem or trans-Planckian effects. Since the energy scale of inflation and the Planck scale are relatively close, some of the quantum fluctuations that have made up the structure in our universe were smaller than the Planck
2592:
Some physicists have tried to avoid the initial conditions problem by proposing models for an eternally inflating universe with no origin. These models propose that while the Universe, on the largest scales, expands exponentially it was, is and always will be, spatially infinite and has existed, and
2470:
must be flat (compared to the large vacuum energy) and that the inflaton particles must have a small mass. New inflation requires the Universe to have a scalar field with an especially flat potential and special initial conditions. However, explanations for these fine-tunings have been proposed. For
2302:
than should be necessary. As a physical model, however, inflation is most valuable in that it robustly predicts the initial conditions of the Universe based on only two adjustable parameters: the spectral index (that can only change in a small range) and the amplitude of the perturbations. Except in
950:
As the inflationary field slowly relaxes to the vacuum, the cosmological constant goes to zero and space begins to expand normally. The new regions that come into view during the normal expansion phase are exactly the same regions that were pushed out of the horizon during inflation, and so they are
3633:
recent series of papers, we have shown how to construct the complete set of homogeneous classical cosmological solutions of the standard model coupled to gravity, in which the cosmic singularity is replaced by a bounce: the smooth transition from contraction and big crunch to big bang and expansion.
1272:
Inflation is a period of supercooled expansion, when the temperature drops by a factor of 100,000 or so. (The exact drop is model-dependent, but in the first models it was typically from 10 K down to 10 K.) This relatively low temperature is maintained during the inflationary phase. When
1251:
generally fall, or get diluted, as the volume of the Universe increases. For example, the density of ordinary "cold" matter (dust) declines as the inverse of the volume: when linear dimensions double, the energy density declines by a factor of eight; the radiation energy density declines even more
3632:
In the standard big bang inflationary model, the cosmic singularity problem is left unresolved and the cosmology is geodesically incomplete. Consequently, the origin of space and time and the peculiar, exponentially fine-tuned initial conditions required to begin inflation are not explained. In a
2652:
Hawking and Page later found ambiguous results when they attempted to compute the probability of inflation in the Hartle–Hawking initial state. Other authors have argued that, since inflation is eternal, the probability doesn't matter as long as it is not precisely zero: once it starts, inflation
1571:
In 1965, Erast Gliner proposed a unique assumption regarding the early Universe's pressure in the context of the Einstein-Friedmann equations. According to his idea, the pressure was negatively proportional to the energy density. This relationship between pressure and energy density served as the
1516:
Monopoles are predicted to be copiously produced following Grand Unified Theories at high temperature, and they should have persisted to the present day, to such an extent that they would become the primary constituent of the Universe. Not only is that not the case, but all searches for them have
930:
of a much larger unobservable universe; other parts of the Universe cannot communicate with Earth yet. These parts of the Universe are outside our current cosmological horizon, which is believed to be 46 billion light years in all directions from Earth. In the standard hot big bang model, without
2648:
initial conditions, which would be highly unlikely. According to them, rather than solving this problem, the inflation theory aggravates it – the reheating at the end of the inflation era increases entropy, making it necessary for the initial state of the Universe to be even more orderly than in
2672:
In hybrid inflation, one scalar field is responsible for most of the energy density (thus determining the rate of expansion), while another is responsible for the slow roll (thus determining the period of inflation and its termination). Thus fluctuations in the former inflaton would not affect
2657:
length before inflation. Therefore, there ought to be corrections from Planck-scale physics, in particular the unknown quantum theory of gravity. Some disagreement remains about the magnitude of this effect: about whether it is just on the threshold of detectability or completely undetectable.
2358:
is expected to be 0 in the absence of inflation). However, on 19 June 2014, lowered confidence in confirming the findings was reported; on 19 September 2014, a further reduction in confidence was reported and, on 30 January 2015, even less confidence yet was reported. By 2018, additional data
2017:
Guth proposed inflation in January 1981 to explain the nonexistence of magnetic monopoles; it was Guth who coined the term "inflation". At the same time, Starobinsky argued that quantum corrections to gravity would replace the supposed initial singularity of the Universe with an exponentially
1246:
The "no-hair" theorem works essentially because the cosmological horizon is no different from a black-hole horizon, except for not testable disagreements about what is on the other side. The interpretation of the no-hair theorem is that the Universe (observable and unobservable) expands by an
2812:
problem as long as the temperature at the Big Crunch/Big Bang transition remains below the Grand Unified Scale, as this is the temperature required to produce magnetic monopoles in the first place. As things stand, there is no evidence of any 'slowing down' of the expansion, but this is not
2508:
should cause large corrections that could prevent inflation. This problem has not yet been resolved and some cosmologists argue that the small field models, in which inflation can occur at a much lower energy scale, are better models. While inflation depends on quantum field theory (and the
1520:
A period of inflation that occurs below the temperature where magnetic monopoles can be produced would offer a possible resolution of this problem: Monopoles would be separated from each other as the Universe around them expands, potentially lowering their observed density by many orders of
946:
is constant. With exponentially expanding space, two nearby observers are separated very quickly; so much so, that the distance between them quickly exceeds the limits of communication. The spatial slices are expanding very fast to cover huge volumes. Things are constantly moving beyond the
2127:
Eventually, it was shown that new inflation does not produce a perfectly symmetric universe, but that quantum fluctuations in the inflaton are created. These fluctuations form the primordial seeds for all structure created in the later universe. These fluctuations were first calculated by
2310:
data suggested that the spectrum might not be nearly scale-invariant, but might instead have a slight curvature. However, the third-year data revealed that the effect was a statistical anomaly. Another effect remarked upon since the first cosmic microwave background satellite, the
732:
mechanism responsible for inflation is unknown. The basic inflationary paradigm is accepted by most physicists, as a number of inflation model predictions have been confirmed by observation; however, a substantial minority of scientists dissent from this position. The hypothetical
2034:
abundance in Grand Unified Theories. Like Guth, they concluded that such a model not only required fine tuning of the cosmological constant, but also would likely lead to a much too granular universe, i.e., to large density variations resulting from bubble wall collisions.
967:, and the evidence supports this. More strikingly, inflation allows physicists to calculate the minute differences in temperature of different regions from quantum fluctuations during the inflationary era, and many of these quantitative predictions have been confirmed. 1367:. In the early Universe, it was not possible to send a light signal between the two regions. Because they have had no interaction, it is difficult to explain why they have the same temperature (are thermally equilibrated). Historically, proposed solutions included the 1329:, or "special" initial conditions at the Big Bang. Inflation attempts to resolve these problems by providing a dynamical mechanism that drives the Universe to this special state, thus making a universe like ours much more likely in the context of the Big Bang theory. 1567:
found a highly symmetric inflating universe, which described a universe with a cosmological constant that is otherwise empty. It was discovered that Einstein's universe is unstable, and that small fluctuations cause it to collapse or turn into a de Sitter universe.
980:—each object is surrounded by a spherical event horizon. Once the other object has fallen through this horizon it can never return, and even light signals it sends will never reach the first object (at least so long as the space continues to expand exponentially). 1529:"Skeptics about exotic physics might not be hugely impressed by a theoretical argument to explain the absence of particles that are themselves only hypothetical. Preventive medicine can readily seem 100 percent effective against a disease that doesn't exist!" 954:
The theory of inflation thus explains why the temperatures and curvatures of different regions are so nearly equal. It also predicts that the total curvature of a space-slice at constant global time is zero. This prediction implies that the total ordinary matter,
2217:, which measures the slight deviation from scale invariance predicted by inflation (perfect scale invariance corresponds to the idealized de Sitter universe). The other free parameter is the tensor to scalar ratio. The simplest inflation models, those without 2946:, one of the founding fathers of inflationary cosmology, has recently become one of its sharpest critics. He calls 'bad inflation' a period of accelerated expansion whose outcome conflicts with observations, and 'good inflation' one compatible with them: 1148: 3548: 3622:
this is precisely the situation in effective field theory in which higher order terms would be expected to contribute and destroy the conditions for inflation. The absence of these higher order corrections can be seen as another sort of fine
2754:–Sciama–Kibble theory of gravity, without needing an exotic form of matter or free parameters. This theory extends general relativity by removing a constraint of the symmetry of the affine connection and regarding its antisymmetric part, the 2611:
Guth described the inflationary universe as the "ultimate free lunch": new universes, similar to our own, are continually produced in a vast inflating background. Gravitational interactions, in this case, circumvent (but do not violate) the
2732:
model has evolved that provides a possible mechanism for cosmological inflation. Loop quantum gravity assumes a quantized spacetime. If the energy density is larger than can be held by the quantized spacetime, it is thought to bounce back.
1900: 2767:
explains why the present Universe at largest scales appears spatially flat, homogeneous and isotropic. As the density of the Universe decreases, the effects of torsion weaken and the Universe smoothly enters the radiation-dominated era.
2749:
The big bounce hypothesis attempts to replace the cosmic singularity with a cosmic contraction and bounce, thereby explaining the initial conditions that led to the big bang. The flatness and horizon problems are naturally solved in the
3118:(usually called Gaussian) with mean zero. Different Fourier components are uncorrelated. The variance of a mode depends only on its wavelength in such a way that within any given volume each wavelength contributes an equal amount of 2132:
and G. V. Chibisov in analyzing Starobinsky's similar model. In the context of inflation, they were worked out independently of the work of Mukhanov and Chibisov at the three-week 1982 Nuffield Workshop on the Very Early Universe at
2558:
All models of eternal inflation produce an infinite, hypothetical multiverse, typically a fractal. The multiverse theory has created significant dissension in the scientific community about the viability of the inflationary model.
3248: 2323:. Some have claimed that this is a signature of non-Gaussianity and thus contradicts the simplest models of inflation. Others have suggested that the effect may be due to other new physics, foreground contamination, or even 1780: 1579:
noticed the flatness and horizon problems of Big Bang cosmology; before his work, cosmology was presumed to be symmetrical on purely philosophical grounds. In the Soviet Union, this and other considerations led Belinski and
814:. It can be understood as a consequence of an initial impulse, which sent the contents of the universe flying apart at such a rate that their mutual gravitational attraction has not reversed their increasing separation. 2471:
example, classically scale invariant field theories, where scale invariance is broken by quantum effects, provide an explanation of the flatness of inflationary potentials, as long as the theory can be studied through
3056:
In fact temperature anisotropies observed by the COBE satellite in 1992 exhibit nearly scale-invariant spectra as predicted by the inflationary paradigm. Recent observations of WMAP also show strong evidence for
2112:
rolling down a potential energy hill. When the field rolls very slowly compared to the expansion of the Universe, inflation occurs. However, when the hill becomes steeper, inflation ends and reheating can occur.
1979: 3388: 1321:, generate an exponential expansion of space. It was quickly realised that such an expansion would resolve many other long-standing problems. These problems arise from the observation that to look like it does 2523:
commented on fine-tuning in another situation. The amplitude of the primordial inhomogeneities produced in inflation is directly tied to the energy scale of inflation. This scale is suggested to be around 10
2038:
Guth proposed that as the early universe cooled, it was trapped in a false vacuum with a high energy density, which is much like a cosmological constant. As the very early universe cooled it was trapped in a
1186:
Inflation is typically not an exactly exponential expansion, but rather quasi- or near-exponential. In such a universe the horizon will slowly grow with time as the vacuum energy density gradually decreases.
3066:
Not only is inflation very effective at driving down the number density of magnetic monopoles, it is also effective at driving down the number density of every other type of particle, including photons.
6820:
Ade, P.A.R.; et al. (Planck Collaboration Team) (2016). "Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes".
2260:. These experiments have shown that the one part in 100,000 inhomogeneities observed have exactly the form predicted by theory. There is evidence for a slight deviation from scale invariance. The 983:
In the approximation that the expansion is exactly exponential, the horizon is static and remains a fixed physical distance away. This patch of an inflating universe can be described by the following
798:; the more remote, the more shifted. This implies that the galaxies are receding from the Earth, with more distant galaxies receding more rapidly, such that galaxies also recede from each other. This 1387:. LemaĂźtre and Tolman proposed that a universe undergoing a number of cycles of contraction and expansion could come into thermal equilibrium. Their models failed, however, because of the buildup of 2684:
is broadly similar to inflation and is thought to be causing the expansion of the present-day universe to accelerate. However, the energy scale of dark energy is much lower, 10 GeV, roughly 27
4013: 1513:. These theories predict a number of heavy, stable particles that have not been observed in nature. The most notorious is the magnetic monopole, a kind of stable, heavy "charge" of magnetic field. 3294: 2856:
can only expand if the strings that wind around it can efficiently annihilate each other. Each string is a one-dimensional object, and the largest number of dimensions in which two strings will
2712:, is different from ordinary inflation. The dynamics are not completely understood. It appears that special conditions are necessary since inflation occurs in tunneling between two vacua in the 1195:
Because the accelerating expansion of space stretches out any initial variations in density or temperature to very large length scales, an essential feature of inflation is that it smooths out
5498: 1989:
would solve the problem, leading him to propose a scalar-driven inflation. Starobinsky's and Guth's scenarios both predicted an initial de Sitter phase, differing only in mechanistic details.
2394:
formed), may measure the power spectrum with even greater resolution than the CMB and galaxy surveys, although it is not known if these measurements will be possible or if interference with
2488:
that begins in a chaotic, high energy state that has a scalar field with unbounded potential energy. However, in his model, the inflaton field necessarily takes values larger than one
7999: 3620: 2580:
Some physicists believe this paradox can be resolved by weighting observers by their pre-inflationary volume. Others believe that there is no resolution to the paradox and that the
3457: 3576: 3416: 2584:
is a critical flaw in the inflationary paradigm. Paul Steinhardt, who first introduced the eternal inflationary model, later became one of its most vocal critics for this reason.
993: 3466: 2918:
from 1986 on, in order to work, inflation requires extremely specific initial conditions of its own, so that the problem (or pseudo-problem) of initial conditions is not solved:
2632:
problem). However, while there is consensus that this solves the initial conditions problem, some have disputed this, as it is much more likely that the Universe came about by a
6760: 1463:, for example). This problem is exacerbated by recent observations of the cosmic microwave background that have demonstrated that the Universe is flat to within a few percent. 6877: 2330:
An experimental program is underway to further test inflation with more precise CMB measurements. In particular, high precision measurements of the so-called "B-modes" of the
1451:, the contribution of spatial curvature to the expansion of the Universe could not be much greater than the contribution of matter. But as the Universe expands, the curvature 1165:
density that is constant in space and time and proportional to Λ in the above metric. For the case of exactly exponential expansion, the vacuum energy has a negative pressure
6941: 942:. A space with a cosmological constant is qualitatively different: instead of moving outward, the cosmological horizon stays put. For any one observer, the distance to the 2840:. This raised the contingent question of why four space-time dimensions became large and the rest became unobservably small. An attempt to address this question, called 891:'s surface, marks the boundary of the part of the Universe that an observer can see. Light (or other radiation) emitted by objects beyond the cosmological horizon in an 1359:
known in the Standard Model, two widely separated regions of the observable universe cannot have equilibrated because they move apart from each other faster than the
1260:), in addition to the photons being dispersed by the expansion. When linear dimensions are doubled, the energy density in radiation falls by a factor of sixteen (see 2386:, although it is unclear if the signal will be visible, or if contamination from foreground sources will interfere. Other forthcoming measurements, such as those of 1791: 5810:
Linde, Andrei (1982). "A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems".
3320: 173: 9284:. Post-Planck Cosmology: École de physique des Houches. Oxford, UK: Ecole d'Ă©tĂ© de physique thĂ©orique / Oxford University Press (published 2015). session C. 5340: 2413:
Is the theory of cosmological inflation correct, and if so, what are the details of this epoch? What is the hypothetical inflaton field giving rise to inflation?
1289:
of the Universe. Because the nature of the inflaton field is not known, this process is still poorly understood, although it is believed to take place through a
2377: 1667:
noted that quantum corrections to general relativity should be important for the early universe. These generically lead to curvature-squared corrections to the
2926:
The problem of specific or "fine-tuned" initial conditions would not have been solved; it would have gotten worse. At a conference in 2015, Penrose said that
2204:
of perturbations that were formed as quantum mechanical fluctuations in the inflationary epoch. The detailed form of the spectrum of perturbations, called a
1459:
problem because the contribution of curvature to the Universe must be exponentially small (sixteen orders of magnitude less than the density of radiation at
2540:. This is not usually considered to be a critical problem, however, because the scale of inflation corresponds naturally to the scale of gauge unification. 4024: 9711: 7318: 5011: 3160:
of particle physics, which successfully describes how most known particles and forces behave. Interest in the Higgs is running hot this summer because
1691: 544: 9653: 5463: 2555:
are produced more rapidly than non-inflating regions. In such models, most of the volume of the Universe is continuously inflating at any given time.
8337:
Blanco-Pillado, J. J.; Burgess, C. P.; Cline, J. M.; Escoda, C.; Gomez-Reino, M.; Kallosh, R.; Linde, A.; Quevedo, F. (2004). "Racetrack Inflation".
5246: 4244: 6589:
Spergel, D.N.; et al. (2003). "First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters".
3180: 4137: 651:. Following the inflationary period, the universe continued to expand, but at a slower rate. The re-acceleration of this slowing expansion due to 7002:"Measuring the small-scale power spectrum of cosmic density fluctuations through 21 cm tomography prior to the epoch of structure formation" 2881:
have been proposed to resolve the horizon problem of and provide an alternative to cosmic inflation. In the VSL models, the fundamental constant
2030:(another kind of exotic relic). In 1981, Einhorn and Sato published a model similar to Guth's and showed that it would resolve the puzzle of the 3164:, the lab in Geneva, Switzerland, that runs the LHC, has said it will announce highly anticipated findings regarding the particle in early July. 2450:
modelling. As such, although predictions of inflation have been consistent with the results of observational tests, many open questions remain.
8394: 7264: 6473: 2852:. This model focuses on the dynamics of the early universe considered as a hot gas of strings. Brandenberger and Vafa show that a dimension of 614: 2331: 1908: 6084:
Starobinsky, Alexei A. (1982). "Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations".
4142: 3338: 1309:
cosmology that were discovered in the 1970s. Inflation was first proposed by Alan Guth in 1979 while investigating the problem of why no
1231:
a period of inflation, they would not be observed in nature, as they would be so rare that it is quite likely that there are none in the
849:
at the time. This would explain why such relics were not seen. It was quickly realized that such accelerated expansion would resolve the
2910:"we do not think that there are, as yet, good grounds for admitting any of the models of inflation into the standard core of cosmology." 9043: 6771: 6693:
Ade, P.A.R.; et al. (BICEP2 Collaboration) (19 June 2014). "Detection of B-mode polarization at degree angular scales by BICEP2".
5851: 3679: 3122:
to the spectrum of perturbations. Since the Fourier transform is in three dimensions, this means that the variance of a mode goes as 1/
2346:
team announced B-mode CMB polarization confirming inflation had been demonstrated. The team announced the tensor-to-scalar power ratio
1261: 8850: 6888: 4301: 3939: 2484:
in which he suggested that the conditions for inflation were actually satisfied quite generically. Inflation will occur in virtually
769: 5136: 2938:
A recurrent criticism of inflation is that the invoked inflaton field does not correspond to any known physical field, and that its
2716:. The process of tunneling between two vacua is a form of old inflation, but new inflation must then occur by some other mechanism. 1475:, sometimes called "the exotic-relics problem", says that if the early universe were very hot, a large number of very heavy, stable 698:
in the microscopic inflationary region, magnified to cosmic size, become the seeds for the growth of structure in the Universe (see
6952: 667: 2792:
the Big Bang, and then generate the required spectrum of primordial density perturbations during a contracting phase leading to a
9854: 7546: 7517: 6591: 5707:
Einhorn, Martin B.; Sato, Katsuhiko (1981). "Monopole production in the very early universe, in a first-order phase transition".
4776:
Dicke, Robert H.; Peebles, P.J.E. (1979). "The big bang cosmology – enigmas and nostrums". In Hawking, S.W.; Israel, W. (eds.).
5615:. Astrophysics and Space Science Proceedings Vol. 8. Springer Science & Business Media (published 2009). pp. 485–496. 892: 9615: 9591: 9567: 9501: 9432: 9392: 9373: 9347: 9323: 9289: 8068: 7423: 5939: 5918: 5767: 5646: 4800: 4683: 4631: 4600: 4374: 2697: 1391:
over several cycles. Misner made the (ultimately incorrect) conjecture that the Mixmaster mechanism, which made the Universe
1277:
or thermalization because the large potential energy of the inflaton field decays into particles and fills the Universe with
749: 690:"for pioneering the theory of cosmic inflation". It was developed further in the early 1980s. It explains the origin of the 5028:
Einhorn, Martin B.; Stein, D.L.; Toussaint, Doug (1980). "Are grand unified theories compatible with standard cosmology?".
3848: 2532:. The natural scale is naĂŻvely the Planck scale so this small value could be seen as another form of fine-tuning (called a 2416: 2307: 2298:
Various inflation theories have been proposed that make radically different predictions, but they generally have much more
2249: 348: 9703: 9511:
Lyth, David H.; Riotto, Antonio (1999). "Particle physics models of inflation and the cosmological density perturbation".
6526:
Ade, P.A.R.; et al. (Planck Collaboration) (October 2016). "Planck 2015 results. XX. Constraints on inflation".
2379:
is 0.06 or lower: Consistent with the null hypothesis, but still also consistent with many remaining models of inflation.
938:
Inflation answers this question by postulating that all the regions come from an earlier era with a big vacuum energy, or
9698: 9689: 7611: 2824:
requires that, in addition to the three observable spatial dimensions, additional dimensions exist that are curled up or
2338:
produced by inflation, and could also show whether the energy scale of inflation predicted by the simplest models (10~10
2295:
to scalar ratio that is less than 0.11 . These are considered an important confirmation of the theory of inflation.
2018:
expanding de Sitter phase. In October 1980, Demosthenes Kazanas suggested that exponential expansion could eliminate the
6644: 6216:
Ade, P.A.R.; et al. (Planck Collaboration) (1 October 2016). "Planck 2015 results. XIII. Cosmological parameters".
833:
state could represent such a fluid, and the resulting repulsion would set the universe into exponential expansion. This
7630: 5442: 4861: 4075: 3897: 5360:
Starobinskii, A.A. (December 1979). "Spectrum of relict gravitational radiation and the early state of the universe".
1347:
is the problem of determining why the universe appears statistically homogeneous and isotropic in accordance with the
7366: 6031: 5794: 5338:
Starobinsky, A.A. (December 1979). "Spectrum of relict gravitational radiation and the early state of the universe".
5224: 4703: 4430: 4411: 557: 3001: 2741:
Other models have been advanced that are claimed to explain some or all of the observations addressed by inflation.
3913: 706:). Many physicists also believe that inflation explains why the universe appears to be the same in all directions ( 607: 9746: 6975:
Rosset, C.; et al. (PLANCK-HFI collaboration) (2005). "Systematic effects in CMB polarization measurements".
3086:, it is still a good feature of the inflation hypothesis that it is able to deal with these magnetic relics. See, 744:
In 2002, three of the original architects of the theory were recognized for their major contributions; physicists
5670:
Sato, K. (1981). "Cosmological baryon number domain structure and the first order phase transition of a vacuum".
3253: 3021: 190: 7628:
Carroll, Sean M.; Chen, Jennifer (2005). "Does inflation provide natural initial conditions for the universe?".
880: 9844: 9839: 9708: 8905: 8339: 7884: 7172: 2089: 2075:(1997), where he apologizes for not having referenced the work of Kazanas and of others, related to inflation. 951:
at nearly the same temperature and curvature, because they come from the same originally small patch of space.
895:
never reaches the observer, because the space in between the observer and the object is expanding too rapidly.
699: 691: 552: 276: 266: 4962: 2306:
Occasionally, effects are observed that appear to contradict the simplest models of inflation. The first-year
2071:. ... Guth himself did not refer to work of Kazanas until he published a book on the subject, under the title 7319:"What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?" 4220: 1506: 1418: 1174: 1143:{\displaystyle ds^{2}=-(1-\Lambda r^{2})\,c^{2}dt^{2}+{1 \over 1-\Lambda r^{2}}\,dr^{2}+r^{2}\,d\Omega ^{2}.} 195: 118: 7072: 3581: 3543:{\displaystyle \ m_{\mathrm {\phi } }^{4}\left({\tfrac {\mathrm {\phi } }{m_{\mathsf {Plk}}}}\right)^{2}\ ,} 2934:
did a wonderful service by bringing all the inflation-ists out of their shell, and giving them a black eye."
9849: 6173: 3421: 2857: 2621: 2158: 1615: 1422: 964: 8540:
Bars, Itzhak; Steinhardt, Paul; Turok, Neil (2014). "Sailing through the big crunch-big bang transition".
7848: 3553: 3393: 6528: 6355:
Tegmark, Max; et al. (August 2006). "Cosmological constraints from the SDSS luminous red galaxies".
5390: 4118: 3959: 2613: 2319:
of the CMB is unexpectedly low and the other low multipoles appear to be preferentially aligned with the
2174: 2027: 1668: 711: 600: 576: 123: 5276: 3664: 658:
Inflation theory was developed in the late 1970s and early 1980s, with notable contributions by several
9737: 9601: 8903:
Lashkari, Nima; Brandenberger, Robert H (17 September 2008). "Speed of sound in string gas cosmology".
8139:
Martin, Jerome; Brandenberger, Robert (2001). "The trans-Planckian problem of inflationary cosmology".
6176:(1983). "Spontaneous creation of almost scale-free density perturbations in an inflationary universe". 5362: 5283:
He, Dongshan; Gao, Dongfeng; Cai, Qing-yu (2014). "Spontaneous creation of the universe from nothing".
4403: 4195: 3156:
The virtue of so-called Higgs inflation models is that they might explain inflation within the current
2962:, he wrote articles claiming that the inflationary paradigm is in trouble in view of the data from the 2825: 2751: 2312: 2023: 683: 536: 342: 322: 130: 75: 24: 2273:
is one for a scale-invariant Harrison–Zel'dovich spectrum. The simplest inflation models predict that
2137:. The fluctuations were calculated by four groups working separately over the course of the workshop: 9725: 9313: 8791: 7683:
Aguirre, Anthony; Gratton, Steven (2003). "Inflation without a beginning: A null boundary proposal".
2708:
in the compactified geometry, usually towards a stack of anti-D-branes. This theory, governed by the
2013:
mechanism could have ensured that the universe was homogeneous on the scale of the perturbation mode.
2006: 1480: 1282: 874: 799: 781: 768:"for development of the concept of inflation in cosmology". In 2012, Guth and Linde were awarded the 644: 168: 8513: 8426: 5958:
Chibisov, Viatcheslav F.; Chibisov, G. V. (1981). "Quantum fluctuation and "nonsingular" universe".
5065:
Zel'dovich, Ya.; Khlopov, M. Yu. (1978). "On the concentration of relic monopoles in the universe".
4174: 9859: 9219: 8766: 6423: 5910: 2974: 2601: 2480: 2257: 1556: 1460: 655:
began after the universe was already over 7.7 billion years old (5.4 billion years ago).
337: 102: 19:"Inflation model" and "Inflation theory" redirect here. For a general rise in the price level, see 7073:"Could the Large Hadron Collider discover the particle underlying both mass and cosmic inflation?" 5527:
Starobinsky, Alexei A. (1980). "A new type of isotropic cosmological models without singularity".
4098: 943: 825:
with sufficiently negative pressure exerts gravitational repulsion in the cosmological context. A
9337: 7844: 7323: 7006: 6695: 6294: 6130: 5859: 5111: 4970: 4718: 4535:
Misner, Charles W.; Coley, A A; Ellis, G F R; Hancock, M (1968). "The isotropy of the universe".
4461: 4138:"Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Implications for cosmology" 2878: 2872: 2829: 2640:
was an outspoken critic of inflation because of this anomaly. He stressed that the thermodynamic
2431: 2387: 2335: 2134: 2122: 1592:
attempted to use this chaotic behavior to solve the cosmological problems, with limited success.
1421:). It became known in the 1960s that the density of matter in the Universe was comparable to the 1286: 305: 185: 9632: 4623: 4617: 3889: 2211:
is very specific and has only two free parameters. One is the amplitude of the spectrum and the
8761: 8421: 4169: 3755:(2011). "The inflation debate: Is the theory at the heart of modern cosmology deeply flawed?". 3174: 3126:
to compensate for the fact that within any volume, the number of modes with a given wavenumber
2729: 2501: 2201: 2170: 2067:
called this phase of the early Universe "de Sitter's phase". The name "inflation" was given by
1895:{\displaystyle \quad V(\phi )=\Lambda ^{4}\left(1-e^{-{\sqrt {2/3}}\phi /M_{p}^{2}}\right)^{2}} 1434: 1348: 1207:. This pushes the Universe into a very simple state in which it is completely dominated by the 846: 9730: 5608: 6292:(24 March 2006). "Inflationary Predictions for Scalar and Tensor Fluctuations Reconsidered". 5784: 5570: 4537: 4104: 4065: 2510: 2459: 2435: 2320: 2299: 2208: 2205: 1658: 1627: 1552: 1517:
failed, placing stringent limits on the density of relic magnetic monopoles in the Universe.
1491: 1456: 1448: 1290: 1204: 1196: 1158: 939: 911: 510: 312: 254: 8194:
Martin, Jerome; Ringeval, Christophe (2004). "Superimposed Oscillations in the WMAP Data?".
6951: 6887: 6843: 6770: 6551: 6239: 5902: 5884: 5413: 4584: 4023: 3687: 2303:
contrived models, this is true regardless of how inflation is realized in particle physics.
2108:). In this model, instead of tunneling out of a false vacuum state, inflation occurred by a 2009:, then the mode would never have been inside the horizon in the very early universe, and no 1273:
inflation ends, the temperature returns to the pre-inflationary temperature; this is called
1235:. Together, these effects are called the inflationary "no-hair theorem" by analogy with the 9530: 9464: 9420: 9243: 9178: 9115: 9052: 8991: 8924: 8869: 8810: 8753: 8663: 8642:
Poplawski, N. J. (2012). "Nonsingular, big-bounce cosmology from spinor-torsion coupling".
8616: 8561: 8478: 8413: 8358: 8303: 8264: 8215: 8160: 8105: 8023: 7969: 7903: 7808: 7763: 7704: 7649: 7579: 7493: 7453: 7380: 7342: 7283: 7236: 7191: 7120: 7025: 6839: 6714: 6610: 6547: 6492: 6432: 6376: 6313: 6235: 6187: 6139: 6095: 6058: 6001: 5987: 5969: 5868: 5821: 5718: 5681: 5626: 5579: 5538: 5480: 5409: 5370: 5349: 5304: 5255: 5178: 5159: 5120: 5076: 5039: 4987: 4940: 4895: 4849: 4727: 4546: 4480: 4399: 4320: 4263: 4161: 3762: 3323: 3299: 3079: 2931: 2845: 2805: 2801: 2725: 2637: 2605: 2520: 2442:. At present, while inflation is understood principally by its detailed predictions of the 2439: 2129: 1623: 1495: 1487: 1376: 1372: 977: 761: 523: 495: 317: 5103: 4592: 947:
cosmological horizon, which is a fixed distance away, and everything becomes homogeneous.
8: 9811: 8518: 7488: 7077: 5992: 5903: 4739: 3982: 3801:
Earman, John; MosterĂ­n, JesĂșs (March 1999). "A Critical Look at Inflationary Cosmology".
3757: 3115: 2963: 2685: 2633: 2617: 2472: 2466:
must be satisfied for inflation to occur. The slow-roll conditions say that the inflaton
2391: 2383: 2281: 2245: 2229: 2218: 2178: 2010: 1646: 1437: 1326: 1232: 1212: 923: 862: 818: 803: 703: 695: 659: 415: 385: 332: 288: 180: 70: 9534: 9468: 9424: 9247: 9182: 9119: 9056: 8995: 8936: 8928: 8873: 8814: 8757: 8667: 8620: 8565: 8482: 8435: 8417: 8370: 8362: 8307: 8268: 8219: 8164: 8109: 8027: 7973: 7907: 7812: 7767: 7708: 7653: 7583: 7497: 7457: 7346: 7295: 7287: 7240: 7195: 7124: 7029: 6912: 6795: 6718: 6614: 6504: 6496: 6436: 6380: 6317: 6191: 6143: 6099: 6062: 6005: 5973: 5872: 5825: 5722: 5685: 5630: 5583: 5542: 5484: 5374: 5353: 5308: 5259: 5182: 5124: 5080: 5043: 4991: 4944: 4899: 4853: 4731: 4550: 4484: 4324: 4267: 4165: 3766: 2897:
at the time of decoupling sufficiently to account for the observed isotropy of the CMB.
2200:
Inflation predicts that the structures visible in the Universe today formed through the
1455:
away more slowly than matter and radiation. Extrapolated into the past, this presents a
807: 455: 9799: 9787: 9676: 9661: 9640: 9546: 9520: 9480: 9454: 9410: 9259: 9233: 9194: 9168: 9131: 9105: 9068: 9064: 8981: 8948: 8914: 8885: 8859: 8826: 8800: 8724: 8706: 8679: 8653: 8606: 8595:
Poplawski, N. J. (2010). "Cosmology with torsion: An alternative to cosmic inflation".
8577: 8551: 8494: 8468: 8439: 8403: 8374: 8348: 8319: 8293: 8254: 8231: 8205: 8176: 8150: 8121: 8095: 7985: 7919: 7893: 7824: 7779: 7753: 7720: 7694: 7665: 7639: 7595: 7535: 7480: 7388: 7358: 7332: 7299: 7273: 7207: 7181: 7167: 7136: 7110: 7049: 7015: 6980: 6946: 6882: 6855: 6829: 6765: 6738: 6704: 6675: 6626: 6600: 6571: 6537: 6508: 6482: 6448: 6400: 6366: 6337: 6303: 6259: 6225: 5759: 5752: 5652: 5616: 5425: 5399: 5320: 5294: 5194: 5168: 4877: 4839: 4743: 4562: 4504: 4470: 4336: 4310: 4281: 4253: 4187: 4151: 4018: 3882: 3826: 3818: 3723: 3335:
Technically, this is because the inflaton potential is expressed as a Taylor series in
2566: 2443: 2362: 2240: 1664: 1589: 1544: 1499: 1441: 1430: 1380: 1318: 1310: 907: 842: 811: 765: 675: 663: 628: 475: 445: 410: 380: 327: 271: 40: 9542: 8490: 8315: 7591: 7505: 6047:(1982). "The development of irregularities in a single bubble inflationary universe". 5388:
Ade, P.A.R.; et al. (2016). "Planck 2015 results. XX. Constraints on inflation".
3774: 1472: 1262:
the solution of the energy density continuity equation for an ultra-relativistic fluid
9611: 9605: 9587: 9581: 9563: 9550: 9497: 9484: 9428: 9388: 9369: 9343: 9319: 9285: 9224: 9198: 9159: 9096: 9072: 9009: 8972: 8968:"Creating spatial flatness by combining string gas cosmology and power law inflation" 8952: 8940: 8775: 8744: 8683: 8644: 8597: 8542: 8498: 8459: 8235: 8196: 8180: 8141: 8125: 8086: 8064: 8035: 8014: 7828: 7799: 7783: 7744: 7685: 7669: 7603: 7509: 7444: 7419: 7362: 7303: 7248: 7227: 7211: 7101: 7041: 6730: 6679: 6575: 6563: 6357: 6329: 6263: 6251: 6178: 6107: 6086: 6070: 6049: 6027: 5914: 5833: 5812: 5790: 5763: 5730: 5709: 5693: 5672: 5642: 5550: 5529: 5471: 5429: 5324: 5285: 5220: 5198: 5190: 5088: 5067: 5030: 5003: 4907: 4886: 4857: 4796: 4747: 4699: 4689: 4679: 4627: 4596: 4566: 4558: 4508: 4496: 4459:
Kofman, Lev; Linde, Andrei; Starobinsky, Alexei (1994). "Reheating after inflation".
4426: 4417: 4407: 4370: 4276: 4239: 4071: 3931: 3893: 3830: 3778: 2906:
MosterĂ­n published a thorough critical review of inflationary cosmology, concluding,
2809: 2597: 2549: 2533: 2316: 2048: 2031: 1476: 1216: 722: 505: 9263: 9135: 8728: 8378: 8323: 7923: 7724: 7140: 7053: 6742: 6630: 6512: 6452: 6341: 5656: 4881: 4816: 4492: 4285: 2596:
Other proposals attempt to describe the ex nihilo creation of the Universe based on
2043:
state (it was supercooled), which it could only decay out of through the process of
9763: 9660:
Covi, Laura (2003). "Status of observational cosmology and inflation". p. 67.
9538: 9472: 9255: 9251: 9190: 9186: 9127: 9123: 9060: 8999: 8932: 8889: 8877: 8830: 8818: 8771: 8716: 8671: 8628: 8624: 8581: 8569: 8486: 8443: 8431: 8366: 8311: 8223: 8168: 8113: 8031: 7989: 7977: 7960: 7911: 7816: 7771: 7712: 7657: 7587: 7501: 7461: 7350: 7291: 7244: 7199: 7132: 7128: 7033: 6859: 6847: 6726: 6722: 6667: 6618: 6555: 6500: 6440: 6404: 6392: 6384: 6321: 6243: 6195: 6165: 6147: 6103: 6066: 5876: 5829: 5726: 5689: 5634: 5587: 5546: 5488: 5417: 5312: 5263: 5186: 5128: 5084: 5047: 4995: 4911: 4903: 4735: 4554: 4488: 4340: 4328: 4271: 4191: 4179: 3810: 3770: 3119: 3026: 2942:
curve seems to be an ad hoc contrivance to accommodate almost any data obtainable.
2939: 2894: 2713: 2608:
for the initial creation of the Universe in which inflation comes about naturally.
2467: 2324: 2150: 2019: 1564: 1410: 1404: 1224: 854: 729: 588: 390: 226: 9639:
Andrew R Liddle (1999). "An introduction to cosmological inflation". p. 260.
8720: 7945: 7037: 6851: 6559: 6325: 6247: 5421: 2536:): The energy density given by the scalar potential is down by 10 compared to the 2517:) in an important way, it has not been completely reconciled with these theories. 400: 375: 9715: 9357: 9333: 9150: 9087: 8284: 8052: 7875: 7481:"Inflation Debate: Is the theory at the heart of modern cosmology deeply flawed?" 6285: 6169: 6044: 5852:"Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking" 5638: 5464:"Inflationary universe: A possible solution to the horizon and flatness problems" 5242:"Einstein's theory of gravitation and its astronomical consequences. Third paper" 4391: 3752: 3016: 2996: 2978: 2943: 2837: 2785: 2562: 2514: 2505: 2395: 2351: 2154: 2138: 2093: 2055:
spontaneously form in the sea of false vacuum and rapidly begin expanding at the
1775:{\displaystyle S={\frac {1}{2}}\int d^{4}x\left(R+{\frac {R^{2}}{6M^{2}}}\right)} 1585: 1576: 1548: 1414: 1344: 1338: 1236: 1154: 850: 826: 757: 734: 515: 450: 435: 420: 405: 395: 259: 156: 9004: 8967: 8084:
Albrecht, Andreas; Sorbo, Lorenzo (2004). "Can the universe afford inflation?".
7915: 7354: 7203: 6151: 5880: 5132: 4585: 3854: 9823: 9751: 8675: 8573: 8227: 8172: 8117: 7775: 7716: 7564: 6937: 6873: 6756: 6388: 5316: 4999: 4963:"Phase transitions and magnetic monopole production in the very early universe" 4834:
Raby, Stuart (June 2006). "Grand Unified Theories". In Hoeneisen, Bruce (ed.).
4009: 3157: 3036: 2890: 2886: 2813:
surprising as each cycle is expected to last on the order of a trillion years.
2755: 2537: 2262: 2244:
perturbations). This structure for the perturbations has been confirmed by the
2213: 2056: 1607: 1490:, which propose that at high temperatures (such as in the early universe), the 1384: 1364: 1360: 1278: 1248: 1220: 500: 460: 8881: 8844:
Brandenberger, Robert H.; Nayeri, ALI; Patil, Subodh P.; Vafa, Cumrun (2007).
8822: 7661: 6444: 4332: 3722:
Tsujikawa, Shinji (28 April 2003). "Introductory review of cosmic inflation".
3243:{\displaystyle \ \epsilon ={\tfrac {1}{2}}\left({\tfrac {V'}{V}}\right)^{2}\ } 2284:
of the parameters related to energy. From Planck data it can be inferred that
841:
in 1979 because the exponential expansion could dilute exotic relics, such as
9833: 9577: 9038: 9027: 9013: 8944: 7995: 7879: 7820: 7465: 7099:
Salvio, Alberto (2013). "Higgs inflation at NNLO after the boson discovery".
6671: 6662: 6567: 6255: 5051: 4049: 3107: 3083: 3076: 2915: 2821: 2641: 2629: 2529: 2253: 2040: 2002: 1502: 984: 960: 822: 718: 485: 470: 370: 6199: 5493: 4929:
Polyakov, Alexander M. (1974). "Particle spectrum in quantum field theory".
4421: 1302: 9775: 9442: 9402: 9361: 9277: 9154: 9091: 7607: 7513: 7411: 7262:
Alabidi, Laila; Lyth, David H. (2006). "Inflation models and observation".
7045: 6734: 6421:
Steinhardt, Paul J. (2004). "Cosmological perturbations: Myths and facts".
6333: 5960: 5268: 5241: 4931: 4582: 4500: 3782: 2959: 2833: 2781: 2759: 2292: 2280:
is between 0.92 and 0.98 . This is the range that is possible without
2222: 2109: 2085: 2052: 1672: 1619: 1601: 1510: 1314: 830: 791: 679: 490: 465: 440: 425: 281: 9675:
Lyth, David H. (2003). "Which is the best inflation model?". p. 260.
8742:
Brandenberger, R.; Vafa, C. (1989). "Superstrings in the early universe".
8392:
Kachru, Shamit; et al. (2003). "Towards inflation in string theory".
2197:
percent, and that it is homogeneous and isotropic to one part in 100,000.
1997: 898: 9720: 9645: 9476: 8210: 7849:"Taming the multiverse—Stephen Hawking's final theory about the big bang" 7758: 7393: 7278: 7020: 6985: 6605: 6487: 6371: 6308: 6125: 5212: 5173: 4156: 3642:
A googol is 10, hence Steinhardt is claiming the probability ratio is 10.
3460: 2849: 2681: 2489: 2458:
One of the most severe challenges for inflation arises from the need for
2427: 2146: 1581: 1522: 1162: 956: 687: 652: 238: 231: 8012:
Hawking, Stephen W.; Page, Don N. (1988). "How probable is inflation?".
7599: 5789:. Vol. 313. Springer Science & Business Media. pp. 88–89. 4208:
WMAP ... confirms the basic tenets of the inflationary paradigm ...
2252:
spacecraft and other cosmic microwave background (CMB) experiments, and
9681: 9666: 9525: 9459: 9415: 9315:
The Inflationary Universe: The quest for a new theory of cosmic origins
8864: 8805: 8473: 8408: 8353: 8298: 8259: 8155: 8100: 8056: 7337: 6289: 5990:(1982). "The vacuum energy and large scale structure of the universe". 4844: 4475: 3884:
The Inflationary Universe: The quest for a new theory of cosmic origins
3728: 3111: 2951: 2793: 2764: 2581: 2485: 2044: 1649:
of metastable false vacuum causing an expanding bubble of true vacuum.
1240: 1200: 932: 480: 9818: 9222:; Nomura, Yasunori (2014). "Inflationary paradigm after Planck 2013". 7699: 7644: 6396: 5754:
The Inflationary Universe: The quest for a new theory of cosmic origin
5007: 4583:
Misner, Charles; Thorne, Kip S. & Wheeler, John Archibald (1973).
3822: 2073:
The Inflationary Universe: The quest for a new theory of cosmic origin
9309: 9215: 7981: 7387:. 10th International Symposium on Particles, Strings, and Cosmology. 6121: 5747: 4958: 4915: 3877: 3011: 3006: 2970: 2853: 2777: 2234: 2142: 1611: 1425:
necessary for a flat universe (that is, a universe whose large scale
1356: 838: 745: 714: 707: 671: 430: 20: 8845: 7739: 7001: 3932:"Laureates of the Breakthrough Prize in Fundamental Physics in 2012" 2758:, as a dynamical variable. The minimal coupling between torsion and 1974:{\displaystyle n_{s}=1-{\frac {2}{N}},\qquad r={\frac {12}{N^{2}}}.} 1633:
The universe could have been spontaneously created from nothing (no
8986: 8789:
Battefeld, Thorsten; Watson, Scott (2006). "String Gas Cosmology".
8697:
Lehners, Jean-Luc (2 June 2009). "Ekpyrotic and cyclic cosmology".
7898: 7853: 7563:
Ijjas, Anna; Steinhardt, Paul J.; Loeb, Abraham (17 January 2017).
6799: 6622: 6542: 6230: 5592: 5565: 5404: 4183: 3814: 3383:{\displaystyle \ {\tfrac {\mathrm {\phi } }{m_{\mathsf {Plk}}}}\ ,} 3144: 2797: 2600:
and the following inflation. Vilenkin put forth one such scenario.
2423: 2405: 2382:
Other potentially corroborating measurements are expected from the
1560: 1452: 1426: 1306: 1257: 1208: 915: 903: 817:
Inflation may have provided this initial impulse. According to the
795: 785: 753: 738: 648: 163: 65: 58: 9238: 9173: 9110: 8919: 8711: 8658: 8611: 8556: 7958:
Page, Don N. (1983). "Inflation does not explain time asymmetry".
7186: 7115: 6834: 6709: 5621: 5299: 4315: 4258: 2796:. The Universe passes through the Big Crunch and emerges in a hot 2784:
are also considered adjuncts to inflation. These models solve the
9032:
The Road to Reality: A Complete Guide to the Laws of the Universe
8000:
The Road to Reality: A Complete Guide to the Laws of the Universe
7797:
Hartle, J.; Hawking, S. (1983). "Wave function of the universe".
4398:. The Very Early Universe: Proceedings of the Nuffield Workshop, 4299:
Melia, Fulvio; et al. (2009). "The Cosmological Spacetime".
3031: 2705: 2645: 2625: 2390:(radiation emitted and absorbed from neutral hydrogen before the 1388: 884: 857:. These problems arise from the notion that to look like it does 8336: 7543:
Beyond the Big Bang: Competing Scenarios For An Eternal Universe
4693: 4047:
Crane, Leah (29 June 2024). "How big is the universe, really?".
3853:. Cosmic Microwave Background @50. Princeton, NJ. Archived from 2228:
Inflation predicts that the observed perturbations should be in
7842: 7545:(Unpublished manuscript). The Frontiers Collectuion. Springer. 7442:
Vilenkin, Alexander (1983). "Birth of Inflationary Universes".
6977:
Exploring the Universe: Contents and structures of the universe
5445:
seminar, "10 seconds after the Big Bang", 23 January 1980. See
4716:
Misner, Charles W.; Leach, P G L (1969). "Mixmaster universe".
2343: 1642: 1352: 1253: 772:
for their invention and development of inflationary cosmology.
9094:(2013). "Inflationary paradigm in trouble after Planck 2013". 8282:
Linde, Andrei; Fischler, W. (2005). "Prospects of Inflation".
8514:"Big Bang or Big Bounce?: New theory on the universe's birth" 2985:"cosmic inflation is on a stronger footing than ever before". 2438:(LHC). Other models of inflation relied on the properties of 1634: 1395:
chaotic, could lead to statistical homogeneity and isotropy.
1252:
rapidly as the Universe expands since the wavelength of each
1227:. If the Universe was only hot enough to form such particles 1215:. Inflation also dilutes exotic heavy particles, such as the 888: 8843: 6471:
Tegmark, Max (2005). "What does inflation really predict?".
5566:"Dynamics of the universe and spontaneous symmetry breaking" 3147:, because the spectrum has more power at longer wavelengths. 2700:
opened the way for reconciling inflation and string theory.
2446:
for the hot early universe, the particle physics is largely
1247:
enormous factor during inflation. In an expanding universe,
910:
are hypothesized to arise from cosmic inflation, a phase of
48: 7057: 6916: 4836:
Galapagos World Summit on Physics Beyond the Standard Model
4221:"Our baby universe likely expanded rapidly, study suggests" 3987: 3161: 1638: 9770: 7882:(20 April 2018). "A smooth exit from eternal inflation?". 6796:"Cosmic inflation: Confidence lowered for Big Bang signal" 5104:"Cosmological production of superheavy magnetic monopoles" 2334:
of the background radiation could provide evidence of the
2181:. This analysis shows that the Universe is flat to within 8457:
Dvali, Gia; Henry Tye, S. -H. (1998). "Brane Inflation".
6942:"Speck of interstellar dust obscures glimpse of Big Bang" 6128:(1982). "Fluctuations in the new inflationary universe". 5905:
Gravity: An introduction to Einstein's general relativity
5786:
Adventures in Order and Chaos: A scientific autobiography
2525: 2496:
models and the competing new inflation models are called
2339: 6913:"Gravitational waves from early universe remain elusive" 3867:— collated remarks from the third day of the conference. 2026:
suggested that an exponential expansion could eliminate
1905:
in the Einstein frame. This results in the observables:
1211:
field and the only significant inhomogeneities are tiny
8047: 8045: 6164: 5341:
Journal of Experimental and Theoretical Physics Letters
4838:. 2nd World Summit: Physics Beyond the Standard Model. 4534: 3954: 821:
that describe the dynamics of an expanding universe, a
5154: 5153:
Yao, W.-M.; et al. (Particle Data Group) (2006).
4458: 3496: 3346: 3267: 3211: 3194: 2832:). Extra dimensions appear as a frequent component of 737:
thought to be responsible for inflation is called the
9735: 8902: 5064: 5027: 3584: 3556: 3469: 3424: 3396: 3341: 3302: 3256: 3183: 2719: 2365: 1911: 1794: 1694: 1505:
are not actually fundamental forces but arise due to
1479:
would have been produced if various theories that go
996: 9041:(1989). "Difficulties with Inflationary Cosmology". 8966:
Kamali, Vahid; Brandenberger, Robert (11 May 2020).
8042: 7414:; Hawking, Stephen W.; Siklos, S.T.C., eds. (1983). 7410: 6283: 4647:
LemaĂźtre, Georges (1933). "The expanding universe".
4390:
Guth, Alan (21 June – 9 July 1982) . Gibbons, G.W.;
1325:, the Universe would have to have started from very 865:, or "special", initial conditions at the Big Bang. 9704:
WMAP Bolsters Case for Cosmic Inflation, March 2006
9148: 9085: 8965: 8539: 8138: 7562: 7478: 4765:. Philadelphia, PA: American Philosophical Society. 3710:
Origins: Fourteen Billion Years of Cosmic Evolution
3322:is the potential, and the equations are written in 2893:than its present value, effectively increasing the 1153:This exponentially expanding spacetime is called a 9583:Many Worlds in One: The search for other universes 5849: 5751: 5359: 4383: 3924: 3881: 3708:Tyson, Neil deGrasse and Donald Goldsmith (2004), 3614: 3570: 3542: 3451: 3410: 3382: 3314: 3288: 3242: 2930:"inflation isn't falsifiable, it's falsified. ... 2704:suggests that inflation arises from the motion of 2422:In Guth's early proposal, it was thought that the 2371: 1973: 1894: 1774: 1142: 9409:. Contemporary Concepts in Physics. Vol. 5. 9157:(2014). "Inflationary schism after Planck 2013". 8741: 7472: 6660:Grant, Andrew (2019). "Five years after BICEP2". 5247:Monthly Notices of the Royal Astronomical Society 4364: 4245:Monthly Notices of the Royal Astronomical Society 3914:"The Medallists: A list of past Dirac Medallists" 3796: 3794: 3792: 3721: 3463:. While for a single term, such as the mass term 3143:This is known as a "red" spectrum, in analogy to 2691: 2649:other Big Bang theories with no inflation phase. 9831: 9633:Was Cosmic Inflation The 'Bang' Of The Big Bang? 9494:Cosmological Inflation and Large-Scale Structure 9214: 5957: 5609:"Cosmological Inflation: A Personal Perspective" 4793:Ancient Light: Our Changing View of the Universe 4778:General Relativity: An Einstein centenary survey 4402:(illustrated, reprint ed.). Cambridge, UK: 3747: 3745: 3743: 3741: 3739: 1313:are seen today; he found that a positive-energy 9638: 9079: 8788: 8051: 7418:. Cambridge University Press. pp. 251–66. 7416:"Natural Inflation," in The Very Early Universe 6999: 6761:"Astronomers hedge on Big Bang detection claim" 4649:Annales de la SociĂ©tĂ© Scientifique de Bruxelles 4521:Much of the historical context is explained in 1572:initial theoretical prediction of dark energy. 794:discovered that light from remote galaxies was 9356: 8846:"String Gas Cosmology and Structure Formation" 8456: 8395:Journal of Cosmology and Astroparticle Physics 8193: 7868: 7836: 7737: 7682: 7406: 7404: 7265:Journal of Cosmology and Astroparticle Physics 7225:Linde, Andrei D. (1983). "Chaotic inflation". 6878:"Study confirms criticism of Big Bang finding" 6474:Journal of Cosmology and Astroparticle Physics 6022:for a popular description of the workshop, or 4882:"Magnetic monopoles in unified gauge theories" 4100:Using tiny particles to answer giant questions 3876: 3800: 3789: 3550:the slow roll conditions can be satisfied for 2771: 2500:models. In this situation, the predictions of 2398:on Earth and in the galaxy will be too great. 8281: 8248: 8083: 7874: 7796: 7492:. Vol. 304, no. 4. pp. 36–43. 7379: 7165: 6904: 6655: 6653: 4014:"Space Ripples Reveal Big Bang's Smoking Gun" 3983:"NASA Technology Views Birth of the Universe" 3974: 3761:. Vol. 304, no. 4. pp. 18–25. 3736: 2800:phase. In this sense they are reminiscent of 2724:When investigating the effects the theory of 2434:scale, which is currently under study at the 2022:and perhaps solve the horizon problem, while 1190: 608: 7437: 7435: 6930: 6866: 6813: 6787: 6749: 6686: 5850:Albrecht, Andreas; Steinhardt, Paul (1982). 4876: 4784: 4775: 4673: 4396:Phase transitions in the very early universe 4002: 2736: 1992: 1486:Stable magnetic monopoles are a problem for 1466: 686:. Starobinsky, Guth, and Linde won the 2014 9407:Particle Physics and Inflationary Cosmology 8011: 7627: 7401: 7261: 6466: 6464: 6462: 6083: 5845: 5843: 5782: 5706: 5611:. In Contopoulos, G.; Patsis, P.A. (eds.). 5526: 5337: 4715: 4143:The Astrophysical Journal Supplement Series 3946: 3906: 3289:{\displaystyle \ \eta ={\tfrac {V''}{V}}\ } 3173:Technically, these conditions are that the 2407: 2169:Inflation is a mechanism for realizing the 2084:The bubble collision problem was solved by 1618:and collaborators to study the fate of the 883:, which, by analogy with the more familiar 861:, the Universe must have started from very 717:is distributed evenly, why the universe is 9510: 9491: 9447:Progress of Theoretical Physics Supplement 9445:(2006). "Inflation and String Cosmology". 9382: 9044:Annals of the New York Academy of Sciences 7738:Aguirre, Anthony; Gratton, Steven (2002). 7533: 7153: 6650: 6645:cosmic microwave background#Low multipoles 6420: 5938:harvp error: no target: CITEREFLinde1990 ( 5508: 5219:. New York, NY: Basic Books. p. 185. 4442: 4353: 3751: 3090: 2676: 2569:showed that eternal inflation is generic. 2492:: For this reason, these are often called 976:spacetime is something like an inside-out 615: 601: 47: 9680: 9665: 9644: 9524: 9458: 9414: 9237: 9172: 9109: 9034:. London, UK: Vintage Books. p. 755. 9003: 8985: 8918: 8863: 8851:International Journal of Modern Physics A 8804: 8765: 8710: 8657: 8641: 8610: 8594: 8555: 8472: 8425: 8407: 8352: 8297: 8258: 8251:A Status Review of Inflationary Cosmology 8209: 8154: 8099: 7897: 7757: 7698: 7643: 7432: 7392: 7336: 7277: 7185: 7114: 7019: 6984: 6833: 6708: 6604: 6541: 6486: 6416: 6414: 6370: 6307: 6279: 6277: 6275: 6273: 6229: 5742: 5740: 5620: 5591: 5492: 5403: 5298: 5267: 5239: 5172: 4843: 4676:Relativity, Thermodynamics, and Cosmology 4591:. San Francisco: W. H. Freeman. pp.  4474: 4358: 4314: 4302:International Journal of Modern Physics D 4275: 4257: 4173: 4155: 3940:Breakthrough Prize in Fundamental Physics 3727: 3672: 2350:was between 0.15 and 0.27 (rejecting the 2116: 1563:with a uniform density of matter. Later, 1169:equal in magnitude to its energy density 1123: 1096: 1041: 770:Breakthrough Prize in Fundamental Physics 9699:Guth's logbook showing the original idea 9576: 9557: 9282:Inflationary cosmology after Planck 2013 8511: 7441: 7218: 6459: 5986: 5945: 5909:(1st ed.). Addison Wesley. p.  5840: 5282: 5101: 4928: 4790: 4646: 4615: 4609: 4446: 4131: 4129: 4127: 4067:The Coded Universe: The path to eternity 3842: 3840: 1996: 1652: 897: 668:Landau Institute for Theoretical Physics 9600: 9332: 9210: 9208: 9037: 9026: 8696: 6936: 6872: 6755: 6592:Astrophysical Journal Supplement Series 6588: 6470: 6354: 6043: 5606: 5563: 5514: 5457: 5455: 4957: 4522: 4135: 4008: 2816: 2164: 2064: 9832: 9383:Kolb, Edward; Turner, Michael (1988). 8391: 7098: 6974: 6910: 6411: 6270: 6120: 5900: 5894: 5737: 4578: 4576: 3980: 3846: 3615:{\displaystyle \ m_{\mathsf {Plk}}\ ,} 3600: 3597: 3594: 3515: 3512: 3509: 3440: 3437: 3434: 3365: 3362: 3359: 2453: 2079: 963:in the Universe have to add up to the 879:An expanding universe generally has a 9441: 9401: 9276: 8061:Endless Universe: Beyond the Big Bang 7385:Challenges for inflationary cosmology 7224: 6659: 6348: 6211: 6209: 6026:, eds Gibbon, Hawking, & Siklos, 5934: 5809: 5803: 5746: 5564:Kazanas, Demosthenes (October 1980). 4760: 4298: 4237: 4124: 4119:Faster than light#Universal expansion 4046: 3952: 3837: 3452:{\displaystyle \ m_{\mathsf {Plk}}\ } 2587: 2401: 2359:suggested, with 95% confidence, that 9674: 9659: 9492:Liddle, Andrew; Lyth, David (2000). 9308: 9205: 7957: 7617:from the original on 9 October 2022. 7552:from the original on 9 October 2022. 7523:from the original on 9 October 2022. 7316: 7070: 6793: 6019: 5669: 5504:from the original on 9 October 2022. 5461: 5452: 5446: 5436: 5211: 5142:from the original on 9 October 2022. 5017:from the original on 9 October 2022. 4833: 4791:Lightman, Alan P. (1 January 1993). 4389: 4103:(audio transcript). Science Friday. 4091: 4063: 3712:, W. W. Norton & Co., pp. 84–85. 3571:{\displaystyle \ \mathrm {\phi } \ } 3411:{\displaystyle \ \mathrm {\phi } \ } 3106:Perturbations can be represented by 3094: 2969:Counter-arguments were presented by 2543: 2068: 1219:predicted by many extensions to the 1157:, and to sustain it there must be a 7536:"The Cyclic Theory of the Universe" 6911:Clavin, Whitney (30 January 2015). 6819: 6692: 6525: 6215: 5613:Chaos in Astronomy: Conference 2007 5387: 5152: 4573: 4070:. Dorrance Publishing. p. 65. 2660: 2417:(more unsolved problems in physics) 2104:(Guth's model then became known as 1983: 1785:which corresponds to the potential 1398: 692:large-scale structure of the cosmos 13: 9709:NASA March 2006 WMAP press release 9065:10.1111/j.1749-6632.1989.tb50513.x 7631:General Relativity and Gravitation 7479:Steinhardt, Paul J. (April 2011). 7000:Loeb, A.; Zaldarriaga, M. (2004). 6206: 2720:Inflation and loop quantum gravity 2688:less than the scale of inflation. 2665:Another kind of inflation, called 2232:with each other (these are called 1812: 1521:magnitude. Though, as cosmologist 1332: 1128: 1080: 1025: 343:2dF Galaxy Redshift Survey ("2dF") 16:Theory of rapid universe expansion 14: 9871: 9626: 9560:Physical Foundations of Cosmology 8512:Bojowald, Martin (October 2008). 8316:10.1238/Physica.Topical.117a00056 8249:Brandenberger, Robert H. (2001). 7592:10.1038/scientificamerican0217-32 7506:10.1038/scientificamerican0411-36 6979:. XXXIXth Rencontres de Moriond. 3981:Clavin, Whitney (17 March 2014). 3847:HloĆŸek, RenĂ©e (10–12 June 2015). 3775:10.1038/scientificamerican0411-36 3032:Three-torus model of the universe 2478:Linde proposed a theory known as 2342:) is correct. In March 2014, the 1371:of Georges LemaĂźtre, the related 837:phase was originally proposed by 558:Timeline of cosmological theories 323:Cosmic Background Explorer (COBE) 9817: 9805: 9793: 9781: 9769: 9757: 9745: 9607:Principles of Physical Cosmology 9270: 9142: 9020: 8959: 8896: 8837: 8782: 8735: 8690: 8635: 8588: 8533: 8505: 8450: 8385: 8330: 8275: 8242: 8187: 8132: 8077: 8005: 7951: 7939: 7930: 7790: 7740:"Steady-State Eternal Inflation" 7731: 7676: 7621: 7556: 7527: 7373: 7310: 7255: 7159: 4817:"WMAP – Content of the Universe" 4698:Reissued (1987) New York: Dover 4277:10.1111/j.1365-2966.2007.12499.x 3662:"First Second of the Big Bang". 3636: 3626: 3329: 3002:Conservation of angular momentum 2877:Cosmological models employing a 2788:through an expanding epoch well 2225:to scalar ratio near 0.1 . 1588:in General Relativity. Misner's 970: 582: 571: 570: 7147: 7092: 7064: 6993: 6968: 6794:Amos, Jonathan (19 June 2014). 6637: 6582: 6519: 6158: 6114: 6077: 6037: 6012: 5980: 5951: 5927: 5776: 5700: 5663: 5600: 5557: 5520: 5381: 5331: 5233: 5205: 5146: 5095: 5058: 5021: 4951: 4922: 4870: 4827: 4809: 4769: 4754: 4709: 4667: 4640: 4528: 4515: 4452: 4435: 4347: 4292: 4231: 4213: 4111: 4057: 4040: 3167: 3150: 3137: 3100: 3069: 3060: 3022:Non-minimally coupled inflation 2836:models and other approaches to 1944: 1795: 1595: 1413:is sometimes called one of the 338:Sloan Digital Sky Survey (SDSS) 191:Future of an expanding universe 9855:Physical cosmological concepts 9610:. Princeton University Press. 9562:. Cambridge University Press. 9558:Mukhanov, Viatcheslav (2005). 9368:. Cambridge University Press. 9256:10.1016/j.physletb.2014.03.020 9191:10.1016/j.physletb.2014.07.012 9128:10.1016/j.physletb.2013.05.023 8906:Journal of High Energy Physics 8629:10.1016/j.physletb.2010.09.056 8340:Journal of High Energy Physics 7885:Journal of High Energy Physics 7173:Journal of High Energy Physics 7133:10.1016/j.physletb.2013.10.042 7071:Choi, Charles (29 June 2012). 6727:10.1103/PhysRevLett.112.241101 4740:10.1088/1751-8113/41/15/155201 3870: 3715: 3702: 3655: 3050: 2692:Inflation and string cosmology 2504:are thought to be invalid, as 1805: 1799: 1363:and thus have never come into 1296: 1038: 1016: 700:galaxy formation and evolution 553:History of the Big Bang theory 349:Wilkinson Microwave Anisotropy 1: 9543:10.1016/S0370-1573(98)00128-8 8937:10.1088/1126-6708/2008/09/082 8721:10.1016/j.physrep.2008.06.001 8491:10.1016/S0370-2693(99)00132-X 8436:10.1088/1475-7516/2003/10/013 8371:10.1088/1126-6708/2004/11/063 7296:10.1088/1475-7516/2006/05/016 7170:(17 March 2014). "Agravity". 7038:10.1103/PhysRevLett.92.211301 6505:10.1088/1475-7516/2005/04/001 6326:10.1103/PhysRevLett.96.111301 6034:, for a more detailed report. 5607:Kazanas, Demosthenes (2007). 4780:. Cambridge University Press. 3955:"BICEP2 2014 Results Release" 3649: 2958:Together with Anna Ijjas and 2900: 2889:in vacuum, is greater in the 2744: 2315:is that the amplitude of the 1626:. Like a metastable phase in 1538: 1507:spontaneous symmetry breaking 1447:Therefore, regardless of the 1419:cosmological constant problem 1417:coincidences (along with the 643:, is a theory of exponential 545:Discovery of cosmic microwave 196:Ultimate fate of the universe 8776:10.1016/0550-3213(89)90037-0 8036:10.1016/0550-3213(88)90008-9 7534:Steinhardt, Paul J. (2011). 7249:10.1016/0370-2693(83)90837-7 6822:Astronomy & Astrophysics 6529:Astronomy & Astrophysics 6218:Astronomy & Astrophysics 6108:10.1016/0370-2693(82)90541-X 6071:10.1016/0370-2693(82)90373-2 5834:10.1016/0370-2693(82)91219-9 5783:Contopoulos, George (2004). 5731:10.1016/0550-3213(81)90057-2 5694:10.1016/0370-2693(81)90805-4 5639:10.1007/978-3-540-75826-6_49 5551:10.1016/0370-2693(80)90670-X 5391:Astronomy & Astrophysics 5155:"Review of Particle Physics" 5089:10.1016/0370-2693(78)90232-0 4908:10.1016/0550-3213(74)90486-6 4795:. Harvard University Press. 4763:Gravitation and the Universe 3680:"2014 Astrophysics Citation" 2863: 2622:second law of thermodynamics 1267: 802:was previously predicted by 7: 9005:10.1103/PhysRevD.101.103512 7355:10.1103/PhysRevLett.78.1861 6852:10.1051/0004-6361/201425034 6647:for details and references. 6560:10.1051/0004-6361/201525898 6248:10.1051/0004-6361/201525830 6152:10.1103/PhysRevLett.49.1110 5881:10.1103/PhysRevLett.48.1220 5422:10.1051/0004-6361/201525898 5133:10.1103/PhysRevLett.43.1365 4678:. Oxford: Clarendon Press. 4406:(published 29 March 1985). 3960:National Science Foundation 2989: 2772:Ekpyrotic and cyclic models 2728:would have on cosmology, a 2614:first law of thermodynamics 2511:semiclassical approximation 2408:Unsolved problem in physics 2175:cosmic microwave background 1301:Inflation tries to resolve 887:caused by the curvature of 775: 712:cosmic microwave background 313:Black Hole Initiative (BHI) 10: 9876: 9301: 9280:(8 July – 2 August 2013). 8676:10.1103/PhysRevD.85.107502 8574:10.1103/PhysRevD.89.061302 8228:10.1103/PhysRevD.69.083515 8173:10.1103/PhysRevD.63.123501 8118:10.1103/PhysRevD.70.063528 7833:; See also Hawking (1998). 7776:10.1103/PhysRevD.65.083507 7717:10.1103/PhysRevD.67.083515 6389:10.1103/PhysRevD.74.123507 5363:Pisma Zh. Eksp. Teor. Fiz. 5317:10.1103/PhysRevD.89.083510 5240:de Sitter, Willem (1917). 5191:10.1088/0954-3899/33/1/001 5000:10.1103/PhysRevLett.44.631 4559:10.1088/0264-9381/15/2/008 4365:Barbara Sue Ryden (2003). 3668:. 2014. Discovery Science. 2981:and by Linde, saying that 2870: 2547: 2313:Cosmic Background Explorer 2120: 1656: 1599: 1533: 1402: 1336: 1191:Few inhomogeneities remain 872: 779: 684:Lebedev Physical Institute 76:Chronology of the universe 25:Inflation (disambiguation) 18: 9726:Our Mathematical Universe 8882:10.1142/S0217751X07037159 8823:10.1103/RevModPhys.78.435 8792:Reviews of Modern Physics 7662:10.1007/s10714-005-0148-2 6445:10.1142/S0217732304014252 4761:Dicke, Robert H. (1970). 4619:Gravitation and Cosmology 4616:Weinberg, Steven (1971). 4493:10.1088/0264-9381/3/5/011 4394:; Siklos, S.T.C. (eds.). 4367:Introduction to cosmology 4333:10.1142/s0218271809015746 2737:Alternatives and adjuncts 2256:, especially the ongoing 2007:gravitational singularity 2001:The physical size of the 1993:Early inflationary models 1481:beyond the Standard Model 1473:magnetic monopole problem 1467:Magnetic-monopole problem 1287:radiation dominated phase 1283:electromagnetic radiation 875:Expansion of the universe 868: 845:, that were predicted by 800:expansion of the universe 782:Expansion of the universe 169:Expansion of the universe 9714:22 November 2013 at the 9620:– via archive.org. 9596:– via archive.org. 7821:10.1103/PhysRevD.28.2960 7466:10.1103/PhysRevD.27.2848 7381:Brandenberger, Robert H. 7154:Liddle & Lyth (2000) 6672:10.1063/PT.6.3.20190326a 6431:(13 & 16): 967–982. 6424:Modern Physics Letters A 5988:Mukhanov, Viatcheslav F. 5923:– via archive.org. 5772:– via archive.org. 5052:10.1103/PhysRevD.21.3295 4443:Kolb & Turner (1988) 4354:Kolb & Turner (1988) 3888:. Basic Books. pp.  3665:How The Universe Works 3 3091:Kolb & Turner (1988) 3043: 2710:Dirac–Born–Infeld action 2462:. In new inflation, the 2258:Sloan Digital Sky Survey 1614:techniques developed by 1561:three-dimensional sphere 1461:Big Bang nucleosynthesis 978:Schwarzschild black hole 333:Planck space observatory 119:Gravitational wave (GWB) 9690:The Growth of Inflation 9366:The Very Early Universe 9339:A Brief History of Time 7936:Hawking (1998), p. 129. 7916:10.1007/JHEP04(2018)147 7845:University of Cambridge 7565:"Pop Goes the Universe" 7541:. In Vaas, Rudy (ed.). 7324:Physical Review Letters 7317:Lyth, David H. (1997). 7204:10.1007/JHEP06(2014)080 7007:Physical Review Letters 6844:2016A&A...586A.133P 6696:Physical Review Letters 6552:2016A&A...594A..20P 6295:Physical Review Letters 6240:2016A&A...594A..13P 6200:10.1103/PhysRevD.28.679 6131:Physical Review Letters 6024:The Very Early Universe 5860:Physical Review Letters 5494:10.1103/PhysRevD.23.347 5414:2016A&A...594A..20P 5112:Physical Review Letters 5102:Preskill, John (1979). 4978:(10): 631–635, Erratum 4971:Physical Review Letters 4719:Physical Review Letters 4622:. John Wiley. pp.  4462:Physical Review Letters 4136:Spergel, D. N. (2007). 3953:Staff (17 March 2014). 3114:. Each Fourier mode is 2879:variable speed of light 2873:Variable speed of light 2677:Relation to dark energy 2388:21 centimeter radiation 2336:gravitational radiation 2123:Primordial fluctuations 1669:Einstein–Hilbert action 1584:to analyze the chaotic 186:Inhomogeneous cosmology 9731:"Chapter 5: Inflation" 5462:Guth, Alan H. (1981). 4238:Melia, Fulvio (2008). 3616: 3572: 3544: 3453: 3412: 3384: 3316: 3296:are both small, where 3290: 3250:and second derivative 3244: 3175:logarithmic derivative 2763:immediately after the 2730:loop quantum cosmology 2698:flux compactifications 2502:effective field theory 2440:Grand Unified Theories 2373: 2291:=0.968 ± 0.006, and a 2206:nearly-scale-invariant 2202:gravitational collapse 2171:cosmological principle 2117:Effects of asymmetries 2077: 2014: 1975: 1896: 1776: 1488:Grand Unified Theories 1349:cosmological principle 1144: 919: 847:grand unified theories 660:theoretical physicists 637:cosmological inflation 23:. For other uses, see 9845:Concepts in astronomy 9840:Inflation (cosmology) 6876:(22 September 2014). 5901:Hartle, J.B. (2003). 5571:Astrophysical Journal 4674:R. C. Tolman (1934). 4538:Astrophysical Journal 4105:National Public Radio 4064:Saul, Ernest (2013). 3936:breakthroughprize.org 3803:Philosophy of Science 3617: 3573: 3545: 3454: 3413: 3385: 3317: 3315:{\displaystyle \ V\ } 3291: 3245: 2871:Further information: 2858:generically intersect 2593:will exist, forever. 2436:Large Hadron Collider 2374: 2209:Gaussian random field 2088:and independently by 2061: 2000: 1976: 1897: 1777: 1663:In the Soviet Union, 1659:Starobinsky inflation 1653:Starobinsky inflation 1628:statistical mechanics 1553:cosmological constant 1543:In the early days of 1492:electromagnetic force 1449:shape of the universe 1281:particles, including 1159:cosmological constant 1145: 940:cosmological constant 912:accelerated expansion 901: 893:accelerating universe 829:in a positive-energy 277:Large-scale structure 255:Shape of the universe 9635:, by Alan Guth, 1997 9477:10.1143/PTPS.163.295 5269:10.1093/mnras/78.1.3 5217:Before the Beginning 5160:Journal of Physics G 4240:"The Cosmic Horizon" 4198:on 24 September 2010 3684:The Kavli Foundation 3582: 3554: 3467: 3422: 3418:is the inflaton and 3394: 3339: 3324:reduced Planck units 3300: 3254: 3181: 3116:normally distributed 3080:Grand Unified Theory 2846:Robert Brandenberger 2842:string gas cosmology 2817:String gas cosmology 2806:oscillatory universe 2802:Richard Chace Tolman 2726:loop quantum gravity 2606:no-boundary proposal 2464:slow-roll conditions 2363: 2165:Observational status 2135:Cambridge University 2130:Viatcheslav Mukhanov 1909: 1792: 1692: 1647:quantum fluctuations 1624:quantum field theory 1575:In the early 1970s, 1377:Richard Chase Tolman 1373:oscillatory universe 1317:would, according to 1291:parametric resonance 1213:quantum fluctuations 994: 944:cosmological horizon 881:cosmological horizon 725:have been observed. 696:Quantum fluctuations 589:Astronomy portal 547:background radiation 524:List of cosmologists 9850:Astronomical events 9535:1999PhR...314....1L 9469:2006PThPS.163..295L 9425:2005hep.th....3203L 9248:2014PhLB..733..112G 9183:2014PhLB..736..142I 9151:Steinhardt, Paul J. 9120:2013PhLB..723..261I 9088:Steinhardt, Paul J. 9057:1989NYASA.571..249P 8996:2020PhRvD.101j3512K 8929:2008JHEP...09..082L 8874:2007IJMPA..22.3621B 8815:2006RvMP...78..435B 8758:1989NuPhB.316..391B 8668:2012PhRvD..85j7502P 8621:2010PhLB..694..181P 8566:2014PhRvD..89f1302B 8519:Scientific American 8483:1999PhLB..450...72D 8418:2003JCAP...10..013K 8363:2004JHEP...11..063B 8308:2005PhST..116...56B 8269:2001hep.ph....1119B 8220:2004PhRvD..69h3515M 8165:2001PhRvD..63l3501M 8110:2004PhRvD..70f3528A 8053:Steinhardt, Paul J. 8028:1988NuPhB.298..789H 7974:1983Natur.304...39P 7908:2018JHEP...04..147H 7813:1983PhRvD..28.2960H 7768:2002PhRvD..65h3507A 7709:2003PhRvD..67h3515A 7654:2005GReGr..37.1671C 7584:2017SciAm.316b..32I 7572:Scientific American 7498:2011SciAm.304d..36S 7489:Scientific American 7458:1983PhRvD..27.2848V 7347:1997PhRvL..78.1861L 7288:2006JCAP...05..016A 7241:1983PhLB..129..177L 7196:2014JHEP...06..080S 7168:Strumia, Alessandro 7125:2013PhLB..727..234S 7078:Scientific American 7030:2004PhRvL..92u1301L 6940:(30 January 2015). 6719:2014PhRvL.112x1101B 6615:2003ApJS..148..175S 6497:2005JCAP...04..001T 6437:2004MPLA...19..967S 6381:2006PhRvD..74l3507T 6318:2006PhRvL..96k1301B 6286:Steinhardt, Paul J. 6192:1983PhRvD..28..679B 6170:Steinhardt, Paul J. 6144:1982PhRvL..49.1110G 6100:1982PhLB..117..175S 6063:1982PhLB..115..295H 6006:1982JETP...56..258M 5993:Soviet Physics JETP 5974:1981JETPL..33..532M 5890:on 30 January 2012. 5873:1982PhRvL..48.1220A 5826:1982PhLB..108..389L 5723:1981NuPhB.180..385E 5686:1981PhLB...99...66S 5631:2009ASSP....8..485K 5584:1980ApJ...241L..59K 5543:1980PhLB...91...99S 5485:1981PhRvD..23..347G 5375:1979ZhPmR..30..719S 5354:1979JETPL..30..682S 5309:2014PhRvD..89h3510H 5260:1917MNRAS..78....3D 5183:2006JPhG...33....1Y 5125:1979PhRvL..43.1365P 5081:1978PhLB...79..239Z 5044:1980PhRvD..21.3295E 4992:1980PhRvL..44..631G 4945:1974JETPL..20..194P 4900:1974NuPhB..79..276T 4854:2006hep.ph....8183R 4732:2008JPhA...41o5201A 4551:1998CQGra..15..331W 4485:1986CQGra...3..811K 4325:2009IJMPD..18.1889M 4268:2007MNRAS.382.1917M 4227:. 28 February 2012. 4166:2007ApJS..170..377S 3857:on 19 December 2017 3767:2011SciAm.304d..36S 3758:Scientific American 3753:Steinhardt, Paul J. 3489: 2830:Kaluza–Klein theory 2686:orders of magnitude 2634:quantum fluctuation 2618:energy conservation 2473:perturbation theory 2454:Fine-tuning problem 2230:thermal equilibrium 2102:slow-roll inflation 2080:Slow-roll inflation 1878: 1606:In the late 1970s, 1233:observable universe 924:observable universe 908:gravitational waves 819:Friedmann equations 810:from the theory of 804:Alexander Friedmann 704:structure formation 289:Structure formation 181:Friedmann equations 71:Age of the universe 35:Part of a series on 9387:. Addison-Wesley. 9385:The Early Universe 8063:. Broadway Books. 6947:The New York Times 6883:The New York Times 6766:The New York Times 6284:Boyle, Latham A.; 6174:Turner, Michael S. 4961:; Tye, S. (1980). 4369:. Addison-Wesley. 4019:The New York Times 3612: 3578:much greater than 3568: 3540: 3522: 3473: 3449: 3408: 3380: 3372: 3312: 3286: 3281: 3240: 3225: 3203: 3177:of the potential, 2914:As pointed out by 2844:, was proposed by 2602:Hartle and Hawking 2588:Initial conditions 2567:Alexander Vilenkin 2444:initial conditions 2402:Theoretical status 2369: 2015: 1971: 1892: 1864: 1772: 1665:Alexei Starobinsky 1616:Alexander Polyakov 1590:Mixmaster universe 1545:General Relativity 1477:magnetic monopoles 1442:spherical geometry 1431:Euclidean geometry 1381:Mixmaster universe 1319:general relativity 1311:magnetic monopoles 1217:magnetic monopoles 1205:curvature of space 1203:, and reduces the 1140: 920: 843:magnetic monopoles 812:general relativity 752:, Andrei Linde of 723:magnetic monopoles 676:Cornell University 664:Alexei Starobinsky 647:in the very early 645:expansion of space 629:physical cosmology 328:Dark Energy Survey 272:Large quasar group 41:Physical cosmology 9617:978-0-691-01933-8 9593:978-0-8090-9523-0 9586:. Hill and Wang. 9569:978-0-521-56398-7 9503:978-0-521-57598-0 9434:978-3-7186-0490-6 9394:978-0-201-11604-5 9375:978-0-521-31677-4 9349:978-0-553-38016-3 9325:978-0-201-32840-0 9291:978-0-19-872885-6 9225:Physics Letters B 9160:Physics Letters B 9097:Physics Letters B 8973:Physical Review D 8858:(21): 3621–3642. 8745:Nuclear Physics B 8645:Physical Review D 8598:Physics Letters B 8543:Physical Review D 8460:Physics Letters B 8197:Physical Review D 8142:Physical Review D 8087:Physical Review D 8070:978-0-7679-1501-4 8015:Nuclear Physics B 7807:(12): 2960–2975. 7800:Physical Review D 7745:Physical Review D 7686:Physical Review D 7452:(12): 2848–2855. 7445:Physical Review D 7425:978-0-521-31677-4 7383:(November 2004). 7331:(10): 1861–1863. 7228:Physics Letters B 7166:Salvio, Alberto; 7102:Physics Letters B 6956:on 1 January 2022 6915:(Press release). 6892:on 1 January 2022 6775:on 1 January 2022 6358:Physical Review D 6179:Physical Review D 6166:Bardeen, James M. 6138:(15): 1110–1113. 6087:Physics Letters B 6050:Physics Letters B 5920:978-0-8053-8662-2 5867:(17): 1220–1223. 5813:Physics Letters B 5769:978-0-201-14942-5 5710:Nuclear Physics B 5673:Physics Letters B 5648:978-3-540-75825-9 5530:Physics Letters B 5472:Physical Review D 5286:Physical Review D 5119:(19): 1365–1368. 5068:Physics Letters B 5038:(12): 3295–3298. 5031:Physical Review D 4887:Nuclear Physics B 4802:978-0-674-03363-4 4685:978-0-486-65383-9 4633:978-0-471-92567-5 4602:978-0-7167-0344-0 4376:978-0-8053-8912-8 4309:(12): 1889–1901. 4028:on 1 January 2022 4012:(17 March 2014). 3608: 3587: 3567: 3559: 3536: 3521: 3472: 3448: 3427: 3407: 3399: 3376: 3371: 3344: 3311: 3305: 3285: 3280: 3259: 3239: 3224: 3202: 3186: 2810:magnetic monopole 2696:The discovery of 2644:necessitates low 2598:quantum cosmology 2550:Eternal inflation 2544:Eternal inflation 2534:hierarchy problem 2481:chaotic inflation 2384:Planck spacecraft 2372:{\displaystyle r} 2317:quadrupole moment 2246:Planck spacecraft 2179:Planck spacecraft 2096:in a model named 2049:quantum tunneling 2045:bubble nucleation 2032:magnetic monopole 1966: 1939: 1854: 1765: 1709: 1175:equation of state 1094: 625: 624: 296: 295: 138: 137: 9867: 9822: 9821: 9810: 9809: 9808: 9798: 9797: 9796: 9786: 9785: 9784: 9774: 9773: 9762: 9761: 9760: 9750: 9749: 9741: 9686: 9684: 9671: 9669: 9656:by Andrew Liddle 9650: 9648: 9646:astro-ph/9901124 9621: 9597: 9573: 9554: 9528: 9507: 9488: 9462: 9438: 9418: 9398: 9379: 9358:Hawking, Stephen 9353: 9334:Hawking, Stephen 9329: 9296: 9295: 9274: 9268: 9267: 9241: 9220:Kaiser, David I. 9212: 9203: 9202: 9176: 9146: 9140: 9139: 9113: 9104:(4–5): 261–266. 9083: 9077: 9076: 9035: 9024: 9018: 9017: 9007: 8989: 8963: 8957: 8956: 8922: 8900: 8894: 8893: 8867: 8841: 8835: 8834: 8808: 8786: 8780: 8779: 8769: 8739: 8733: 8732: 8714: 8694: 8688: 8687: 8661: 8639: 8633: 8632: 8614: 8592: 8586: 8585: 8559: 8537: 8531: 8530: 8528: 8526: 8509: 8503: 8502: 8476: 8454: 8448: 8447: 8429: 8411: 8389: 8383: 8382: 8356: 8334: 8328: 8327: 8301: 8279: 8273: 8272: 8262: 8246: 8240: 8239: 8213: 8211:astro-ph/0310382 8191: 8185: 8184: 8158: 8136: 8130: 8129: 8103: 8081: 8075: 8074: 8049: 8040: 8039: 8009: 8003: 7993: 7982:10.1038/304039a0 7955: 7949: 7943: 7937: 7934: 7928: 7927: 7901: 7876:Hawking, Stephen 7872: 7866: 7865: 7863: 7861: 7847:) (2 May 2018). 7840: 7834: 7832: 7794: 7788: 7787: 7761: 7759:astro-ph/0111191 7735: 7729: 7728: 7702: 7680: 7674: 7673: 7647: 7625: 7619: 7618: 7616: 7569: 7560: 7554: 7553: 7551: 7540: 7531: 7525: 7524: 7522: 7485: 7476: 7470: 7469: 7439: 7430: 7429: 7412:Gibbons, Gary W. 7408: 7399: 7398: 7396: 7394:astro-ph/0411671 7377: 7371: 7370: 7369:on 29 June 2012. 7365:. Archived from 7340: 7314: 7308: 7307: 7281: 7279:astro-ph/0510441 7259: 7253: 7252: 7222: 7216: 7215: 7189: 7163: 7157: 7156:, pp. 42–43 7151: 7145: 7144: 7118: 7109:(1–3): 234–239. 7096: 7090: 7089: 7087: 7085: 7068: 7062: 7061: 7023: 7021:astro-ph/0312134 6997: 6991: 6990: 6988: 6986:astro-ph/0502188 6972: 6966: 6965: 6963: 6961: 6955: 6950:. Archived from 6934: 6928: 6927: 6925: 6923: 6908: 6902: 6901: 6899: 6897: 6891: 6886:. Archived from 6870: 6864: 6863: 6837: 6817: 6811: 6810: 6808: 6806: 6791: 6785: 6784: 6782: 6780: 6774: 6769:. Archived from 6759:(19 June 2014). 6753: 6747: 6746: 6712: 6690: 6684: 6683: 6657: 6648: 6641: 6635: 6634: 6608: 6606:astro-ph/0302209 6586: 6580: 6579: 6545: 6523: 6517: 6516: 6490: 6488:astro-ph/0410281 6468: 6457: 6456: 6418: 6409: 6408: 6374: 6372:astro-ph/0608632 6352: 6346: 6345: 6311: 6309:astro-ph/0507455 6281: 6268: 6267: 6233: 6213: 6204: 6203: 6162: 6156: 6155: 6118: 6112: 6111: 6094:(3–4): 175–178. 6081: 6075: 6074: 6041: 6035: 6016: 6010: 6009: 5984: 5978: 5977: 5955: 5949: 5943: 5931: 5925: 5924: 5908: 5898: 5892: 5891: 5889: 5883:. Archived from 5856: 5847: 5838: 5837: 5807: 5801: 5800: 5780: 5774: 5773: 5757: 5744: 5735: 5734: 5704: 5698: 5697: 5667: 5661: 5660: 5624: 5604: 5598: 5597: 5595: 5561: 5555: 5554: 5524: 5518: 5512: 5506: 5505: 5503: 5496: 5468: 5459: 5450: 5440: 5434: 5433: 5407: 5385: 5379: 5378: 5357: 5335: 5329: 5328: 5302: 5280: 5274: 5273: 5271: 5237: 5231: 5230: 5209: 5203: 5202: 5176: 5174:astro-ph/0601168 5150: 5144: 5143: 5141: 5108: 5099: 5093: 5092: 5062: 5056: 5055: 5025: 5019: 5018: 5016: 4967: 4955: 4949: 4948: 4926: 4920: 4919: 4878:'t Hooft, Gerard 4874: 4868: 4867: 4847: 4831: 4825: 4824: 4813: 4807: 4806: 4788: 4782: 4781: 4773: 4767: 4766: 4758: 4752: 4751: 4713: 4707: 4697: 4671: 4665: 4656: 4644: 4638: 4637: 4613: 4607: 4606: 4590: 4580: 4571: 4570: 4532: 4526: 4525:, ch 15–17. 4519: 4513: 4512: 4478: 4469:(5): 3195–3198. 4456: 4450: 4439: 4433: 4425: 4387: 4381: 4380: 4362: 4356: 4351: 4345: 4344: 4318: 4296: 4290: 4289: 4279: 4261: 4252:(4): 1917–1921. 4235: 4229: 4228: 4217: 4211: 4210: 4205: 4203: 4194:. Archived from 4177: 4159: 4157:astro-ph/0603449 4133: 4122: 4115: 4109: 4108: 4095: 4089: 4088: 4086: 4084: 4061: 4055: 4054: 4044: 4038: 4037: 4035: 4033: 4027: 4022:. Archived from 4006: 4000: 3999: 3997: 3995: 3978: 3972: 3971: 3969: 3967: 3950: 3944: 3943: 3928: 3922: 3921: 3910: 3904: 3903: 3887: 3874: 3868: 3866: 3864: 3862: 3850:CMB@50 day three 3844: 3835: 3834: 3798: 3787: 3786: 3749: 3734: 3733: 3731: 3719: 3713: 3706: 3700: 3699: 3697: 3695: 3686:. Archived from 3676: 3670: 3669: 3659: 3643: 3640: 3634: 3630: 3624: 3621: 3619: 3618: 3613: 3606: 3605: 3604: 3603: 3585: 3577: 3575: 3574: 3569: 3565: 3564: 3557: 3549: 3547: 3546: 3541: 3534: 3533: 3532: 3527: 3523: 3520: 3519: 3518: 3502: 3497: 3488: 3483: 3482: 3470: 3458: 3456: 3455: 3450: 3446: 3445: 3444: 3443: 3425: 3417: 3415: 3414: 3409: 3405: 3404: 3397: 3389: 3387: 3386: 3381: 3374: 3373: 3370: 3369: 3368: 3352: 3347: 3342: 3333: 3327: 3321: 3319: 3318: 3313: 3309: 3303: 3295: 3293: 3292: 3287: 3283: 3282: 3276: 3268: 3257: 3249: 3247: 3246: 3241: 3237: 3236: 3235: 3230: 3226: 3220: 3212: 3204: 3195: 3184: 3171: 3165: 3154: 3148: 3141: 3135: 3133: 3129: 3125: 3104: 3098: 3073: 3067: 3064: 3058: 3054: 3027:Nonlinear optics 2964:Planck satellite 2952:10 to the googol 2940:potential energy 2895:particle horizon 2714:string landscape 2667:hybrid inflation 2661:Hybrid inflation 2528:or 10 times the 2409: 2378: 2376: 2375: 2370: 2357: 2349: 2325:publication bias 2287: 2276: 2269: 2196: 2194: 2193: 2190: 2187: 2090:Andreas Albrecht 2020:particle horizon 1984:Monopole problem 1980: 1978: 1977: 1972: 1967: 1965: 1964: 1952: 1940: 1932: 1921: 1920: 1901: 1899: 1898: 1893: 1891: 1890: 1885: 1881: 1880: 1879: 1877: 1872: 1863: 1855: 1850: 1842: 1820: 1819: 1781: 1779: 1778: 1773: 1771: 1767: 1766: 1764: 1763: 1762: 1749: 1748: 1739: 1723: 1722: 1710: 1702: 1683:modified gravity 1682: 1565:Willem de Sitter 1433:, rather than a 1423:critical density 1411:flatness problem 1405:Flatness problem 1399:Flatness problem 1369:Phoenix universe 1303:several problems 1249:energy densities 1225:particle physics 1182: 1149: 1147: 1146: 1141: 1136: 1135: 1122: 1121: 1109: 1108: 1095: 1093: 1092: 1091: 1069: 1064: 1063: 1051: 1050: 1037: 1036: 1009: 1008: 965:critical density 855:flatness problem 808:Georges LemaĂźtre 730:particle physics 633:cosmic inflation 617: 610: 603: 587: 586: 585: 574: 573: 267:Galaxy formation 227:Lambda-CDM model 216: 215: 208:Components  90: 89: 51: 32: 31: 9875: 9874: 9870: 9869: 9868: 9866: 9865: 9864: 9860:1980 in science 9830: 9829: 9828: 9816: 9806: 9804: 9794: 9792: 9782: 9780: 9768: 9758: 9756: 9744: 9736: 9716:Wayback Machine 9695:, December 2004 9629: 9624: 9618: 9602:Peebles, P.J.E. 9594: 9570: 9513:Physics Reports 9504: 9435: 9395: 9376: 9350: 9326: 9304: 9299: 9292: 9275: 9271: 9213: 9206: 9147: 9143: 9084: 9080: 9036: 9025: 9021: 8964: 8960: 8901: 8897: 8842: 8838: 8787: 8783: 8740: 8736: 8699:Physics Reports 8695: 8691: 8640: 8636: 8593: 8589: 8538: 8534: 8524: 8522: 8510: 8506: 8467:(1999): 72–82. 8455: 8451: 8427:10.1.1.264.3396 8390: 8386: 8335: 8331: 8292:(T117): 40–48. 8285:Physica Scripta 8280: 8276: 8247: 8243: 8192: 8188: 8137: 8133: 8082: 8078: 8071: 8050: 8043: 8010: 8006: 7968:(5921): 39–41. 7956: 7952: 7944: 7940: 7935: 7931: 7873: 7869: 7859: 7857: 7841: 7837: 7795: 7791: 7736: 7732: 7681: 7677: 7626: 7622: 7614: 7567: 7561: 7557: 7549: 7538: 7532: 7528: 7520: 7483: 7477: 7473: 7440: 7433: 7426: 7409: 7402: 7378: 7374: 7315: 7311: 7260: 7256: 7223: 7219: 7164: 7160: 7152: 7148: 7097: 7093: 7083: 7081: 7069: 7065: 6998: 6994: 6973: 6969: 6959: 6957: 6938:Overbye, Dennis 6935: 6931: 6921: 6919: 6909: 6905: 6895: 6893: 6874:Overbye, Dennis 6871: 6867: 6818: 6814: 6804: 6802: 6792: 6788: 6778: 6776: 6757:Overbye, Dennis 6754: 6750: 6691: 6687: 6658: 6651: 6642: 6638: 6587: 6583: 6524: 6520: 6469: 6460: 6419: 6412: 6353: 6349: 6282: 6271: 6214: 6207: 6163: 6159: 6119: 6115: 6082: 6078: 6042: 6038: 6017: 6013: 5985: 5981: 5956: 5952: 5946:Mukhanov (2005) 5937: 5932: 5928: 5921: 5899: 5895: 5887: 5854: 5848: 5841: 5808: 5804: 5797: 5781: 5777: 5770: 5745: 5738: 5705: 5701: 5668: 5664: 5649: 5605: 5601: 5562: 5558: 5525: 5521: 5513: 5509: 5501: 5466: 5460: 5453: 5441: 5437: 5386: 5382: 5358: 5336: 5332: 5281: 5277: 5238: 5234: 5227: 5210: 5206: 5151: 5147: 5139: 5106: 5100: 5096: 5063: 5059: 5026: 5022: 5014: 4965: 4956: 4952: 4927: 4923: 4875: 4871: 4864: 4832: 4828: 4815: 4814: 4810: 4803: 4789: 4785: 4774: 4770: 4759: 4755: 4726:(15): 1071–74. 4714: 4710: 4686: 4672: 4668: 4664::641–680, 1997. 4659:Gen. Rel. Grav. 4645: 4641: 4634: 4614: 4610: 4603: 4595:–490, 525–526. 4581: 4574: 4533: 4529: 4520: 4516: 4457: 4453: 4447:Mukhanov (2005) 4440: 4436: 4414: 4388: 4384: 4377: 4363: 4359: 4352: 4348: 4297: 4293: 4236: 4232: 4219: 4218: 4214: 4201: 4199: 4175:10.1.1.472.2550 4134: 4125: 4116: 4112: 4107:. 3 April 2009. 4097: 4096: 4092: 4082: 4080: 4078: 4062: 4058: 4045: 4041: 4031: 4029: 4010:Overbye, Dennis 4007: 4003: 3993: 3991: 3979: 3975: 3965: 3963: 3951: 3947: 3930: 3929: 3925: 3912: 3911: 3907: 3900: 3875: 3871: 3860: 3858: 3845: 3838: 3799: 3790: 3750: 3737: 3720: 3716: 3707: 3703: 3693: 3691: 3690:on 14 July 2014 3678: 3677: 3673: 3661: 3660: 3656: 3652: 3647: 3646: 3641: 3637: 3631: 3627: 3593: 3592: 3588: 3583: 3580: 3579: 3560: 3555: 3552: 3551: 3528: 3508: 3507: 3503: 3498: 3495: 3491: 3490: 3484: 3478: 3477: 3468: 3465: 3464: 3433: 3432: 3428: 3423: 3420: 3419: 3400: 3395: 3392: 3391: 3358: 3357: 3353: 3348: 3345: 3340: 3337: 3336: 3334: 3330: 3301: 3298: 3297: 3269: 3266: 3255: 3252: 3251: 3231: 3213: 3210: 3206: 3205: 3193: 3182: 3179: 3178: 3172: 3168: 3155: 3151: 3142: 3138: 3131: 3127: 3123: 3105: 3101: 3074: 3070: 3065: 3061: 3055: 3051: 3046: 3041: 2997:Brane cosmology 2992: 2979:Yasunori Nomura 2944:Paul Steinhardt 2903: 2885:, denoting the 2875: 2869: 2838:quantum gravity 2819: 2786:horizon problem 2774: 2752:Einstein–Cartan 2747: 2739: 2722: 2702:Brane inflation 2694: 2679: 2663: 2590: 2563:Paul Steinhardt 2552: 2546: 2515:quantum gravity 2506:renormalization 2456: 2420: 2419: 2414: 2411: 2404: 2364: 2361: 2360: 2355: 2352:null hypothesis 2347: 2290: 2285: 2279: 2274: 2272: 2267: 2191: 2188: 2185: 2184: 2182: 2167: 2141:; Starobinsky; 2139:Stephen Hawking 2125: 2119: 2094:Paul Steinhardt 2082: 1995: 1986: 1960: 1956: 1951: 1931: 1916: 1912: 1910: 1907: 1906: 1886: 1873: 1868: 1859: 1846: 1841: 1837: 1833: 1826: 1822: 1821: 1815: 1811: 1793: 1790: 1789: 1758: 1754: 1750: 1744: 1740: 1738: 1731: 1727: 1718: 1714: 1701: 1693: 1690: 1689: 1673: 1661: 1655: 1604: 1598: 1586:BKL singularity 1557:static solution 1551:introduced the 1549:Albert Einstein 1541: 1536: 1469: 1407: 1401: 1345:horizon problem 1341: 1339:Horizon problem 1335: 1333:Horizon problem 1299: 1285:, starting the 1270: 1237:no hair theorem 1197:inhomogeneities 1193: 1178: 1155:de Sitter space 1131: 1127: 1117: 1113: 1104: 1100: 1087: 1083: 1073: 1068: 1059: 1055: 1046: 1042: 1032: 1028: 1004: 1000: 995: 992: 991: 973: 914:just after the 902:History of the 877: 871: 851:horizon problem 788: 780:Main articles: 778: 758:Paul Steinhardt 621: 583: 581: 563: 562: 549: 546: 539: 537:Subject history 529: 528: 520: 365: 357: 356: 353: 350: 308: 298: 297: 260:Galaxy filament 213: 201: 200: 152: 147:Expansion  140: 139: 124:Microwave (CMB) 103:Nucleosynthesis 87: 28: 17: 12: 11: 5: 9873: 9863: 9862: 9857: 9852: 9847: 9842: 9827: 9826: 9814: 9802: 9790: 9778: 9766: 9754: 9734: 9733: 9718: 9706: 9701: 9696: 9687: 9682:hep-th/0311040 9672: 9667:hep-ph/0309238 9657: 9651: 9636: 9628: 9627:External links 9625: 9623: 9622: 9616: 9598: 9592: 9578:Vilenkin, Alex 9574: 9568: 9555: 9526:hep-ph/9807278 9519:(1–2): 1–146. 9508: 9502: 9489: 9460:hep-th/0503195 9439: 9433: 9416:hep-th/0503203 9399: 9393: 9380: 9374: 9354: 9348: 9330: 9324: 9305: 9303: 9300: 9298: 9297: 9290: 9269: 9204: 9141: 9078: 9039:Penrose, Roger 9028:Penrose, Roger 9019: 8980:(10): 103512. 8958: 8895: 8865:hep-th/0608121 8836: 8806:hep-th/0510022 8799:(2): 435–454. 8781: 8767:10.1.1.56.2356 8752:(2): 391–410. 8734: 8705:(6): 223–263. 8689: 8652:(10): 107502. 8634: 8605:(3): 181–185. 8587: 8532: 8504: 8474:hep-ph/9812483 8449: 8409:hep-th/0308055 8384: 8354:hep-th/0406230 8329: 8299:hep-th/0402051 8274: 8260:hep-ph/0101119 8241: 8186: 8156:hep-th/0005209 8149:(12): 123501. 8131: 8101:hep-th/0405270 8076: 8069: 8041: 8022:(4): 789–809. 8004: 7950: 7938: 7929: 7880:Hertog, Thomas 7867: 7835: 7789: 7730: 7675: 7638:(10): 1671–4. 7620: 7555: 7526: 7471: 7431: 7424: 7400: 7372: 7338:hep-ph/9606387 7309: 7254: 7217: 7158: 7146: 7091: 7063: 7014:(21): 211301. 6992: 6967: 6929: 6903: 6865: 6812: 6786: 6748: 6703:(24): 241101. 6685: 6649: 6636: 6623:10.1086/377226 6599:(1): 175–194. 6581: 6518: 6458: 6410: 6365:(12): 123507. 6347: 6302:(11): 111301. 6269: 6205: 6157: 6113: 6076: 6057:(4): 295–297. 6036: 6011: 6000:(2): 258–265. 5979: 5950: 5926: 5919: 5893: 5839: 5820:(6): 389–393. 5802: 5795: 5775: 5768: 5760:Addison–Wesley 5736: 5717:(3): 385–404. 5699: 5662: 5647: 5599: 5593:10.1086/183361 5556: 5519: 5515:Peebles (1993) 5507: 5479:(2): 347–356. 5451: 5435: 5380: 5330: 5275: 5232: 5225: 5204: 5145: 5094: 5057: 5020: 4950: 4921: 4869: 4863:978-9978680254 4862: 4845:hep-ph/0608183 4826: 4808: 4801: 4783: 4768: 4753: 4708: 4684: 4666: 4639: 4632: 4608: 4601: 4572: 4527: 4523:Peebles (1993) 4514: 4476:hep-th/9405187 4451: 4434: 4412: 4404:Cambridge U.P. 4382: 4375: 4357: 4346: 4291: 4230: 4212: 4184:10.1086/513700 4150:(2): 377–408. 4123: 4110: 4090: 4077:978-1434969057 4076: 4056: 4039: 4001: 3973: 3945: 3923: 3905: 3899:978-0201328400 3898: 3869: 3836: 3815:10.1086/392675 3788: 3735: 3729:hep-ph/0304257 3714: 3701: 3671: 3653: 3651: 3648: 3645: 3644: 3635: 3625: 3611: 3602: 3599: 3596: 3591: 3563: 3539: 3531: 3526: 3517: 3514: 3511: 3506: 3501: 3494: 3487: 3481: 3476: 3442: 3439: 3436: 3431: 3403: 3379: 3367: 3364: 3361: 3356: 3351: 3328: 3308: 3279: 3275: 3272: 3265: 3262: 3234: 3229: 3223: 3219: 3216: 3209: 3201: 3198: 3192: 3189: 3166: 3158:Standard Model 3149: 3136: 3099: 3082:is built into 3077:supersymmetric 3068: 3059: 3048: 3047: 3045: 3042: 3040: 3039: 3037:Warm inflation 3034: 3029: 3024: 3019: 3014: 3009: 3004: 2999: 2993: 2991: 2988: 2987: 2986: 2956: 2955: 2936: 2935: 2924: 2923: 2912: 2911: 2902: 2899: 2891:early universe 2887:speed of light 2868: 2862: 2818: 2815: 2773: 2770: 2756:torsion tensor 2746: 2743: 2738: 2735: 2721: 2718: 2693: 2690: 2678: 2675: 2662: 2659: 2589: 2586: 2548:Main article: 2545: 2542: 2538:Planck density 2455: 2452: 2415: 2412: 2406: 2403: 2400: 2368: 2321:ecliptic plane 2288: 2277: 2270: 2263:spectral index 2254:galaxy surveys 2214:spectral index 2166: 2163: 2121:Main article: 2118: 2115: 2081: 2078: 2065:Kazanas (1980) 2057:speed of light 2024:Katsuhiko Sato 1994: 1991: 1985: 1982: 1970: 1963: 1959: 1955: 1950: 1947: 1943: 1938: 1935: 1930: 1927: 1924: 1919: 1915: 1903: 1902: 1889: 1884: 1876: 1871: 1867: 1862: 1858: 1853: 1849: 1845: 1840: 1836: 1832: 1829: 1825: 1818: 1814: 1810: 1807: 1804: 1801: 1798: 1783: 1782: 1770: 1761: 1757: 1753: 1747: 1743: 1737: 1734: 1730: 1726: 1721: 1717: 1713: 1708: 1705: 1700: 1697: 1671:and a form of 1657:Main article: 1654: 1651: 1608:Sidney Coleman 1600:Main article: 1597: 1594: 1559:, which was a 1540: 1537: 1535: 1532: 1531: 1530: 1509:from a single 1503:nuclear forces 1468: 1465: 1403:Main article: 1400: 1397: 1385:Charles Misner 1365:causal contact 1361:speed of light 1337:Main article: 1334: 1331: 1298: 1295: 1279:Standard Model 1269: 1266: 1256:is stretched ( 1221:Standard Model 1192: 1189: 1151: 1150: 1139: 1134: 1130: 1126: 1120: 1116: 1112: 1107: 1103: 1099: 1090: 1086: 1082: 1079: 1076: 1072: 1067: 1062: 1058: 1054: 1049: 1045: 1040: 1035: 1031: 1027: 1024: 1021: 1018: 1015: 1012: 1007: 1003: 999: 972: 969: 870: 867: 777: 774: 623: 622: 620: 619: 612: 605: 597: 594: 593: 592: 591: 579: 565: 564: 561: 560: 555: 550: 543: 540: 535: 534: 531: 530: 527: 526: 519: 518: 513: 508: 503: 498: 493: 488: 483: 478: 473: 468: 463: 458: 453: 448: 443: 438: 433: 428: 423: 418: 413: 408: 403: 398: 393: 388: 383: 378: 373: 367: 366: 363: 362: 359: 358: 355: 354: 347: 345: 340: 335: 330: 325: 320: 315: 309: 304: 303: 300: 299: 294: 293: 292: 291: 279: 274: 269: 257: 249: 248: 244: 243: 242: 241: 229: 221: 220: 214: 207: 206: 203: 202: 199: 198: 193: 188: 183: 171: 166: 153: 146: 145: 142: 141: 136: 135: 134: 133: 131:Neutrino (CNB) 121: 113: 112: 108: 107: 106: 105: 88: 86:Early universe 85: 84: 81: 80: 79: 78: 73: 68: 53: 52: 44: 43: 37: 36: 15: 9: 6: 4: 3: 2: 9872: 9861: 9858: 9856: 9853: 9851: 9848: 9846: 9843: 9841: 9838: 9837: 9835: 9825: 9820: 9815: 9813: 9803: 9801: 9791: 9789: 9779: 9777: 9772: 9767: 9765: 9755: 9753: 9748: 9743: 9742: 9739: 9732: 9728: 9727: 9722: 9719: 9717: 9713: 9710: 9707: 9705: 9702: 9700: 9697: 9694: 9691: 9688: 9683: 9678: 9673: 9668: 9663: 9658: 9655: 9652: 9647: 9642: 9637: 9634: 9631: 9630: 9619: 9613: 9609: 9608: 9603: 9599: 9595: 9589: 9585: 9584: 9579: 9575: 9571: 9565: 9561: 9556: 9552: 9548: 9544: 9540: 9536: 9532: 9527: 9522: 9518: 9514: 9509: 9505: 9499: 9496:. Cambridge. 9495: 9490: 9486: 9482: 9478: 9474: 9470: 9466: 9461: 9456: 9452: 9448: 9444: 9443:Linde, Andrei 9440: 9436: 9430: 9426: 9422: 9417: 9412: 9408: 9404: 9403:Linde, Andrei 9400: 9396: 9390: 9386: 9381: 9377: 9371: 9367: 9363: 9362:Gibbons, Gary 9359: 9355: 9351: 9345: 9341: 9340: 9335: 9331: 9327: 9321: 9317: 9316: 9311: 9307: 9306: 9293: 9287: 9283: 9279: 9278:Linde, Andrei 9273: 9265: 9261: 9257: 9253: 9249: 9245: 9240: 9235: 9231: 9227: 9226: 9221: 9217: 9216:Guth, Alan H. 9211: 9209: 9200: 9196: 9192: 9188: 9184: 9180: 9175: 9170: 9166: 9162: 9161: 9156: 9155:Loeb, Abraham 9152: 9149:Ijjas, Anna; 9145: 9137: 9133: 9129: 9125: 9121: 9117: 9112: 9107: 9103: 9099: 9098: 9093: 9092:Loeb, Abraham 9089: 9086:Ijjas, Anna; 9082: 9074: 9070: 9066: 9062: 9058: 9054: 9050: 9046: 9045: 9040: 9033: 9029: 9023: 9015: 9011: 9006: 9001: 8997: 8993: 8988: 8983: 8979: 8975: 8974: 8969: 8962: 8954: 8950: 8946: 8942: 8938: 8934: 8930: 8926: 8921: 8916: 8912: 8908: 8907: 8899: 8891: 8887: 8883: 8879: 8875: 8871: 8866: 8861: 8857: 8853: 8852: 8847: 8840: 8832: 8828: 8824: 8820: 8816: 8812: 8807: 8802: 8798: 8794: 8793: 8785: 8777: 8773: 8768: 8763: 8759: 8755: 8751: 8747: 8746: 8738: 8730: 8726: 8722: 8718: 8713: 8708: 8704: 8700: 8693: 8685: 8681: 8677: 8673: 8669: 8665: 8660: 8655: 8651: 8647: 8646: 8638: 8630: 8626: 8622: 8618: 8613: 8608: 8604: 8600: 8599: 8591: 8583: 8579: 8575: 8571: 8567: 8563: 8558: 8553: 8550:(6): 061302. 8549: 8545: 8544: 8536: 8521: 8520: 8515: 8508: 8500: 8496: 8492: 8488: 8484: 8480: 8475: 8470: 8466: 8462: 8461: 8453: 8445: 8441: 8437: 8433: 8428: 8423: 8419: 8415: 8410: 8405: 8401: 8397: 8396: 8388: 8380: 8376: 8372: 8368: 8364: 8360: 8355: 8350: 8346: 8342: 8341: 8333: 8325: 8321: 8317: 8313: 8309: 8305: 8300: 8295: 8291: 8287: 8286: 8278: 8270: 8266: 8261: 8256: 8252: 8245: 8237: 8233: 8229: 8225: 8221: 8217: 8212: 8207: 8204:(8): 083515. 8203: 8199: 8198: 8190: 8182: 8178: 8174: 8170: 8166: 8162: 8157: 8152: 8148: 8144: 8143: 8135: 8127: 8123: 8119: 8115: 8111: 8107: 8102: 8097: 8094:(6): 063528. 8093: 8089: 8088: 8080: 8072: 8066: 8062: 8058: 8054: 8048: 8046: 8037: 8033: 8029: 8025: 8021: 8017: 8016: 8008: 8001: 7997: 7996:Roger Penrose 7991: 7987: 7983: 7979: 7975: 7971: 7967: 7963: 7962: 7954: 7947: 7942: 7933: 7925: 7921: 7917: 7913: 7909: 7905: 7900: 7895: 7891: 7887: 7886: 7881: 7877: 7871: 7856: 7855: 7850: 7846: 7839: 7830: 7826: 7822: 7818: 7814: 7810: 7806: 7802: 7801: 7793: 7785: 7781: 7777: 7773: 7769: 7765: 7760: 7755: 7752:(8): 083507. 7751: 7747: 7746: 7741: 7734: 7726: 7722: 7718: 7714: 7710: 7706: 7701: 7700:gr-qc/0301042 7696: 7693:(8): 083515. 7692: 7688: 7687: 7679: 7671: 7667: 7663: 7659: 7655: 7651: 7646: 7645:gr-qc/0505037 7641: 7637: 7633: 7632: 7624: 7613: 7609: 7605: 7601: 7597: 7593: 7589: 7585: 7581: 7577: 7573: 7566: 7559: 7548: 7544: 7537: 7530: 7519: 7515: 7511: 7507: 7503: 7499: 7495: 7491: 7490: 7482: 7475: 7467: 7463: 7459: 7455: 7451: 7447: 7446: 7438: 7436: 7427: 7421: 7417: 7413: 7407: 7405: 7395: 7390: 7386: 7382: 7376: 7368: 7364: 7360: 7356: 7352: 7348: 7344: 7339: 7334: 7330: 7326: 7325: 7320: 7313: 7305: 7301: 7297: 7293: 7289: 7285: 7280: 7275: 7271: 7267: 7266: 7258: 7250: 7246: 7242: 7238: 7235:(3): 171–81. 7234: 7230: 7229: 7221: 7213: 7209: 7205: 7201: 7197: 7193: 7188: 7183: 7179: 7175: 7174: 7169: 7162: 7155: 7150: 7142: 7138: 7134: 7130: 7126: 7122: 7117: 7112: 7108: 7104: 7103: 7095: 7080: 7079: 7074: 7067: 7059: 7055: 7051: 7047: 7043: 7039: 7035: 7031: 7027: 7022: 7017: 7013: 7009: 7008: 7003: 6996: 6987: 6982: 6978: 6971: 6954: 6949: 6948: 6943: 6939: 6933: 6918: 6914: 6907: 6890: 6885: 6884: 6879: 6875: 6869: 6861: 6857: 6853: 6849: 6845: 6841: 6836: 6831: 6828:(133): A133. 6827: 6823: 6816: 6801: 6797: 6790: 6773: 6768: 6767: 6762: 6758: 6752: 6744: 6740: 6736: 6732: 6728: 6724: 6720: 6716: 6711: 6706: 6702: 6698: 6697: 6689: 6681: 6677: 6673: 6669: 6665: 6664: 6663:Physics Today 6656: 6654: 6646: 6640: 6632: 6628: 6624: 6620: 6616: 6612: 6607: 6602: 6598: 6594: 6593: 6585: 6577: 6573: 6569: 6565: 6561: 6557: 6553: 6549: 6544: 6539: 6535: 6531: 6530: 6522: 6514: 6510: 6506: 6502: 6498: 6494: 6489: 6484: 6480: 6476: 6475: 6467: 6465: 6463: 6454: 6450: 6446: 6442: 6438: 6434: 6430: 6426: 6425: 6417: 6415: 6406: 6402: 6398: 6394: 6390: 6386: 6382: 6378: 6373: 6368: 6364: 6360: 6359: 6351: 6343: 6339: 6335: 6331: 6327: 6323: 6319: 6315: 6310: 6305: 6301: 6297: 6296: 6291: 6287: 6280: 6278: 6276: 6274: 6265: 6261: 6257: 6253: 6249: 6245: 6241: 6237: 6232: 6227: 6223: 6219: 6212: 6210: 6201: 6197: 6193: 6189: 6185: 6181: 6180: 6175: 6171: 6167: 6161: 6153: 6149: 6145: 6141: 6137: 6133: 6132: 6127: 6123: 6122:Guth, Alan H. 6117: 6109: 6105: 6101: 6097: 6093: 6089: 6088: 6080: 6072: 6068: 6064: 6060: 6056: 6052: 6051: 6046: 6045:Hawking, S.W. 6040: 6033: 6032:0-521-31677-4 6029: 6025: 6021: 6015: 6007: 6003: 5999: 5995: 5994: 5989: 5983: 5975: 5971: 5967: 5963: 5962: 5954: 5947: 5941: 5936: 5930: 5922: 5916: 5912: 5907: 5906: 5897: 5886: 5882: 5878: 5874: 5870: 5866: 5862: 5861: 5853: 5846: 5844: 5835: 5831: 5827: 5823: 5819: 5815: 5814: 5806: 5798: 5796:9781402030406 5792: 5788: 5787: 5779: 5771: 5765: 5761: 5756: 5755: 5749: 5743: 5741: 5732: 5728: 5724: 5720: 5716: 5712: 5711: 5703: 5695: 5691: 5687: 5683: 5679: 5675: 5674: 5666: 5658: 5654: 5650: 5644: 5640: 5636: 5632: 5628: 5623: 5618: 5614: 5610: 5603: 5594: 5589: 5585: 5581: 5577: 5573: 5572: 5567: 5560: 5552: 5548: 5544: 5540: 5537:(1): 99–102. 5536: 5532: 5531: 5523: 5516: 5511: 5500: 5495: 5490: 5486: 5482: 5478: 5474: 5473: 5465: 5458: 5456: 5449:, p. 186 5448: 5444: 5439: 5431: 5427: 5423: 5419: 5415: 5411: 5406: 5401: 5397: 5393: 5392: 5384: 5376: 5372: 5368: 5365: 5364: 5355: 5351: 5347: 5343: 5342: 5334: 5326: 5322: 5318: 5314: 5310: 5306: 5301: 5296: 5293:(8): 083510. 5292: 5288: 5287: 5279: 5270: 5265: 5261: 5257: 5253: 5249: 5248: 5243: 5236: 5228: 5226:0-201-15142-1 5222: 5218: 5214: 5208: 5200: 5196: 5192: 5188: 5184: 5180: 5175: 5170: 5167:(1): 1–1232. 5166: 5162: 5161: 5156: 5149: 5138: 5134: 5130: 5126: 5122: 5118: 5114: 5113: 5105: 5098: 5090: 5086: 5082: 5078: 5075:(3): 239–41. 5074: 5070: 5069: 5061: 5053: 5049: 5045: 5041: 5037: 5033: 5032: 5024: 5013: 5009: 5005: 5001: 4997: 4993: 4989: 4985: 4981: 4977: 4973: 4972: 4964: 4960: 4954: 4946: 4942: 4938: 4934: 4933: 4925: 4917: 4913: 4909: 4905: 4901: 4897: 4894:(2): 276–84. 4893: 4889: 4888: 4883: 4879: 4873: 4865: 4859: 4855: 4851: 4846: 4841: 4837: 4830: 4822: 4818: 4812: 4804: 4798: 4794: 4787: 4779: 4772: 4764: 4757: 4749: 4745: 4741: 4737: 4733: 4729: 4725: 4721: 4720: 4712: 4705: 4704:0-486-65383-8 4701: 4695: 4691: 4687: 4681: 4677: 4670: 4663: 4660: 4657:, English in 4654: 4650: 4643: 4635: 4629: 4625: 4621: 4620: 4612: 4604: 4598: 4594: 4589: 4588: 4579: 4577: 4568: 4564: 4560: 4556: 4552: 4548: 4544: 4540: 4539: 4531: 4524: 4518: 4510: 4506: 4502: 4498: 4494: 4490: 4486: 4482: 4477: 4472: 4468: 4464: 4463: 4455: 4448: 4444: 4438: 4432: 4431:0-521-31677-4 4428: 4423: 4419: 4415: 4413:9780521316774 4409: 4405: 4401: 4397: 4393: 4386: 4378: 4372: 4368: 4361: 4355: 4350: 4342: 4338: 4334: 4330: 4326: 4322: 4317: 4312: 4308: 4304: 4303: 4295: 4287: 4283: 4278: 4273: 4269: 4265: 4260: 4255: 4251: 4247: 4246: 4241: 4234: 4226: 4222: 4216: 4209: 4197: 4193: 4189: 4185: 4181: 4176: 4171: 4167: 4163: 4158: 4153: 4149: 4145: 4144: 4139: 4132: 4130: 4128: 4120: 4114: 4106: 4102: 4101: 4094: 4079: 4073: 4069: 4068: 4060: 4053:. p. 31. 4052: 4051: 4050:New Scientist 4043: 4026: 4021: 4020: 4015: 4011: 4005: 3990: 3989: 3984: 3977: 3962: 3961: 3956: 3949: 3941: 3937: 3933: 3927: 3919: 3915: 3909: 3901: 3895: 3891: 3886: 3885: 3879: 3878:Guth, Alan H. 3873: 3856: 3852: 3851: 3843: 3841: 3832: 3828: 3824: 3820: 3816: 3812: 3808: 3804: 3797: 3795: 3793: 3784: 3780: 3776: 3772: 3768: 3764: 3760: 3759: 3754: 3748: 3746: 3744: 3742: 3740: 3730: 3725: 3718: 3711: 3705: 3689: 3685: 3681: 3675: 3667: 3666: 3658: 3654: 3639: 3629: 3609: 3589: 3561: 3537: 3529: 3524: 3504: 3499: 3492: 3485: 3479: 3474: 3462: 3429: 3401: 3377: 3354: 3349: 3332: 3325: 3306: 3277: 3273: 3270: 3263: 3260: 3232: 3227: 3221: 3217: 3214: 3207: 3199: 3196: 3190: 3187: 3176: 3170: 3163: 3159: 3153: 3146: 3140: 3121: 3117: 3113: 3109: 3108:Fourier modes 3103: 3096: 3092: 3089: 3085: 3084:string theory 3081: 3078: 3072: 3063: 3053: 3049: 3038: 3035: 3033: 3030: 3028: 3025: 3023: 3020: 3018: 3015: 3013: 3010: 3008: 3005: 3003: 3000: 2998: 2995: 2994: 2984: 2983: 2982: 2980: 2976: 2972: 2967: 2965: 2961: 2953: 2949: 2948: 2947: 2945: 2941: 2933: 2929: 2928: 2927: 2921: 2920: 2919: 2917: 2916:Roger Penrose 2909: 2908: 2907: 2898: 2896: 2892: 2888: 2884: 2880: 2874: 2867: 2861: 2859: 2855: 2851: 2847: 2843: 2839: 2835: 2831: 2827: 2823: 2822:String theory 2814: 2811: 2807: 2803: 2799: 2795: 2791: 2787: 2783: 2782:cyclic models 2779: 2769: 2766: 2761: 2760:Dirac spinors 2757: 2753: 2742: 2734: 2731: 2727: 2717: 2715: 2711: 2707: 2703: 2699: 2689: 2687: 2683: 2674: 2670: 2668: 2658: 2654: 2650: 2647: 2643: 2642:arrow of time 2639: 2635: 2631: 2630:arrow of time 2627: 2623: 2619: 2615: 2609: 2607: 2603: 2599: 2594: 2585: 2583: 2578: 2574: 2570: 2568: 2564: 2560: 2556: 2551: 2541: 2539: 2535: 2531: 2530:Planck energy 2527: 2522: 2521:Brandenberger 2518: 2516: 2512: 2507: 2503: 2499: 2495: 2491: 2487: 2483: 2482: 2476: 2474: 2469: 2465: 2461: 2451: 2449: 2445: 2441: 2437: 2433: 2429: 2425: 2418: 2399: 2397: 2396:radio sources 2393: 2389: 2385: 2380: 2366: 2353: 2345: 2341: 2337: 2333: 2328: 2326: 2322: 2318: 2314: 2309: 2304: 2301: 2296: 2294: 2283: 2265: 2264: 2259: 2255: 2251: 2247: 2243: 2242: 2237: 2236: 2231: 2226: 2224: 2220: 2216: 2215: 2210: 2207: 2203: 2198: 2180: 2176: 2172: 2162: 2160: 2156: 2152: 2148: 2144: 2140: 2136: 2131: 2124: 2114: 2111: 2107: 2106:old inflation 2103: 2099: 2098:new inflation 2095: 2091: 2087: 2076: 2074: 2070: 2066: 2060: 2058: 2054: 2051:. Bubbles of 2050: 2046: 2042: 2036: 2033: 2029: 2025: 2021: 2012: 2008: 2004: 2003:Hubble radius 1999: 1990: 1981: 1968: 1961: 1957: 1953: 1948: 1945: 1941: 1936: 1933: 1928: 1925: 1922: 1917: 1913: 1887: 1882: 1874: 1869: 1865: 1860: 1856: 1851: 1847: 1843: 1838: 1834: 1830: 1827: 1823: 1816: 1808: 1802: 1796: 1788: 1787: 1786: 1768: 1759: 1755: 1751: 1745: 1741: 1735: 1732: 1728: 1724: 1719: 1715: 1711: 1706: 1703: 1698: 1695: 1688: 1687: 1686: 1684: 1680: 1676: 1670: 1666: 1660: 1650: 1648: 1644: 1640: 1636: 1631: 1629: 1625: 1621: 1617: 1613: 1609: 1603: 1593: 1591: 1587: 1583: 1578: 1573: 1569: 1566: 1562: 1558: 1554: 1550: 1546: 1528: 1527: 1526: 1525:has written, 1524: 1518: 1514: 1512: 1508: 1504: 1501: 1497: 1493: 1489: 1484: 1482: 1478: 1474: 1464: 1462: 1458: 1454: 1450: 1445: 1443: 1439: 1436: 1435:non-Euclidean 1432: 1429:is the usual 1428: 1424: 1420: 1416: 1412: 1406: 1396: 1394: 1390: 1386: 1382: 1378: 1374: 1370: 1366: 1362: 1358: 1354: 1350: 1346: 1340: 1330: 1328: 1324: 1320: 1316: 1312: 1308: 1304: 1294: 1292: 1288: 1284: 1280: 1276: 1265: 1263: 1259: 1255: 1250: 1244: 1242: 1238: 1234: 1230: 1226: 1222: 1218: 1214: 1210: 1206: 1202: 1198: 1188: 1184: 1181: 1176: 1172: 1168: 1164: 1163:vacuum energy 1160: 1156: 1137: 1132: 1124: 1118: 1114: 1110: 1105: 1101: 1097: 1088: 1084: 1077: 1074: 1070: 1065: 1060: 1056: 1052: 1047: 1043: 1033: 1029: 1022: 1019: 1013: 1010: 1005: 1001: 997: 990: 989: 988: 986: 981: 979: 971:Space expands 968: 966: 962: 961:vacuum energy 959:and residual 958: 952: 948: 945: 941: 936: 934: 929: 925: 917: 913: 909: 905: 900: 896: 894: 890: 886: 882: 876: 866: 864: 860: 856: 852: 848: 844: 840: 836: 832: 828: 824: 820: 815: 813: 809: 805: 801: 797: 793: 790:Around 1930, 787: 783: 773: 771: 767: 763: 759: 755: 751: 747: 742: 740: 736: 731: 728:The detailed 726: 724: 721:, and why no 720: 716: 713: 709: 705: 701: 697: 693: 689: 685: 681: 677: 673: 669: 665: 661: 656: 654: 650: 646: 642: 638: 634: 630: 618: 613: 611: 606: 604: 599: 598: 596: 595: 590: 580: 578: 569: 568: 567: 566: 559: 556: 554: 551: 548: 542: 541: 538: 533: 532: 525: 522: 521: 517: 514: 512: 509: 507: 504: 502: 499: 497: 494: 492: 489: 487: 484: 482: 479: 477: 474: 472: 469: 467: 464: 462: 459: 457: 454: 452: 449: 447: 444: 442: 439: 437: 434: 432: 429: 427: 424: 422: 419: 417: 414: 412: 409: 407: 404: 402: 399: 397: 394: 392: 389: 387: 384: 382: 379: 377: 374: 372: 369: 368: 361: 360: 352: 346: 344: 341: 339: 336: 334: 331: 329: 326: 324: 321: 319: 316: 314: 311: 310: 307: 302: 301: 290: 287: 283: 280: 278: 275: 273: 270: 268: 265: 261: 258: 256: 253: 252: 251: 250: 246: 245: 240: 237: 233: 230: 228: 225: 224: 223: 222: 218: 217: 211: 205: 204: 197: 194: 192: 189: 187: 184: 182: 179: 175: 172: 170: 167: 165: 162: 158: 155: 154: 150: 144: 143: 132: 129: 125: 122: 120: 117: 116: 115: 114: 110: 109: 104: 101: 97: 94: 93: 92: 91: 83: 82: 77: 74: 72: 69: 67: 64: 60: 57: 56: 55: 54: 50: 46: 45: 42: 39: 38: 34: 33: 30: 26: 22: 9812:Solar System 9724: 9692: 9606: 9582: 9559: 9516: 9512: 9493: 9450: 9446: 9406: 9384: 9365: 9338: 9314: 9281: 9272: 9229: 9223: 9164: 9158: 9144: 9101: 9095: 9081: 9048: 9042: 9031: 9022: 8977: 8971: 8961: 8910: 8904: 8898: 8855: 8849: 8839: 8796: 8790: 8784: 8749: 8743: 8737: 8702: 8698: 8692: 8649: 8643: 8637: 8602: 8596: 8590: 8547: 8541: 8535: 8523:. Retrieved 8517: 8507: 8464: 8458: 8452: 8399: 8393: 8387: 8344: 8338: 8332: 8289: 8283: 8277: 8250: 8244: 8201: 8195: 8189: 8146: 8140: 8134: 8091: 8085: 8079: 8060: 8019: 8013: 8007: 7965: 7959: 7953: 7941: 7932: 7889: 7883: 7870: 7858:. Retrieved 7852: 7838: 7804: 7798: 7792: 7749: 7743: 7733: 7690: 7684: 7678: 7635: 7629: 7623: 7578:(2): 32–39. 7575: 7571: 7558: 7542: 7529: 7487: 7474: 7449: 7443: 7415: 7384: 7375: 7367:the original 7328: 7322: 7312: 7269: 7263: 7257: 7232: 7226: 7220: 7177: 7171: 7161: 7149: 7106: 7100: 7094: 7082:. Retrieved 7076: 7066: 7056:– via 7011: 7005: 6995: 6976: 6970: 6958:. Retrieved 6953:the original 6945: 6932: 6920:. Retrieved 6906: 6896:22 September 6894:. Retrieved 6889:the original 6881: 6868: 6825: 6821: 6815: 6803:. Retrieved 6789: 6777:. Retrieved 6772:the original 6764: 6751: 6700: 6694: 6688: 6661: 6639: 6596: 6590: 6584: 6533: 6527: 6521: 6478: 6472: 6428: 6422: 6362: 6356: 6350: 6299: 6293: 6221: 6217: 6183: 6177: 6160: 6135: 6129: 6126:Pi, So-Young 6116: 6091: 6085: 6079: 6054: 6048: 6039: 6023: 6014: 5997: 5991: 5982: 5965: 5961:JETP Letters 5959: 5953: 5935:Linde (1990) 5929: 5904: 5896: 5885:the original 5864: 5858: 5817: 5811: 5805: 5785: 5778: 5753: 5714: 5708: 5702: 5680:(1): 66–70. 5677: 5671: 5665: 5612: 5602: 5575: 5569: 5559: 5534: 5528: 5522: 5517:, ch 17 5510: 5476: 5470: 5438: 5395: 5389: 5383: 5366: 5361: 5345: 5339: 5333: 5290: 5284: 5278: 5251: 5245: 5235: 5216: 5213:Rees, Martin 5207: 5164: 5158: 5148: 5116: 5110: 5097: 5072: 5066: 5060: 5035: 5029: 5023: 4983: 4979: 4975: 4969: 4953: 4936: 4932:JETP Letters 4930: 4924: 4891: 4885: 4872: 4835: 4829: 4820: 4811: 4792: 4786: 4777: 4771: 4762: 4756: 4723: 4717: 4711: 4675: 4669: 4661: 4658: 4652: 4648: 4642: 4618: 4611: 4586: 4542: 4536: 4530: 4517: 4466: 4460: 4454: 4437: 4395: 4385: 4366: 4360: 4349: 4306: 4300: 4294: 4249: 4243: 4233: 4224: 4215: 4207: 4200:. Retrieved 4196:the original 4147: 4141: 4113: 4099: 4093: 4081:. Retrieved 4066: 4059: 4048: 4042: 4030:. Retrieved 4025:the original 4017: 4004: 3992:. Retrieved 3986: 3976: 3964:. Retrieved 3958: 3948: 3935: 3926: 3917: 3908: 3883: 3872: 3859:. Retrieved 3855:the original 3849: 3806: 3802: 3756: 3717: 3709: 3704: 3692:. Retrieved 3688:the original 3683: 3674: 3663: 3657: 3638: 3628: 3331: 3169: 3152: 3139: 3102: 3087: 3071: 3062: 3052: 3017:Hubble's law 2975:David Kaiser 2968: 2960:Abraham Loeb 2957: 2937: 2925: 2913: 2904: 2882: 2876: 2865: 2841: 2834:supergravity 2826:compactified 2820: 2789: 2775: 2748: 2740: 2723: 2709: 2701: 2695: 2680: 2671: 2666: 2664: 2655: 2651: 2610: 2604:offered the 2595: 2591: 2579: 2575: 2571: 2561: 2557: 2553: 2519: 2497: 2493: 2486:any universe 2479: 2477: 2463: 2457: 2447: 2421: 2381: 2332:polarization 2329: 2305: 2297: 2261: 2239: 2233: 2227: 2221:, predict a 2212: 2199: 2177:made by the 2168: 2126: 2110:scalar field 2105: 2101: 2097: 2083: 2072: 2062: 2037: 2028:domain walls 2016: 1987: 1904: 1784: 1678: 1674: 1662: 1632: 1620:false vacuum 1610:applied the 1605: 1602:False vacuum 1596:False vacuum 1574: 1570: 1542: 1519: 1515: 1511:gauge theory 1485: 1470: 1446: 1408: 1392: 1368: 1342: 1327:finely tuned 1322: 1315:false vacuum 1300: 1274: 1271: 1245: 1228: 1201:anisotropies 1194: 1185: 1179: 1170: 1166: 1152: 982: 974: 953: 949: 937: 928:causal patch 927: 921: 878: 863:finely tuned 858: 834: 831:false vacuum 816: 792:Edwin Hubble 789: 743: 727: 680:Andrei Linde 662:, including 657: 640: 636: 632: 626: 351:Probe (WMAP) 285: 282:Reionization 263: 235: 209: 177: 160: 157:Hubble's law 148: 127: 99: 95: 62: 29: 9800:Outer space 9788:Spaceflight 9721:Max Tegmark 9654:update 2004 9453:: 295–322. 9318:. Perseus. 9232:: 112–119. 9167:: 142–146. 9051:: 249–264. 8402:(10): 013. 8347:(11): 063. 8057:Turok, Neil 7994:; see also 6290:Turok, Neil 6186:: 679–693. 6020:Guth (1997) 5968:: 532–535. 5447:Guth (1997) 4939:: 194–195. 4587:Gravitation 4392:Hawking, S. 3809:(1): 1–49. 3461:Planck mass 3095:Raby (2006) 2850:Cumrun Vafa 2682:Dark energy 2498:small field 2494:large field 2490:Planck unit 2460:fine tuning 2432:electroweak 2428:Higgs field 2392:first stars 2300:fine-tuning 2282:fine-tuning 2219:fine-tuning 2147:So-Young Pi 2069:Guth (1981) 2053:true vacuum 1582:Khalatnikov 1555:to allow a 1523:Martin Rees 1457:fine-tuning 1297:Motivations 1241:black holes 957:dark matter 766:Dirac Prize 764:shared the 710:), why the 688:Kavli Prize 653:dark energy 306:Experiments 239:Dark matter 232:Dark energy 174:FLRW metric 111:Backgrounds 9834:Categories 9342:. Bantam. 9310:Guth, Alan 8987:2002.09771 8913:(9): 082. 7899:1707.07702 7892:(4): 147. 7272:(5): 016. 6960:31 January 6922:30 January 6543:1502.02114 6481:(4): 001. 6397:1811/48518 6231:1502.01589 5748:Guth, Alan 5578:: L59–63. 5405:1502.02114 4959:Guth, Alan 4545:(2): 431. 4202:10 October 3650:References 3112:wavelength 3057:inflation. 2901:Criticisms 2828:(see also 2794:Big Crunch 2765:Big Bounce 2745:Big bounce 2620:) and the 2582:multiverse 2241:isentropic 2155:Steinhardt 2041:metastable 1539:Precursors 1483:are true. 1438:hyperbolic 1379:, and the 1258:redshifted 933:light cone 873:See also: 796:redshifted 639:, or just 386:Copernicus 364:Scientists 219:Components 9764:Astronomy 9551:119517140 9485:119410403 9239:1312.7619 9199:119096427 9174:1402.6980 9111:1304.2785 9073:122383812 9014:2470-0010 8953:119184258 8945:1029-8479 8920:0806.4358 8762:CiteSeerX 8712:0806.1245 8684:118434253 8659:1111.4595 8612:1007.0587 8557:1312.0739 8525:31 August 8499:118930228 8422:CiteSeerX 8236:118889842 8181:119329384 8126:119465499 7946:Wikiquote 7829:121947045 7784:118974302 7670:120566514 7363:119470003 7304:119373837 7212:256010671 7187:1403.4226 7180:(6): 80. 7116:1308.2244 6835:1409.5738 6710:1403.3985 6680:241938983 6576:119284788 6568:0004-6361 6264:119262962 6256:0004-6361 5750:(1997b). 5622:0803.2080 5430:119284788 5325:118371273 5300:1404.1207 5199:262936640 4916:1874/4686 4748:119588491 4567:250853141 4509:250890807 4400:Cambridge 4316:0907.5394 4259:0711.4181 4225:Space.com 4170:CiteSeerX 4117:See also 3880:(1997a). 3831:120393154 3562:ϕ 3500:ϕ 3480:ϕ 3402:ϕ 3350:ϕ 3261:η 3188:ϵ 3012:Dark flow 3007:Cosmology 2971:Alan Guth 2854:spacetime 2778:ekpyrotic 2468:potential 2235:adiabatic 1929:− 1857:ϕ 1839:− 1831:− 1813:Λ 1803:ϕ 1712:∫ 1612:instanton 1577:Zeldovich 1453:redshifts 1357:radiation 1275:reheating 1268:Reheating 1129:Ω 1081:Λ 1078:− 1026:Λ 1023:− 1014:− 839:Alan Guth 835:inflation 762:Princeton 746:Alan Guth 715:radiation 708:isotropic 672:Alan Guth 641:inflation 516:Zeldovich 416:Friedmann 391:de Sitter 318:BOOMERanG 247:Structure 212:Structure 96:Inflation 21:Inflation 9729:(2014), 9712:Archived 9693:Symmetry 9604:(1993). 9580:(2006). 9405:(2005). 9364:(1983). 9336:(1998). 9312:(1997). 9264:16669993 9136:14875751 9030:(2004). 8729:17534907 8379:12461702 8324:17779961 8059:(2007). 7998:'s book 7924:13745992 7854:Phys.org 7725:37260723 7612:Archived 7608:28118351 7600:26047449 7547:Archived 7518:Archived 7514:21495480 7141:56544999 7054:30510359 7046:15245272 6800:BBC News 6743:22780831 6735:24996078 6631:10794058 6513:17250080 6453:42066874 6342:10424288 6334:16605810 5657:14520885 5499:Archived 5254:: 3–28. 5215:(1998). 5137:Archived 5012:Archived 4880:(1974). 4821:nasa.gov 4694:34032023 4624:740, 815 4501:10057315 4422:14137101 4286:17372406 4032:17 March 3994:17 March 3966:18 March 3783:21495480 3274:″ 3218:′ 3145:redshift 3130:goes as 2990:See also 2864:Varying 2798:Big Bang 2706:D-branes 2638:Don Page 2628:and the 2426:was the 2424:inflaton 1427:geometry 1307:Big Bang 1209:inflaton 916:Big Bang 904:Universe 853:and the 786:Inflaton 776:Overview 754:Stanford 739:inflaton 649:universe 577:Category 496:Suntzeff 456:LemaĂźtre 406:Einstein 371:Aaronson 164:Redshift 66:Universe 59:Big Bang 9824:Science 9752:Physics 9738:Portals 9531:Bibcode 9465:Bibcode 9421:Bibcode 9302:Sources 9244:Bibcode 9179:Bibcode 9116:Bibcode 9053:Bibcode 8992:Bibcode 8925:Bibcode 8890:5899352 8870:Bibcode 8831:2246186 8811:Bibcode 8754:Bibcode 8664:Bibcode 8617:Bibcode 8582:2961922 8562:Bibcode 8479:Bibcode 8444:5951592 8414:Bibcode 8359:Bibcode 8304:Bibcode 8265:Bibcode 8216:Bibcode 8161:Bibcode 8106:Bibcode 8024:Bibcode 7990:4315730 7970:Bibcode 7904:Bibcode 7843:Staff ( 7809:Bibcode 7764:Bibcode 7705:Bibcode 7650:Bibcode 7580:Bibcode 7494:Bibcode 7454:Bibcode 7343:Bibcode 7284:Bibcode 7237:Bibcode 7192:Bibcode 7121:Bibcode 7084:25 June 7026:Bibcode 6860:9857299 6840:Bibcode 6805:20 June 6779:20 June 6715:Bibcode 6611:Bibcode 6548:Bibcode 6536:: A20. 6493:Bibcode 6433:Bibcode 6405:1368964 6377:Bibcode 6314:Bibcode 6236:Bibcode 6224:: A13. 6188:Bibcode 6140:Bibcode 6096:Bibcode 6059:Bibcode 6002:Bibcode 5970:Bibcode 5869:Bibcode 5822:Bibcode 5719:Bibcode 5682:Bibcode 5627:Bibcode 5580:Bibcode 5539:Bibcode 5481:Bibcode 5410:Bibcode 5371:Bibcode 5369:: 719. 5350:Bibcode 5348:: 682. 5305:Bibcode 5256:Bibcode 5179:Bibcode 5121:Bibcode 5077:Bibcode 5040:Bibcode 5008:1447535 4988:Bibcode 4986:p 963. 4982:(1980) 4941:Bibcode 4896:Bibcode 4850:Bibcode 4728:Bibcode 4547:Bibcode 4481:Bibcode 4341:6565101 4321:Bibcode 4264:Bibcode 4192:1386346 4162:Bibcode 4083:14 July 3918:ictp.it 3861:15 July 3763:Bibcode 3694:27 July 3623:tuning. 3459:is the 2954:power!" 2646:entropy 2626:entropy 2195:⁠ 2183:⁠ 2151:Bardeen 1534:History 1389:entropy 926:is one 885:horizon 501:Sunyaev 486:Schmidt 476:Penzias 471:Penrose 446:Huygens 436:Hawking 421:Galileo 9614:  9590:  9566:  9549:  9500:  9483:  9431:  9391:  9372:  9346:  9322:  9288:  9262:  9197:  9134:  9071:  9012:  8951:  8943:  8888:  8829:  8764:  8727:  8682:  8580:  8497:  8442:  8424:  8377:  8322:  8234:  8179:  8124:  8067:  7988:  7961:Nature 7922:  7827:  7782:  7723:  7668:  7606:  7598:  7512:  7422:  7361:  7302:  7210:  7139:  7052:  7044:  6858:  6741:  6733:  6678:  6629:  6574:  6566:  6511:  6451:  6403:  6340:  6332:  6262:  6254:  6030:  5917:  5793:  5766:  5655:  5645:  5428:  5398:: 17. 5323:  5223:  5197:  5006:  4860:  4799:  4746:  4702:  4692:  4682:  4630:  4599:  4565:  4507:  4499:  4429:  4420:  4410:  4373:  4339:  4284:  4190:  4172:  4074:  3896:  3892:–234. 3829:  3823:188736 3821:  3781:  3607:  3586:  3566:  3558:  3535:  3471:  3447:  3426:  3406:  3398:  3390:where 3375:  3343:  3310:  3304:  3284:  3258:  3238:  3185:  3075:Since 2977:, and 2790:before 2448:ad hoc 2344:BICEP2 2293:tensor 2223:tensor 2159:Turner 2149:; and 2011:causal 1643:matter 1641:, nor 1498:, and 1496:strong 1353:matter 1254:photon 1229:before 1173:; the 985:metric 869:Theory 756:, and 750:M.I.T. 678:, and 575:  511:Wilson 506:Tolman 466:Newton 461:Mather 451:Kepler 441:Hubble 401:Ehlers 381:Alpher 376:AlfvĂ©n 284:  262:  234:  176:  159:  151:Future 126:  98:  61:  9776:Stars 9677:arXiv 9662:arXiv 9641:arXiv 9547:S2CID 9521:arXiv 9481:S2CID 9455:arXiv 9411:arXiv 9260:S2CID 9234:arXiv 9195:S2CID 9169:arXiv 9132:S2CID 9106:arXiv 9069:S2CID 8982:arXiv 8949:S2CID 8915:arXiv 8886:S2CID 8860:arXiv 8827:S2CID 8801:arXiv 8725:S2CID 8707:arXiv 8680:S2CID 8654:arXiv 8607:arXiv 8578:S2CID 8552:arXiv 8495:S2CID 8469:arXiv 8440:S2CID 8404:arXiv 8375:S2CID 8349:arXiv 8320:S2CID 8294:arXiv 8255:arXiv 8232:S2CID 8206:arXiv 8177:S2CID 8151:arXiv 8122:S2CID 8096:arXiv 7986:S2CID 7920:S2CID 7894:arXiv 7860:2 May 7825:S2CID 7780:S2CID 7754:arXiv 7721:S2CID 7695:arXiv 7666:S2CID 7640:arXiv 7615:(PDF) 7596:JSTOR 7568:(PDF) 7550:(PDF) 7539:(PDF) 7521:(PDF) 7484:(PDF) 7389:arXiv 7359:S2CID 7333:arXiv 7300:S2CID 7274:arXiv 7208:S2CID 7182:arXiv 7137:S2CID 7111:arXiv 7050:S2CID 7016:arXiv 6981:arXiv 6856:S2CID 6830:arXiv 6739:S2CID 6705:arXiv 6676:S2CID 6666:(3). 6627:S2CID 6601:arXiv 6572:S2CID 6538:arXiv 6509:S2CID 6483:arXiv 6449:S2CID 6401:S2CID 6367:arXiv 6338:S2CID 6304:arXiv 6260:S2CID 6226:arXiv 5888:(PDF) 5855:(PDF) 5653:S2CID 5617:arXiv 5502:(PDF) 5467:(PDF) 5426:S2CID 5400:arXiv 5321:S2CID 5295:arXiv 5195:S2CID 5169:arXiv 5140:(PDF) 5107:(PDF) 5015:(PDF) 4980:ibid. 4966:(PDF) 4840:arXiv 4744:S2CID 4655:: 49. 4563:S2CID 4505:S2CID 4471:arXiv 4337:S2CID 4311:arXiv 4282:S2CID 4254:arXiv 4188:S2CID 4152:arXiv 3827:S2CID 3819:JSTOR 3724:arXiv 3120:power 3110:of a 3044:Notes 2932:BICEP 2086:Linde 1645:) by 1635:space 1415:Dicke 1323:today 889:Earth 859:today 827:field 823:fluid 735:field 491:Smoot 481:Rubin 426:Gamow 411:Ellis 396:Dicke 9612:ISBN 9588:ISBN 9564:ISBN 9498:ISBN 9429:ISBN 9389:ISBN 9370:ISBN 9344:ISBN 9320:ISBN 9286:ISBN 9010:ISSN 8941:ISSN 8911:2008 8527:2015 8400:2003 8345:2004 8065:ISBN 7890:2018 7862:2018 7604:PMID 7510:PMID 7420:ISBN 7270:2006 7178:2014 7086:2014 7058:CERN 7042:PMID 6962:2015 6924:2015 6917:NASA 6898:2014 6807:2014 6781:2014 6731:PMID 6643:See 6564:ISSN 6479:2005 6330:PMID 6252:ISSN 6028:ISBN 6018:See 5944:and 5940:help 5933:See 5915:ISBN 5791:ISBN 5764:ISBN 5643:ISBN 5443:SLAC 5221:ISBN 5004:OSTI 4858:ISBN 4797:ISBN 4700:ISBN 4690:LCCN 4680:ISBN 4628:ISBN 4597:ISBN 4497:PMID 4441:See 4427:ISBN 4418:OCLC 4408:ISBN 4371:ISBN 4204:2006 4085:2019 4072:ISBN 4034:2014 3996:2014 3988:NASA 3968:2014 3894:ISBN 3863:2015 3779:PMID 3696:2014 3162:CERN 3093:and 3088:e.g. 2848:and 2780:and 2776:The 2308:WMAP 2250:WMAP 2157:and 2145:and 2143:Guth 2092:and 2063:... 2047:via 1639:time 1500:weak 1471:The 1409:The 1393:more 1355:and 1343:The 1239:for 1199:and 1180:p=−ρ 1161:, a 922:The 806:and 784:and 719:flat 702:and 431:Guth 9539:doi 9517:314 9473:doi 9451:163 9252:doi 9230:733 9187:doi 9165:736 9124:doi 9102:723 9061:doi 9049:271 9000:doi 8978:101 8933:doi 8878:doi 8819:doi 8772:doi 8750:316 8717:doi 8703:465 8672:doi 8625:doi 8603:694 8570:doi 8487:doi 8465:450 8432:doi 8367:doi 8312:doi 8290:117 8224:doi 8169:doi 8114:doi 8032:doi 8020:298 7978:doi 7966:304 7912:doi 7817:doi 7772:doi 7713:doi 7658:doi 7588:doi 7576:316 7502:doi 7462:doi 7351:doi 7292:doi 7245:doi 7233:129 7200:doi 7129:doi 7107:727 7034:doi 6848:doi 6826:586 6723:doi 6701:112 6668:doi 6619:doi 6597:148 6556:doi 6534:594 6501:doi 6441:doi 6393:hdl 6385:doi 6322:doi 6244:doi 6222:594 6196:doi 6148:doi 6104:doi 6092:117 6067:doi 6055:115 5911:411 5877:doi 5830:doi 5818:108 5727:doi 5715:180 5690:doi 5635:doi 5588:doi 5576:241 5547:doi 5489:doi 5418:doi 5396:594 5313:doi 5264:doi 5187:doi 5129:doi 5085:doi 5048:doi 4996:doi 4912:hdl 4904:doi 4736:doi 4653:47A 4593:489 4555:doi 4543:151 4489:doi 4445:or 4329:doi 4272:doi 4250:382 4180:doi 4148:170 3890:233 3811:doi 3771:doi 2804:'s 2526:GeV 2513:to 2340:GeV 2238:or 2100:or 1622:in 1444:). 1440:or 1383:of 1375:of 1305:in 1223:of 1177:is 760:of 748:of 682:at 674:at 666:at 627:In 9836:: 9723:. 9545:. 9537:. 9529:. 9515:. 9479:. 9471:. 9463:. 9449:. 9427:. 9419:. 9360:; 9258:. 9250:. 9242:. 9228:. 9218:; 9207:^ 9193:. 9185:. 9177:. 9163:. 9153:; 9130:. 9122:. 9114:. 9100:. 9090:; 9067:. 9059:. 9047:. 9008:. 8998:. 8990:. 8976:. 8970:. 8947:. 8939:. 8931:. 8923:. 8909:. 8884:. 8876:. 8868:. 8856:22 8854:. 8848:. 8825:. 8817:. 8809:. 8797:78 8795:. 8770:. 8760:. 8748:. 8723:. 8715:. 8701:. 8678:. 8670:. 8662:. 8650:85 8648:. 8623:. 8615:. 8601:. 8576:. 8568:. 8560:. 8548:89 8546:. 8516:. 8493:. 8485:. 8477:. 8463:. 8438:. 8430:. 8420:. 8412:. 8398:. 8373:. 8365:. 8357:. 8343:. 8318:. 8310:. 8302:. 8288:. 8263:. 8253:. 8230:. 8222:. 8214:. 8202:69 8200:. 8175:. 8167:. 8159:. 8147:63 8145:. 8120:. 8112:. 8104:. 8092:70 8090:. 8055:; 8044:^ 8030:. 8018:. 7984:. 7976:. 7964:. 7918:. 7910:. 7902:. 7888:. 7878:; 7851:. 7823:. 7815:. 7805:28 7803:. 7778:. 7770:. 7762:. 7750:65 7748:. 7742:. 7719:. 7711:. 7703:. 7691:67 7689:. 7664:. 7656:. 7648:. 7636:37 7634:. 7610:. 7602:. 7594:. 7586:. 7574:. 7570:. 7516:. 7508:. 7500:. 7486:. 7460:. 7450:27 7448:. 7434:^ 7403:^ 7357:. 7349:. 7341:. 7329:78 7327:. 7321:. 7298:. 7290:. 7282:. 7268:. 7243:. 7231:. 7206:. 7198:. 7190:. 7176:. 7135:. 7127:. 7119:. 7105:. 7075:. 7048:. 7040:. 7032:. 7024:. 7012:92 7010:. 7004:. 6944:. 6880:. 6854:. 6846:. 6838:. 6824:. 6798:. 6763:. 6737:. 6729:. 6721:. 6713:. 6699:. 6674:. 6652:^ 6625:. 6617:. 6609:. 6595:. 6570:. 6562:. 6554:. 6546:. 6532:. 6507:. 6499:. 6491:. 6477:. 6461:^ 6447:. 6439:. 6429:19 6427:. 6413:^ 6399:. 6391:. 6383:. 6375:. 6363:74 6361:. 6336:. 6328:. 6320:. 6312:. 6300:96 6298:. 6288:; 6272:^ 6258:. 6250:. 6242:. 6234:. 6220:. 6208:^ 6194:. 6184:28 6182:. 6172:; 6168:; 6146:. 6136:49 6134:. 6124:; 6102:. 6090:. 6065:. 6053:. 5998:56 5996:. 5966:33 5964:. 5913:. 5875:. 5865:48 5863:. 5857:. 5842:^ 5828:. 5816:. 5762:. 5758:. 5739:^ 5725:. 5713:. 5688:. 5678:33 5676:. 5651:. 5641:. 5633:. 5625:. 5586:. 5574:. 5568:. 5545:. 5535:91 5533:. 5497:. 5487:. 5477:23 5475:. 5469:. 5454:^ 5424:. 5416:. 5408:. 5394:. 5367:30 5346:30 5344:. 5319:. 5311:. 5303:. 5291:89 5289:. 5262:. 5252:78 5250:. 5244:. 5193:. 5185:. 5177:. 5165:33 5163:. 5157:. 5135:. 5127:. 5117:43 5115:. 5109:. 5083:. 5073:79 5071:. 5046:. 5036:21 5034:. 5010:. 5002:. 4994:. 4984:44 4976:44 4974:. 4968:. 4937:20 4935:. 4910:. 4902:. 4892:79 4890:. 4884:. 4856:. 4848:. 4819:. 4742:. 4734:. 4724:22 4722:. 4688:. 4662:29 4651:. 4626:. 4575:^ 4561:. 4553:. 4541:. 4503:. 4495:. 4487:. 4479:. 4467:73 4465:. 4416:. 4335:. 4327:. 4319:. 4307:18 4305:. 4280:. 4270:. 4262:. 4248:. 4242:. 4223:. 4206:. 4186:. 4178:. 4168:. 4160:. 4146:. 4140:. 4126:^ 4016:. 3985:. 3957:. 3938:. 3934:. 3916:. 3839:^ 3825:. 3817:. 3807:66 3805:. 3791:^ 3777:. 3769:. 3738:^ 3682:. 2973:, 2966:. 2636:. 2475:. 2354:; 2327:. 2266:, 2248:, 2186:1 2161:. 2153:, 1954:12 1637:, 1547:, 1494:, 1293:. 1243:. 1183:. 987:: 935:. 906:– 741:. 694:. 670:, 635:, 631:, 9740:: 9685:. 9679:: 9670:. 9664:: 9649:. 9643:: 9572:. 9553:. 9541:: 9533:: 9523:: 9506:. 9487:. 9475:: 9467:: 9457:: 9437:. 9423:: 9413:: 9397:. 9378:. 9352:. 9328:. 9294:. 9266:. 9254:: 9246:: 9236:: 9201:. 9189:: 9181:: 9171:: 9138:. 9126:: 9118:: 9108:: 9075:. 9063:: 9055:: 9016:. 9002:: 8994:: 8984:: 8955:. 8935:: 8927:: 8917:: 8892:. 8880:: 8872:: 8862:: 8833:. 8821:: 8813:: 8803:: 8778:. 8774:: 8756:: 8731:. 8719:: 8709:: 8686:. 8674:: 8666:: 8656:: 8631:. 8627:: 8619:: 8609:: 8584:. 8572:: 8564:: 8554:: 8529:. 8501:. 8489:: 8481:: 8471:: 8446:. 8434:: 8416:: 8406:: 8381:. 8369:: 8361:: 8351:: 8326:. 8314:: 8306:: 8296:: 8271:. 8267:: 8257:: 8238:. 8226:: 8218:: 8208:: 8183:. 8171:: 8163:: 8153:: 8128:. 8116:: 8108:: 8098:: 8073:. 8038:. 8034:: 8026:: 8002:. 7992:. 7980:: 7972:: 7948:. 7926:. 7914:: 7906:: 7896:: 7864:. 7831:. 7819:: 7811:: 7786:. 7774:: 7766:: 7756:: 7727:. 7715:: 7707:: 7697:: 7672:. 7660:: 7652:: 7642:: 7590:: 7582:: 7504:: 7496:: 7468:. 7464:: 7456:: 7428:. 7397:. 7391:: 7353:: 7345:: 7335:: 7306:. 7294:: 7286:: 7276:: 7251:. 7247:: 7239:: 7214:. 7202:: 7194:: 7184:: 7143:. 7131:: 7123:: 7113:: 7088:. 7060:. 7036:: 7028:: 7018:: 6989:. 6983:: 6964:. 6926:. 6900:. 6862:. 6850:: 6842:: 6832:: 6809:. 6783:. 6745:. 6725:: 6717:: 6707:: 6682:. 6670:: 6633:. 6621:: 6613:: 6603:: 6578:. 6558:: 6550:: 6540:: 6515:. 6503:: 6495:: 6485:: 6455:. 6443:: 6435:: 6407:. 6395:: 6387:: 6379:: 6369:: 6344:. 6324:: 6316:: 6306:: 6266:. 6246:: 6238:: 6228:: 6202:. 6198:: 6190:: 6154:. 6150:: 6142:: 6110:. 6106:: 6098:: 6073:. 6069:: 6061:: 6008:. 6004:: 5976:. 5972:: 5948:. 5942:) 5879:: 5871:: 5836:. 5832:: 5824:: 5799:. 5733:. 5729:: 5721:: 5696:. 5692:: 5684:: 5659:. 5637:: 5629:: 5619:: 5596:. 5590:: 5582:: 5553:. 5549:: 5541:: 5491:: 5483:: 5432:. 5420:: 5412:: 5402:: 5377:. 5373:: 5356:. 5352:: 5327:. 5315:: 5307:: 5297:: 5272:. 5266:: 5258:: 5229:. 5201:. 5189:: 5181:: 5171:: 5131:: 5123:: 5091:. 5087:: 5079:: 5054:. 5050:: 5042:: 4998:: 4990:: 4947:. 4943:: 4918:. 4914:: 4906:: 4898:: 4866:. 4852:: 4842:: 4823:. 4805:. 4750:. 4738:: 4730:: 4706:. 4696:. 4636:. 4605:. 4569:. 4557:: 4549:: 4511:. 4491:: 4483:: 4473:: 4449:. 4424:. 4379:. 4343:. 4331:: 4323:: 4313:: 4288:. 4274:: 4266:: 4256:: 4182:: 4164:: 4154:: 4121:. 4087:. 4036:. 3998:. 3970:. 3942:. 3920:. 3902:. 3865:. 3833:. 3813:: 3785:. 3773:: 3765:: 3732:. 3726:: 3698:. 3610:, 3601:k 3598:l 3595:P 3590:m 3538:, 3530:2 3525:) 3516:k 3513:l 3510:P 3505:m 3493:( 3486:4 3475:m 3441:k 3438:l 3435:P 3430:m 3378:, 3366:k 3363:l 3360:P 3355:m 3326:. 3307:V 3278:V 3271:V 3264:= 3233:2 3228:) 3222:V 3215:V 3208:( 3200:2 3197:1 3191:= 3134:. 3132:k 3128:k 3124:k 3097:. 2883:c 2866:c 2624:( 2616:( 2410:: 2367:r 2356:r 2348:r 2289:s 2286:n 2278:s 2275:n 2271:s 2268:n 2192:2 2189:/ 1969:. 1962:2 1958:N 1949:= 1946:r 1942:, 1937:N 1934:2 1926:1 1923:= 1918:s 1914:n 1888:2 1883:) 1875:2 1870:p 1866:M 1861:/ 1852:3 1848:/ 1844:2 1835:e 1828:1 1824:( 1817:4 1809:= 1806:) 1800:( 1797:V 1769:) 1760:2 1756:M 1752:6 1746:2 1742:R 1736:+ 1733:R 1729:( 1725:x 1720:4 1716:d 1707:2 1704:1 1699:= 1696:S 1681:) 1679:R 1677:( 1675:f 1171:ρ 1167:p 1138:. 1133:2 1125:d 1119:2 1115:r 1111:+ 1106:2 1102:r 1098:d 1089:2 1085:r 1075:1 1071:1 1066:+ 1061:2 1057:t 1053:d 1048:2 1044:c 1039:) 1034:2 1030:r 1020:1 1017:( 1011:= 1006:2 1002:s 998:d 918:. 616:e 609:t 602:v 286:· 264:· 236:· 210:· 178:· 161:· 149:· 128:· 100:· 63:· 27:.

Index

Inflation
Inflation (disambiguation)
Physical cosmology
Full-sky image derived from nine years' WMAP data
Big Bang
Universe
Age of the universe
Chronology of the universe
Inflation
Nucleosynthesis
Gravitational wave (GWB)
Microwave (CMB)
Neutrino (CNB)
Hubble's law
Redshift
Expansion of the universe
FLRW metric
Friedmann equations
Inhomogeneous cosmology
Future of an expanding universe
Ultimate fate of the universe
Lambda-CDM model
Dark energy
Dark matter
Shape of the universe
Galaxy filament
Galaxy formation
Large quasar group
Large-scale structure
Reionization

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑