Knowledge

Cosmic microwave background

Source 📝

12764: 2773:. Before recombination, the Universe consisted of a hot, dense plasma of electrons and baryons. In such a hot dense environment, electrons and protons could not form any neutral atoms. The baryons in such early Universe remained highly ionized and so were tightly coupled with photons through the effect of Thompson scattering. These phenomena caused the pressure and gravitational effects to act against each other, and triggered fluctuations in the photon-baryon plasma. Quickly after the recombination epoch, the rapid expansion of the universe caused the plasma to cool down and these fluctuations are "frozen into" the CMB maps we observe today. 991: 1183: 2782:
most prominent of the foreground effects is the dipole anisotropy caused by the Sun's motion relative to the CMBR background. The dipole anisotropy and others due to Earth's annual motion relative to the Sun and numerous microwave sources in the galactic plane and elsewhere must be subtracted out to reveal the extremely tiny variations characterizing the fine-scale structure of the CMBR background. The detailed analysis of CMBR data to produce maps, an angular power spectrum, and ultimately cosmological parameters is a complicated, computationally difficult problem.
9129:. "Alpher and Herman first calculated the present temperature of the decoupled primordial radiation in 1948, when they reported a value of 5 K. Although it was not mentioned either then or in later publications that the radiation is in the microwave region, this follows immediately from the temperature ... Alpher and Herman made it clear that what they had called "the temperature in the universe" the previous year referred to a blackbody distributed background radiation quite different from the starlight." 8942:"In 1946, Robert Dicke and coworkers at MIT tested equipment that could test a cosmic microwave background of intensity corresponding to about 20K in the microwave region. However, they did not refer to such a background, but only to 'radiation from cosmic matter'. Also, this work was unrelated to cosmology and is only mentioned because it suggests that by 1950, detection of the background radiation might have been technically possible, and also because of Dicke's later role in the discovery". See also 2196: 12740: 11509: 586: 2323: 63: 1837: 1068:
radiation was truly "cosmic". First the intensity vs frequency or spectrum needed to be shown to match a thermal or blackbody source. This was accomplished by 1968 in a series of measurements of the radiation temperature at higher and lower wavelengths. Second the radiation needed be shown to be isotropic, the same from all directions. This was also accomplished by 1970, demonstrating that this radiation was truly cosmic in origin.
12800: 2693:. The CMB dipole moment is interpreted as the peculiar motion of the Earth relative to the CMB. Its amplitude depends on the time due to the Earth's orbit about the barycenter of the solar system. This enables us to add a time-dependent term to the dipole expression. The modulation of this term is 1 year, which fits the observation done by COBE FIRAS. The dipole moment does not encode any primordial information. 12824: 11519: 12776: 11882: 598: 1140:
magnitude. The primary goal of these experiments was to measure the scale of the first acoustic peak, which COBE did not have sufficient resolution to resolve. This peak corresponds to large scale density variations in the early universe that are created by gravitational instabilities, resulting in acoustical oscillations in the plasma. The first peak in the anisotropy was tentatively detected by the
12812: 1872:, or directional dependency, of the cosmic microwave background is divided into two types: primary anisotropy, due to effects that occur at the surface of last scattering and before; and secondary anisotropy, due to effects such as interactions of the background radiation with intervening hot gas or gravitational potentials, which occur between the last scattering surface and the observer. 35: 12788: 1050:—the National Aeronautics and Space Administration's passive communications satellites, which used large earth orbiting aluminized plastic balloons as reflectors to bounce radio signals from one point on the Earth to another. On 20 May 1964 they made their first measurement clearly showing the presence of the microwave background, with their instrument having an excess 4.2K 808: 8190:; DorĂ©, O.; Greason, M. R.; Halpern, M.; Hill, R. S.; Jarosik, N.; Kogut, A.; Komatsu, E.; Limon, M.; Odegard, N.; Meyer, S. S.; Page, L.; Peiris, H. V.; Spergel, D. N.; Tucker, G. S.; Verde, L.; Weiland, J. L.; Wollack, E.; Wright, E. L.; et al. (2007). "Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: temperature analysis". 1689:, it will continue to drop as the universe expands. The intensity of the radiation corresponds to black-body radiation at 2.726 K because red-shifted black-body radiation is just like black-body radiation at a lower temperature. According to the Big Bang model, the radiation from the sky we measure today comes from a spherical surface called 920:. The polarization at each direction in the sky has an orientation described in terms of E-mode and B-mode polarization. The E-mode signal is a factor of 10 less strong than the temperature anisotropy; it supplements the temperature data as they are correlated. The B-mode signal is even weaker but may contain additional cosmological data. 1693:. This represents the set of locations in space at which the decoupling event is estimated to have occurred and at a point in time such that the photons from that distance have just reached observers. Most of the radiation energy in the universe is in the cosmic microwave background, making up a fraction of roughly 10310: 2062:
The CMB photons are scattered by free charges such as electrons that are not bound in atoms. In an ionized universe, such charged particles have been liberated from neutral atoms by ionizing (ultraviolet) radiation. Today these free charges are at sufficiently low density in most of the volume of the
2041:
it took the photons and baryons to decouple, we need a measure of the width of the PVF. The WMAP team finds that the PVF is greater than half of its maximal value (the "full width at half maximum", or FWHM) over an interval of 115,000 years. By this measure, decoupling took place over roughly 115,000
1891:
plasma in the early universe. The pressure of the photons tends to erase anisotropies, whereas the gravitational attraction of the baryons, moving at speeds much slower than light, makes them tend to collapse to form overdensities. These two effects compete to create acoustic oscillations, which give
1067:
The interpretation of the cosmic microwave background was a controversial issue in the late 1960s. Alternative explanations included energy from within the solar system, from galaxies, from intergalactic plasma, from multiple extragalactic radio sources. Two requirements would show that the microwave
2280:
that would impact the polarisation of the cosmic microwave background, creating a specific pattern of B-mode polarization. Detection of this pattern would support the theory of inflation and their strength can confirm and exclude different models of inflation. Claims that this characteristic pattern
1207:
Inspired by the initial COBE results of an extremely isotropic and homogeneous background, a series of ground- and balloon-based experiments quantified CMB anisotropies on smaller angular scales over the next decade. The primary goal of these experiments was to measure the angular scale of the first
934:
The CMB contains the vast majority of photons in the universe by a factor of 400 to 1; the number density of photons in the CMB is one billion times (10) the number density of matter in the universe. Without the expansion of the universe to cause the cooling of the CMB, the night sky would shine as
2797:
that emit in the microwave band; in practice, the galaxy has to be removed, resulting in a CMB map that is not a full-sky map. In addition, point sources like galaxies and clusters represent another source of foreground which must be removed so as not to distort the short scale structure of the CMB
2781:
Raw CMBR data, even from space vehicles such as WMAP or Planck, contain foreground effects that completely obscure the fine-scale structure of the cosmic microwave background. The fine-scale structure is superimposed on the raw CMBR data but is too small to be seen at the scale of the raw data. The
1953:
values of the peaks) are roughly in the ratio 1 : 3 : 5 : ..., while adiabatic density perturbations produce peaks whose locations are in the ratio 1 : 2 : 3 : ... Observations are consistent with the primordial density perturbations being
1076:
In the 1970s numerous studies showed that tiny deviations from isotropy in the CMB could result from events in the early universe. Harrison, Peebles and Yu, and Zel'dovich realized that the early universe would require quantum inhomogeneities that would result in temperature anisotropy at the level
923:
The anisotropy is related to physical origin of the polarization. Excitation of an electron by linear polarized light generates polarized light at 90 degrees to the incident direction. If the incoming radiation is isotropic, different incoming directions create polarizations that cancel out. If the
1054:
which they could not account for. After receiving a telephone call from Crawford Hill, Dicke said "Boys, we've been scooped." A meeting between the Princeton and Crawford Hill groups determined that the antenna temperature was indeed due to the microwave background. Penzias and Wilson received the
2050:
Since the CMB came into existence, it has apparently been modified by several subsequent physical processes, which are collectively referred to as late-time anisotropy, or secondary anisotropy. When the CMB photons became free to travel unimpeded, ordinary matter in the universe was mostly in the
3102:
1957 – Tigran Shmaonov reports that "the absolute effective temperature of the radioemission background ... is 4±3 K". with radiation intensity was independent of either time or direction of observation. Although Shamonov did not recognize it at the time, it is now clear that Shmaonov did
1139:
Inspired by the COBE results, a series of ground and balloon-based experiments measured cosmic microwave background anisotropies on smaller angular scales over the two decades. The sensitivity of the new experiments improved dramatically, with a reduction in internal noise by three orders of
5358:
Bennett, C. L.; (WMAP collaboration); Hinshaw, G.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.; Page, L.; Spergel, D. N.; Tucker, G. S.; Wollack, E.; Wright, E. L.; Barnes, C.; Greason, M. R.; Hill, R. S.; Komatsu, E.; Nolta, M. R.; Odegard, N.; Peiris, H. V.; Verde, L.; Weiland, J. L.;
2186:
can predict it. However, alternative models have their own set of problems and they have only made post-facto explanations of existing observations. Nevertheless, these alternatives have played an important historic role in providing ideas for and challenges to the standard explanation.
2865:
problem, the greatest modes will never be as well measured as the small angular scale modes. The analyses were performed on two maps that have had the foregrounds removed as far as possible: the "internal linear combination" map of the WMAP collaboration and a similar map prepared by
1704:
Two of the greatest successes of the Big Bang theory are its prediction of the almost perfect black body spectrum and its detailed prediction of the anisotropies in the cosmic microwave background. The CMB spectrum has become the most precisely measured black body spectrum in nature.
2889:
is consistent with the data at the 10% level and that the observed octupole is not remarkable. Carefully accounting for the procedure used to remove the foregrounds from the full sky map further reduces the significance of the alignment by ~5%. Recent observations with the
1935:
In an isocurvature density perturbation, the sum (over different types of particle) of the fractional additional densities is zero. That is, a perturbation where at some spot there is 1% more energy in baryons than average, 1% more energy in photons than average, and 2%
1980:
The depth of the LSS refers to the fact that the decoupling of the photons and baryons does not happen instantaneously, but instead requires an appreciable fraction of the age of the universe up to that era. One method of quantifying how long this process took uses the
2313:
experiment. Compared to BICEP2, POLARBEAR focuses on a smaller patch of the sky and is less susceptible to dust effects. The team reported that POLARBEAR's measured B-mode polarization was of cosmological origin (and not just due to dust) at a 97.2% confidence level.
1269:
used symmetric, rapid-multi-modulated scanning, rapid switching radiometers at five frequencies to minimize non-sky signal noise. The data from the mission was released in five installments, the last being the nine year summary. The results are broadly consistent
774:
have been used to measure these temperature inhomogeneities. The anisotropy structure is determined by various interactions of matter and photons up to the point of decoupling, which results in a characteristic lumpy pattern that varies with angular scale. The
1109:. This theory of rapid spatial expansion gave an explanation for large-scale isotropy by allowing causal connection just before the epoch of last scattering. With this and similar theories, detailed prediction encouraged larger and more ambitious experiments. 2259:
shortly after the big bang. However, gravitational lensing of the stronger E-modes can also produce B-mode polarization. Detecting the original B-modes signal requires analysis of the contamination caused by lensing of the relatively strong E-mode signal.
2894:, which is very much more sensitive than WMAP and has a larger angular resolution, record the same anomaly, and so instrumental error (but not foreground contamination) appears to be ruled out. Coincidence is a possible explanation, chief scientist from 1718:, and down to a temperature of about 5 K. They were slightly off with their estimate, but they had the right idea. They predicted the CMB. It took another 15 years for Penzias and Wilson to discover that the microwave background was actually there. 1093:
After a lull in the 1970s caused in part by the many experimental difficulties in measuring CMB at high precision, increasingly stringent limits on the anisotropy of the cosmic microwave background were set by ground-based experiments during the 1980s.
2827:
With the increasingly precise data provided by WMAP, there have been a number of claims that the CMB exhibits anomalies, such as very large scale anisotropies, anomalous alignments, and non-Gaussian distributions. The most longstanding of these is the
2122:
The standard cosmology that includes the Big Bang "enjoys considerable popularity among the practicing cosmologists" However, there are challenges to the standard big bang framework for explaining CMB data. In particular standard cosmology requires
6642:
WMAP Collaboration; Verde, L.; Peiris, H. V.; Komatsu, E.; Nolta, M. R.; Bennett, C. L.; Halpern, M.; Hinshaw, G.; et al. (2003). "First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters".
1621:
field that caused the inflation event. Long before the formation of stars and planets, the early universe was more compact, much hotter and, starting 10 seconds after the Big Bang, filled with a uniform glow from its white-hot fog of interacting
931:. These are also at the focus of an active research effort with the hope of a first measurement within the forthcoming decades, as they contain a wealth of information about the primordial universe and the formation of structures at late time. 912:
at higher multipoles have been measured, consistent with galactic motion. Despite the very small degree of anisotropy in the CMB, many aspects can be measured with high precision and such measurements are critical for cosmological theories.
3223:(COBE) satellite measures the black body form of the CMB spectrum with exquisite precision, and shows that the microwave background has a nearly perfect black-body spectrum with T = 2.73 K and thereby strongly constrains the density of the 4414:"Back to New Jersey, Where the Universe Began - A half-century ago, a radio telescope in Holmdel, N.J., sent two astronomers 13.8 billion years back in time — and opened a cosmic window that scientists have been peering through ever since" 8311:
O'Dwyer, I.; Eriksen, H. K.; Wandelt, B. D.; Jewell, J. B.; Larson, D. L.; GĂłrski, K. M.; Banday, A. J.; Levin, S.; Lilje, P. B. (2004). "Bayesian Power Spectrum Analysis of the First-Year Wilkinson Microwave Anisotropy Probe Data".
1925:, etc.) is the same. That is, if at one place there is a 1% higher number density of baryons than average, then at that place there is a 1% higher number density of photons (and a 1% higher number density in neutrinos) than average. 2462: 6946:
Ade, P. A. R.; Aikin, R. W.; Barkats, D.; Benton, S. J.; Bischoff, C. A.; Bock, J. J.; Brevik, J. A.; Buder, I.; Bullock, E.; Dowell, C. D.; Duband, L.; Filippini, J. P.; Fliescher, S.; Golwala, S. R.; Halpern, M. (2014-06-19).
1460:) of the cosmic microwave background. The map suggests the universe is slightly older than researchers expected. According to the map, subtle fluctuations in temperature were imprinted on the deep sky when the cosmos was about 10089:
A pedagogic, step-by-step introduction to the cosmic microwave background power spectrum analysis suitable for those with an undergraduate physics background. More in depth than typical online sites. Less dense than cosmology
1558:, with the particular design goal of measuring the faint, diffuse emission from the cosmic microwave background (CMB). Key results include a wide and deep survey of discovering hundreds of clusters of galaxies using the 1665:
event happened when the temperature was around 3000 K or when the universe was approximately 379,000 years old. As photons did not interact with these electrically neutral atoms, the former began to travel
6701:
Hinshaw, G.; Larson, D.; Komatsu, E.; Spergel, D. N.; Bennett, C. L.; Dunkley, J.; Nolta, M. R.; Halpern, M.; Hill, R. S.; Odegard, N.; Page, L.; Smith, K. M.; Weiland, J. L.; Gold, B.; Jarosik, N. (2013-09-20).
5415:
Bennett, C. L.; Larson, D.; Weiland, J. L.; Jarosik, N.; Hinshaw, G.; Odegard, N.; Smith, K. M.; Hill, R. S.; Gold, B.; Halpern, M.; Komatsu, E.; Nolta, M. R.; Page, L.; Spergel, D. N.; Wollack, E. (2013-09-20).
1713:
In the late 1940s Alpher and Herman reasoned that if there was a Big Bang, the expansion of the universe would have stretched the high-energy radiation of the very early universe into the microwave region of the
2127:
of some free parameters, with different values supported by different experimental data. As an example of the fine-tuning issue, standard cosmology cannot predict the present temperature of the relic radiation,
3040:
calculates a temperature of 50 K (assuming a 3-billion year old universe), commenting it "... is in reasonable agreement with the actual temperature of interstellar space", but does not mention background
723:. As the universe expanded, this plasma cooled to the point where protons and electrons combined to form neutral atoms of mostly hydrogen. Unlike the plasma, these atoms could not scatter thermal radiation by 2618: 1948:
The CMB spectrum can distinguish between these two because these two types of perturbations produce different peak locations. Isocurvature density perturbations produce a series of peaks whose angular scales
3640:
The Receiver Lab Telescope (RLT), an 80 cm (31 in) instrument, is higher at 5,525 m (18,125 ft), but is not permanent as it is fixed to the roof of a movable shipping container. The 2009
1329:
In 2001 The DASI team announced the most detailed measurements of the temperature, or power spectrum of the cosmic microwave background (CMB). These results contained the first detection of the 2nd and 3rd
1243:(CBI). DASI made the first detection of the polarization of the CMB and the CBI provided the first E-mode polarization spectrum with compelling evidence that it is out of phase with the T-mode spectrum. 1976:
These effects contribute about equally to the suppression of anisotropies at small scales and give rise to the characteristic exponential damping tail seen in the very small angular scale anisotropies.
10436: 7841:
Jaffe, T.R.; Banday, A. J.; Eriksen, H. K.; GĂłrski, K. M.; Hansen, F. K. (2005). "Evidence of vorticity and shear at large angular scales in the WMAP data: a violation of cosmological isotropy?".
787:
displaying a sequence of peaks and valleys. The peak values of this spectrum hold important information about the physical properties of the early universe: the first peak determines the overall
3099:= 33 cm, initially reported a near-isotropic background radiation of 3 kelvins, plus or minus 2; he did not recognize the cosmological significance and later revised the error bars to 20K. 9044:; no. 4, p. 96–102. Finlay-Freundlich gave two extreme values of 1.9K and 6.0K in Finlay-Freundlich, E.: 1954, "Red shifts in the spectra of celestial bodies", Phil. Mag., Vol. 45, pp. 303–319. 1763:
Since decoupling, the color temperature of the background radiation has dropped by an average factor of 1,089 due to the expansion of the universe. As the universe expands, the CMB photons are
823:" were included here to show the measured data points, the true error bars are too small to be seen even in an enlarged image, and it is impossible to distinguish the observed data from the 9205:
Delannoy, J., Denisse, J. F., Le Roux, E., & Morlet, B. (1957). Mesures absolues de faibles densités de flux de rayonnement à 900 MHz. Annales d'Astrophysique, Vol. 20, p. 222, 20, 222.
3508:, a probe from an alien civilization compromises instruments monitoring the CMBR in order to deceive a character into believing the civilization has the power to manipulate the CMBR itself. 1903:
of the universe). The next peak—ratio of the odd peaks to the even peaks—determines the reduced baryon density. The third peak can be used to get information about the dark-matter density.
1223:
reported that the highest power fluctuations occur at scales of approximately one degree. Together with other cosmological data, these results implied that the geometry of the universe is
5568:
Fowler, J. W.; Niemack, M. D.; Dicker, S. R.; Aboobaker, A. M.; Ade, P. A. R.; Battistelli, E. S.; Devlin, M. J.; Fisher, R. P.; Halpern, M.; Hargrave, P. C.; Hincks, A. D. (2007-06-10).
2537: 11199: 2063:
universe that they do not measurably affect the CMB. However, if the IGM was ionized at very early times when the universe was still denser, then there are two main effects on the CMB:
1892:
the microwave background its characteristic peak structure. The peaks correspond, roughly, to resonances in which the photons decouple when a particular mode is at its peak amplitude.
3495:, CMBR is explained as the encrypted transmissions of an ancient civilization. This allows the Jovian "blimps" to have a society older than the currently-observed age of the universe. 1741:
off free electrons. When this occurred some 380,000 years after the Big Bang, the temperature of the universe was about 3,000 K. This corresponds to an ambient energy of about
869:. Variations in intensity are expressed as variations in temperature. The blackbody temperature uniquely characterizes the intensity of the radiation at all wavelengths; a measured 7447:
Planck Collaboration Team (9 February 2016). "Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes".
3114:
publish a brief paper suggesting microwave searches for the black-body radiation predicted by Gamow, Alpher, and Herman, where they name the CMB radiation phenomenon as detectable.
2082:
around 10. The detailed provenance of this early ionizing radiation is still a matter of scientific debate. It may have included starlight from the very first population of stars (
1972:
the finite depth of the last scattering surface (LSS), which causes the mean free path to increase rapidly during decoupling, even while some Compton scattering is still occurring.
9217: 2366: 964:
showed in 1934 that expansion of the universe would cool blackbody radiation while maintaining a thermal spectrum. The cosmic microwave background was first predicted in 1948 by
9721: 3011:
first used in print: "When trials with wavelengths as low as 18 cm. were made known, there was undisguised surprise+that the problem of the micro-wave had been solved so soon."
1098:, a Soviet cosmic microwave background anisotropy experiment on board the Prognoz 9 satellite (launched 1 July 1983), gave the first upper limits on the large-scale anisotropy. 2929:, or another similar fate, the cosmic microwave background will continue redshifting until it will no longer be detectable, and will be superseded first by the one produced by 1906:
The locations of the peaks give important information about the nature of the primordial density perturbations. There are two fundamental types of density perturbations called
7413: 1914:. A general density perturbation is a mixture of both, and different theories that purport to explain the primordial density perturbation spectrum predict different mixtures. 4102: 2375: 3344:
for his groundbreaking work in nucleosynthesis and prediction that the universe expansion leaves behind background radiation, thus providing a model for the Big Bang theory.
2858:. A number of groups have suggested that this could be the signature of new physics at the greatest observable scales; other groups suspect systematic errors in the data. 2492: 3432:
2015 – On January 30, 2015, the same team of astronomers from BICEP2 withdrew the claim made on the previous year. Based on the combined data of BICEP2 and Planck, the
2089:
The time following the emission of the cosmic microwave background—and before the observation of the first stars—is semi-humorously referred to by cosmologists as the
1402:
process. Located 40 km from San Pedro de Atacama, at an altitude of 5,190 metres (17,030 ft), it was one of the highest ground-based telescopes in the world.
2785:
In practice it is hard to take the effects of noise and foreground sources into account. In particular, these foregrounds are dominated by galactic emissions such as
12443: 11683: 6396:
Noterdaeme, P.; Petitjean, P.; Srianand, R.; Ledoux, C.; LĂłpez, S. (February 2011). "The evolution of the cosmic microwave background temperature. Measurements of T
2180: 2153: 187: 10857: 1046:
had built a Dicke radiometer that they intended to use for radio astronomy and satellite communication experiments. The antenna was constructed in 1959 to support
2251:
B-modes are expected to be an order of magnitude weaker than the E-modes. The former are not produced by standard scalar type perturbations, but are generated by
1453: 10749: 5788: 1127:
mission clearly confirmed the primary anisotropy with the Differential Microwave Radiometer instrument, publishing their findings in 1992. The team received the
8426:
Bielewicz, P.; Eriksen, H. K.; Banday, A. J.; GĂłrski, K. M.; Lilje, P. B. (2005). "Multipole vector anomalies in the first-year WMAP data: a cut-sky analysis".
7535:
The Polarbear Collaboration (2014). "A Measurement of the Cosmic Microwave Background B-Mode Polarization Power Spectrum at Sub-Degree Scales with POLARBEAR".
2100:
Two other effects which occurred between reionization and our observations of the cosmic microwave background, and which appear to cause anisotropies, are the
10151: 6382: 9589: 4423: 2086:
stars), supernovae when these first stars reached the end of their lives, or the ionizing radiation produced by the accretion disks of massive black holes.
9557: 7590: 4481: 927:
Other than the temperature and polarization anisotropy, the CMB frequency spectrum is expected to feature tiny departures from the black-body law known as
795:, respectively. Extracting fine details from the CMB data can be challenging, since the emission has undergone modification by foreground features such as 2207:
at the level of a few microkelvin. There are two types of polarization, called E-mode (or gradient-mode) and B-mode (or curl mode). This is in analogy to
876:
The radiation is remarkably uniform across the sky, very unlike the almost point-like structure of stars or clumps of stars in galaxies. The radiation is
4725:
Partridge, R. Bruce (2019-04-04). "The cosmic microwave background: from discovery to precision cosmology". In Kragh, Helge; Longair, Malcolm S. (eds.).
2704:
relative to the reference frame of the CMB (also called the CMB rest frame, or the frame of reference in which there is no motion through the CMB). The
11616: 10171: 2074:) induces polarization anisotropies on large angular scales. This broad angle polarization is correlated with the broad angle temperature perturbation. 985: 686: 558: 10176: 8487: 8030: 4840: 3081:
estimate "the temperature in the universe" at 5 K. Although they do not specifically mention microwave background radiation, it may be inferred.
2902:
suggested coincidence and human psychology were involved, "I do think there is a bit of a psychological effect; people want to find unusual things."
2766:, is considered to be the result of perturbations of the density in the early Universe, before the recombination epoch at a redshift of around  11626: 6519: 3551: 1954:
entirely adiabatic, providing key support for inflation, and ruling out many models of structure formation involving, for example, cosmic strings.
1457: 928: 2108:, which causes photons from the Cosmic Microwave Background to be gravitationally redshifted or blueshifted due to changing gravitational fields. 10631: 10242: 9689: 1177: 10847: 10320: 5059:
Miller, A. D.; et al. (1999). "A Measurement of the Angular Power Spectrum of the Microwave Background Made from the High Chilean Andes".
1343: 1149: 9054:
McKellar, A. (1941). "Molecular Lines from the Lowest States of Diatomic Molecules Composed of Atoms Probably Present in Interstellar Space".
6052: 2801:
Constraints on many cosmological parameters can be obtained from their effects on the power spectrum, and results are often calculated using
2078:
Both of these effects have been observed by the WMAP spacecraft, providing evidence that the universe was ionized at very early times, at a
1120:) satellite orbited Earth in 1989–1996 detected and quantified the large scale anisotropies at the limit of its detection capabilities. The 10837: 10356: 3311: 1849: 1438: 628: 9992: 8611: 3352: 2662:
with one standard deviation confidence. This term must be measured with absolute temperature devices, such as the FIRAS instrument on the
1425:, was launched in May 2009 and performed an even more detailed investigation until it was shut down in October 2013. Planck employed both 12490: 9271:
Doroshkevich, A. G.; Novikov, I.D. (1964). "Mean Density of Radiation in the Metagalaxy and Certain Problems in Relativistic Cosmology".
8301:
This paper states, "Not surprisingly, the two most contaminated multipoles are , which most closely trace the galactic plane morphology."
2025:
The maximum of the PVF (the time when it is most likely that a given CMB photon last scattered) is known quite precisely. The first-year
1786:, can be shown to be proportional to the color temperature of the CMB as observed in the present day (2.725 K or 0.2348 meV): 12725: 11555: 10772: 9732: 2554: 2330:
The CMB angular anisotropies are usually presented in terms of power per multipole. The angular the map of temperature across the sky,
8625: 12514: 12260: 10538: 10144: 7424: 5177:
Hanany, S.; et al. (2000). "MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10'–5°".
3590: 755:
refers to a shell at the right distance in space so photons are now received that were originally emitted at the time of decoupling.
11477: 11228: 10951: 10788: 5405:
This paper warns that "the statistics of this internal linear combination map are complex and inappropriate for most CMB analyses."
2933:, and perhaps, later by the background radiation fields of processes that may take place in the far future of the universe such as 2843:, spherical harmonic) has a low amplitude compared to the predictions of the Big Bang. In particular, the quadrupole and octupole ( 2051:
form of neutral hydrogen and helium atoms. However, observations of galaxies today seem to indicate that most of the volume of the
3169:
theoretically predict microwave background fluctuation amplitudes created by photons traversing time-dependent wells of potential.
1875:
The structure of the cosmic microwave background anisotropies is principally determined by two effects: acoustic oscillations and
12874: 8192: 6645: 5361: 3642: 2909:
data finds a dipole significantly different from the one extracted from the CMB anisotropy. This difference is conflict with the
5232:
de Bernardis, P.; et al. (2000). "A flat Universe from high-resolution maps of the cosmic microwave background radiation".
3052:
theory, derives a blackbody temperature for intergalactic space of 2.3 K and in the following year values of 1.9K and 6.0K.
2871: 2790: 12296: 12250: 11703: 10411: 10391: 5359:
et al. (2003). "First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: preliminary maps and basic results".
12434: 11189: 10911: 10396: 10232: 10070: 10051: 10029: 9255: 9099: 9021: 8935: 8897: 6249: 6212: 5929: 5043: 4744: 4270: 2104:, where a cloud of high-energy electrons scatters the radiation, transferring some of its energy to the CMB photons, and the 1539: 1395: 1304: 12854: 11918: 11867: 11165: 11059: 10279: 10137: 7068:
Seljak, U.; Zaldarriaga M. (March 17, 1997). "Signature of Gravity Waves in the Polarization of the Microwave Background".
3289: 2026: 1252: 767: 362: 39: 4975:
Bennett, C.L.; et al. (1996). "Four-Year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results".
2055:(IGM) consists of ionized material (since there are few absorption lines due to hydrogen atoms). This implies a period of 12844: 11796: 11157: 10421: 8808:
Adams, Fred C.; Laughlin, Gregory (1997). "A dying universe: The long-term fate and evolution of astrophysical objects".
3271: 2906: 2240: 2067:
Small scale anisotropies are erased. (Just as when looking at an object through fog, details of the object appear fuzzy.)
1840:
The power spectrum of the cosmic microwave background radiation temperature anisotropy in terms of the angular scale (or
1296: 1288: 1236: 7174:
Zaldarriaga, M.; Seljak U. (July 15, 1998). "Gravitational lensing effect on cosmic microwave background polarization".
5641:
Marrone; et al. (2005). "Observations in the 1.3 and 1.5 THz Atmospheric Windows with the Receiver Lab Telescope".
3512: 2037:) has a maximum as 372,000 years. This is often taken as the "time" at which the CMB formed. However, to figure out how 12171: 10991: 10098: 5964: 5507:
Leitch, E.M.; et al. (December 2002). "Measurement of polarization with the Degree Angular Scale Interferometer".
4413: 2870:
and others. Later analyses have pointed out that these are the modes most susceptible to foreground contamination from
5675: 12542: 12176: 11631: 10827: 10649: 10592: 10381: 9126: 8991: 8639:
Secrest, Nathan J.; Hausegger, Sebastian von; Rameez, Mohamed; Mohayaee, Roya; Sarkar, Subir; Colin, Jacques (2021).
5116: 3620: 2954: 1617:
that smoothed out nearly all irregularities. The remaining irregularities were caused by quantum fluctuations in the
571: 9814:
Planck Collaboration; et al. (2020). "Planck 2018 results. I. Overview and the cosmological legacy of Planck".
12869: 11522: 11388: 10757: 10659: 10099:
Audio: Fraser Cain and Dr. Pamela Gay – Astronomy Cast. The Big Bang and Cosmic Microwave Background – October 2006
8255:
Tegmark, M.; de Oliveira-Costa, A.; Hamilton, A. (2003). "A high resolution foreground cleaned CMB map from WMAP".
5730:
Planck Collaboration (2016). "Planck 2015 results. XIII. Cosmological parameters (See Table 4 on page 31 of pfd)".
5035: 4511: 3578: 3557: 3330: 3202: 3186: 2326:
Example Multipole Power Spectrum. WMAP Data are represented as points, curves correspond to the best-fit LCDM model
1559: 621: 12763: 12496: 9626:
Ade, P.A.R. (BICEP2 Collaboration) (2014). "Detection of B-Mode Polarization at Degree Angular Scales by BICEP2".
9600: 7788:
Bernui, A.; Mota, B.; Rebouças, M. J.; Tavakol, R. (2007). "Mapping the large-scale anisotropy in the WMAP data".
5703: 3292:
spacecraft produces an even higher quality map at low and intermediate resolution of the whole sky (WMAP provides
2497: 1921:
In an adiabatic density perturbation, the fractional additional number density of each type of particle (baryons,
12209: 11724: 11263: 10881: 10586: 10491: 3322: 3004:
calculates that the non-thermal spectrum of cosmic rays in the galaxy has an effective temperature of 2.8 K.
1495:. On 5 February 2015, new data was released by the Planck mission, according to which the age of the universe is 204: 8877: 4446: 3070:
for the interstellar medium by comparing the population of CN doublet lines measured by W. S. Adams in a B star.
12864: 12859: 12312: 11786: 11621: 11548: 11244: 10981: 10817: 10446: 9944: 9486:
A. Readhead et al., "Polarization observations with the Cosmic Background Imager", Science 306, 836–844 (2004).
7622: 6143: 5994:"Clarifying inflation models: The precise inflationary potential from effective field theory and the WMAP data" 4231: 3500: 3198: 1752:
ionization energy of hydrogen. This epoch is generally known as the "time of last scattering" or the period of
1085:, calculated the observable imprint that these inhomogeneities would have on the cosmic microwave background. 669:, the background space between stars and galaxies is almost completely dark. However, a sufficiently sensitive 566: 290: 280: 7501: 7283: 6881:
Kovac, J. M.; Leitch, E. M.; Pryke, C.; Carlstrom, J. E.; Halverson, N. W.; Holzapfel, W. L. (December 2002).
4163:"Alternative explanations of the cosmic microwave background: A historical and an epistemological perspective" 3033:
predicts "... radiation from cosmic matter" at < 20 K, but did not refer to background radiation.
12743: 12485: 12390: 12320: 11729: 11657: 10667: 10531: 10376: 8755:
Krauss, Lawrence M.; Scherrer, Robert J. (2007). "The return of a static universe and the end of cosmology".
8314: 7284:"Detection of B-mode polarization in the Cosmic Microwave Background with data from the South Pole Telescope" 7121:
Kamionkowski, M.; Kosowsky A. & Stebbins A. (1997). "A Probe of Primordial Gravity Waves and Vorticity".
4977: 4930: 3566: 3382: 2090: 1002:
The first published recognition of the CMB radiation as a detectable phenomenon appeared in a brief paper by
976:. Alpher and Herman were able to estimate the temperature of the cosmic microwave background to be 5 K. 209: 132: 12453: 4555:
This basic design for a radiometer has been used in most subsequent cosmic microwave background experiments.
4040:
The Planck Collaboration (2014), "Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove",
3988:
The Planck Collaboration (2020), "Planck 2018 results. I. Overview, and the cosmological legacy of Planck",
1467:
years old. The imprint reflects ripples that arose as early, in the existence of the universe, as the first
12307: 11431: 11109: 11009: 10366: 10212: 5114:
Melchiorri, A.; et al. (2000). "A Measurement of Ω from the North American Test Flight of Boomerang".
3888: 3478:, was built to study patterns in the CMBR which is a sentient message left over from the beginning of time. 3318: 3194: 2548: 2101: 1433:
technology and measured the CMB at a smaller scale than WMAP. Its detectors were trialled in the Antarctic
1331: 1208:
acoustic peak, for which COBE did not have sufficient resolution. These measurements were able to rule out
1043: 820: 2966: 2333: 897: 12348: 12082: 12067: 11343: 11209: 11117: 10931: 10733: 10582: 10441: 10401: 10361: 9502: 8106:
Sawangwit, Utane; Shanks, Tom (2010). "Lambda-CDM and the WMAP Power Spectrum Beam Profile Sensitivity".
3488: 3260: 3259:
1999 – First measurements of acoustic oscillations in the CMB anisotropy angular power spectrum from the
3253: 1587: 1572: 1441:) experiment—which has produced the most precise measurements at small angular scales to date—and in the 1371: 1364: 1300: 1141: 1039: 614: 590: 11173: 7353: 6530: 4167:
Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics
3092: 1231:
provided measurements of the fluctuations with higher accuracy over the next three years, including the
12754: 12635: 12077: 12030: 11842: 11827: 11652: 11588: 10683: 10257: 10093: 9867:
Planck Collaboration; et al. (2020). "Planck 2018 results. V. CMB power spectra and likelihoods".
9424:
Readhead, A. C. S.; et al. (2004). "Polarization Observations with the Cosmic Background Imager".
9333: 9013: 6455: 6200: 4258: 3572: 3545: 3242: 3220: 3130: 2663: 2306: 1191: 1124: 1117: 816: 776: 763: 550: 356: 336: 144: 89: 8699: 6312: 5306:; et al. (2003). "Observational constraints on cosmic string production during brane inflation". 4162: 3725: 1895:
The peaks contain interesting physical signatures. The angular scale of the first peak determines the
1737:
atoms. This event made the universe nearly transparent to radiation because light was no longer being
12665: 12291: 11972: 11698: 11541: 10971: 10891: 10608: 10598: 10202: 8944:
Dicke, R. H.; et al. (1946). "Atmospheric Absorption Measurements with a Microwave Radiometer".
8810: 7537: 4588: 3801: 3341: 1753: 1662: 1642: 1562:, a sensitive 5 arcminute CMB power spectrum survey, and the first detection of B-mode polarized CMB. 1011: 990: 956:
speculated that remnants of the early universe may be observable as radiation, but his candidate was
788: 748: 728: 182: 9968: 8519: 8224: 6487: 6111: 5881: 4566:"The Cosmic Microwave Background Radiation (Nobel Lecture) by Robert Wilson 8 Dec 1978, p. 474" 1808:
and its faint but measured anisotropy lend strong support for the Big Bang model in general and the
12879: 12690: 12240: 12000: 11911: 11862: 11667: 11512: 11181: 11149: 11049: 10725: 10613: 10524: 10406: 10122: 7676:
Shosh, S. (2016). "Dipole Modulation of Cosmic Microwave Background Temperature and Polarization".
6775: 6204: 4218: 3539: 3378: 3304: 3278: 3111: 2818: 2802: 2547:
is the azimuthal number. The azimuthal variation is not significant and is removed by applying the
1857: 1715: 1555: 1547: 1320: 1240: 351: 116: 6060: 4565: 12419: 12341: 11961: 11952: 11852: 11421: 11411: 10875: 10741: 9628: 7963: 7731:"Non-Gaussian Signatures in the five-year WMAP data as identified with isotropic scaling indices" 7288: 6526: 4797:
Peebles, P. J. E.; Yu, J. T. (1970). "Primeval Adiabatic Perturbation in an Expanding Universe".
4726: 4091:
Hu, Wayne, and Martin White. "A CMB polarization primer." arXiv preprint astro-ph/9706147 (1997).
3602: 3149: 3045: 2309:. In October 2014, a measurement of the B-mode polarization at 150 GHz was published by the 2094: 1772: 1468: 319: 199: 9245: 9091: 9085: 6703: 6570: 6555: 5956: 5946: 5921: 5417: 2467: 12645: 12508: 12414: 12372: 12046: 12010: 11760: 11133: 11019: 10315: 10207: 9273: 8514: 8219: 6482: 6342: 6106: 5876: 5569: 4385: 3596: 3492: 3367: 3267:
makes higher quality maps at intermediate resolution, and confirms that the universe is "flat".
3154: 2910: 2814: 2117: 2105: 1969:
of the photons as the primordial plasma becomes increasingly rarefied in an expanding universe,
1957:
Collisionless damping is caused by two effects, when the treatment of the primordial plasma as
1768: 1757: 1671: 1591: 1503: 1056: 917: 901: 870: 732: 10129: 9118: 8927: 5570:"Optical design of the Atacama Cosmology Telescope and the Millimeter Bolometric Array Camera" 4262: 4252: 12849: 12650: 12255: 12194: 11806: 11662: 11426: 11393: 11313: 10921: 10867: 10807: 10707: 10351: 9683: 9007: 8982: 8428: 7662: 6825: 6586: 5179: 5061: 4799: 4687: 4652: 4630: 4221:
in .S. Navas et al. (Particle Data Group), to be published in Phys. Rev. D 110, 030001 (2024)
3944:
The Planck Collaboration (2020), "Planck 2018 results V. CMB power spectra and likelihoods",
3515:
lists several astronomical objects with their distances – the CMB is mentioned with 430 · 10
3433: 3422: 3351:
results are released, confirming previous analysis, correcting several points, and including
3122: 2851: 2256: 2124: 1896: 1821: 1771:
to a parameter that describes the relative expansion of the universe over time, known as the
1610: 1472: 1418: 1335: 1182: 1153: 1031: 900:
cosmic rest frame as it moves at 369.82 Â± 0.11 km/s towards the constellation
744: 694: 524: 326: 268: 9890: 9837: 9731: 9599: 7811: 7470: 7423: 7379: 6791: 6423: 6192: 5753: 4894: 4063: 4011: 3967: 3914: 1265:, to make much more precise measurements of the large scale anisotropies over the full sky. 12555: 12481: 12325: 11927: 11837: 11494: 11283: 11141: 10699: 10675: 10486: 10476: 10431: 10386: 10330: 10305: 9886: 9833: 9647: 9445: 9382: 9282: 9152: 9063: 8955: 8829: 8774: 8721: 8662: 8577: 8506: 8447: 8392: 8333: 8276: 8211: 8150: 8049: 7982: 7919: 7860: 7807: 7752: 7695: 7556: 7466: 7375: 7307: 7248: 7193: 7140: 7087: 7031: 6970: 6904: 6847: 6787: 6733: 6664: 6605: 6474: 6419: 6284: 6237: 6098: 6017: 5868: 5807: 5749: 5656: 5591: 5526: 5447: 5380: 5327: 5253: 5198: 5135: 5080: 4996: 4939: 4890: 4849: 4808: 4771: 4736: 4661: 4597: 4520: 4342: 4297: 4184: 4124: 4059: 4007: 3963: 3922: 3910: 3820: 3762: 3691: 3407: 3297: 3264: 3224: 3134: 2302: 2282: 2204: 2158: 2131: 2052: 1853: 1817: 1535: 1528: 1347: 1339: 1220: 1145: 1019: 1015: 995: 847: 537: 509: 331: 28: 9087:
Gravitation and cosmology: principles and applications of the general theory of relativity
6948: 3403:
is released, improving the measurements of WMAP and extending them to much smaller scales.
2994:
the effective temperature corresponding to this density is 3.18° absolute ... black body".
1940:
energy in neutrinos than average, would be a pure isocurvature perturbation. Hypothetical
1649:
cooling caused the energy density of the plasma to decrease until it became favorable for
1219:
During the 1990s, the first peak was measured with increasing sensitivity and by 2000 the
8: 12828: 12630: 12625: 12615: 12447: 12396: 12214: 12199: 12025: 11956: 11904: 11857: 11811: 11688: 11598: 11578: 11467: 11278: 11273: 11268: 11125: 11029: 10901: 10496: 10268: 10228: 9922:
Stargate Universe - Robert Carlyle talks about background radiation and Destiny's mission
9525: 6193: 5786:; P. A. R. Ade; K. A. Aird; et al. (May 2011). "The 10 Meter South Pole Telescope". 5482: 3528:, a mysterious television broadcast is discovered within the Cosmic Microwave Background. 3451: 3444: 3411: 3400: 3393: 3177: 2891: 2369: 2290: 2277: 1813: 1805: 1595: 1551: 1449: 1199: 909: 905: 851: 771: 720: 678: 662: 658: 429: 399: 346: 302: 194: 84: 12620: 9756: 9651: 9449: 9386: 9286: 9156: 9067: 8959: 8833: 8778: 8725: 8666: 8581: 8510: 8451: 8396: 8337: 8280: 8215: 8154: 8053: 7986: 7923: 7864: 7756: 7707: 7699: 7560: 7387: 7311: 7252: 7197: 7144: 7091: 7035: 6974: 6908: 6851: 6737: 6668: 6609: 6478: 6288: 6241: 6102: 6021: 5872: 5811: 5660: 5595: 5530: 5451: 5384: 5331: 5257: 5202: 5139: 5084: 5000: 4943: 4853: 4812: 4775: 4665: 4601: 4524: 4346: 4301: 4188: 4128: 4103:"New Horizons in Cosmology with Spectral Distortions of the Cosmic Microwave Background" 3824: 3766: 3751:"The Spectral Results of the Far-Infrared Absolute Spectrophotometer Instrument on COBE" 3695: 2678:
CMB dipole represents the largest anisotropy, which is in the first spherical harmonic (
2624:
correspond to higher multipole moments of CMB, meaning more rapid variation with angle.
2457:{\displaystyle T(\theta ,\varphi )=\sum _{\ell m}a_{\ell m}Y_{\ell m}(\theta ,\varphi )} 953: 469: 12816: 12804: 12695: 12595: 12519: 12377: 12358: 12352: 12303: 12245: 12154: 12072: 11990: 11967: 11935: 11791: 11447: 11416: 11363: 11323: 11293: 11236: 11001: 10780: 10481: 10471: 10335: 10217: 9902: 9876: 9849: 9823: 9796: 9726: 9703: 9671: 9637: 9594: 9563: 9469: 9435: 9406: 9372: 9298: 8845: 8819: 8790: 8764: 8711: 8680: 8652: 8593: 8567: 8534: 8496: 8463: 8437: 8408: 8382: 8349: 8323: 8292: 8266: 8237: 8201: 8168: 8140: 8107: 8086: 8067: 8039: 8006: 7972: 7935: 7909: 7876: 7850: 7823: 7797: 7770: 7742: 7711: 7685: 7572: 7546: 7517: 7482: 7456: 7418: 7365: 7331: 7297: 7264: 7238: 7209: 7183: 7156: 7130: 7103: 7077: 7047: 7021: 6960: 6894: 6837: 6723: 6680: 6654: 6621: 6595: 6500: 6464: 6435: 6409: 6362: 6274: 6124: 6088: 6056: 6033: 6007: 5914: 5894: 5858: 5797: 5765: 5739: 5708: 5646: 5623: 5581: 5550: 5516: 5437: 5396: 5370: 5317: 5285: 5243: 5214: 5188: 5159: 5125: 5096: 5070: 5012: 4986: 4957: 4906: 4878: 4546: 4418: 4366: 4313: 4174: 4140: 4114: 4075: 4049: 4023: 3997: 3953: 3900: 3836: 3810: 3681: 3614: 3471: 3181: 3107: 2899: 2717: 2252: 2236: 2216: 2183: 2071: 1738: 1681:
of the ensemble of decoupled photons has continued to diminish ever since; now down to
1614: 1007: 724: 708: 489: 459: 424: 394: 341: 285: 54: 24: 10022:
The music of the big bang : the cosmic microwave background and the new cosmology
9230: 9183: 9140: 8889: 7568: 6120: 4232:"29. Cosmic Microwave Background: Particle Data Group P.A. Zyla (LBL, Berkeley) et al" 3832: 3560: â€“ theory by which the evolution of structure is understood in the big bang model 3285:
produces yet higher quality maps at high resolution (covering small areas of the sky).
762:
that can be mapped by sensitive detectors. Ground and space-based experiments such as
12705: 12537: 12529: 12130: 12087: 11847: 11832: 11472: 11318: 10641: 10197: 10066: 10047: 10025: 9906: 9853: 9800: 9663: 9461: 9426: 9398: 9251: 9188: 9170: 9122: 9095: 9017: 9009:
Cosmology and Controversy: The Historical Development of Two Theories of the Universe
8987: 8931: 8922:
Cosmology and Controversy: The Historical Development of Two Theories of the Universe
8920: 8893: 8794: 8737: 8684: 8558: 8529: 8482: 8412: 8373: 8353: 8257: 8172: 8163: 8128: 8062: 8025: 7998: 7939: 7900: 7765: 7730: 7715: 7576: 7521: 7391: 7323: 7213: 7012:
Seljak, U. (June 1997). "Measuring Polarization in the Cosmic Microwave Background".
6994: 6986: 6928: 6920: 6863: 6803: 6749: 6745: 6439: 6245: 6208: 6144:"Cosmic Microwave Background Radiation Anisotropies: Their Discovery and Utilization" 5998: 5970: 5960: 5925: 5823: 5769: 5615: 5607: 5542: 5463: 5459: 5308: 5277: 5218: 5151: 5039: 4961: 4910: 4762: 4740: 4538: 4473: 4358: 4266: 4200: 4144: 4027: 3926: 3840: 3778: 3707: 3669: 3466: 2938: 2882: 1876: 1678: 1646: 1571:
For details about the reasoning that the radiation is evidence for the Big Bang, see
1051: 961: 893: 704: 666: 519: 12575: 9675: 9302: 9037: 8849: 8296: 8241: 8010: 7880: 7827: 7774: 7160: 7107: 7051: 6684: 6584:
Hu, W.; White, M. (1996). "Acoustic Signatures in the Cosmic Microwave Background".
6504: 6171: 6128: 6037: 5898: 5627: 5554: 5163: 5100: 5016: 4550: 3750: 2708:— the galaxy group that includes our own Milky Way galaxy — appears to be moving at 1767:, causing them to decrease in energy. The color temperature of this radiation stays 791:, while the second and third peak detail the density of normal matter and so-called 12780: 12610: 12600: 12547: 12524: 12102: 11886: 11765: 11462: 11358: 11353: 11288: 11039: 10691: 10501: 10461: 9894: 9841: 9788: 9659: 9655: 9473: 9453: 9410: 9390: 9363: 9334:"UC Berkeley, LBNL cosmologist George F. Smoot awarded 2006 Nobel Prize in Physics" 9290: 9226: 9178: 9160: 8963: 8885: 8837: 8782: 8729: 8670: 8597: 8585: 8538: 8524: 8467: 8455: 8400: 8341: 8284: 8229: 8158: 8071: 8057: 7990: 7927: 7894:
de Oliveira-Costa, A.; Tegmark, Max; Zaldarriaga, Matias; Hamilton, Andrew (2004).
7868: 7815: 7760: 7703: 7637: 7564: 7509: 7486: 7474: 7383: 7335: 7319: 7315: 7268: 7256: 7201: 7148: 7095: 7039: 6982: 6978: 6912: 6855: 6799: 6795: 6741: 6672: 6625: 6613: 6492: 6427: 6151: 6116: 6025: 5886: 5831: 5815: 5757: 5599: 5534: 5455: 5388: 5335: 5289: 5269: 5261: 5234: 5206: 5143: 5088: 5004: 4947: 4898: 4857: 4816: 4779: 4732: 4691: 4669: 4605: 4528: 4465: 4461: 4370: 4350: 4333: 4317: 4305: 4288: 4192: 4132: 4079: 4067: 4015: 3971: 3918: 3828: 3770: 3699: 3608: 3599: â€“ Models of the universe which deviate from then-current scientific consensus 3584: 3483: 3426: 3386: 3282: 3256:
performs the first high resolution observations of the cosmic microwave background.
2977: 2886: 2269: 1926: 1861: 1841: 1825: 1809: 1623: 1324: 1275: 1232: 1213: 1165: 1106: 1023: 916:
In addition to temperature anisotropy, the CMB should have an angular variation in
881: 716: 712: 602: 404: 240: 109: 12670: 9898: 9845: 7994: 7478: 7260: 6431: 5761: 5400: 4071: 4019: 3975: 3542: â€“ An anomaly in astronomical observations of the Cosmic Microwave Background 3314:
produces a higher quality map of the high resolution structure not mapped by WMAP.
2850:) modes appear to have an unexplained alignment with each other and with both the 2794: 2199:
Artist impression of the gravitational lensing effect of massive cosmic structures
2042:
years, and thus when it was complete, the universe was roughly 487,000 years old.
924:
incoming radiation has quadrupole anisotropy, residual polarization will be seen.
414: 389: 12685: 12660: 12585: 12580: 12463: 12424: 12386: 12330: 12204: 12140: 11781: 11693: 11383: 11328: 10572: 10547: 10192: 10063:
The Cosmic Microwave Background: How It Changed Our Understanding of the Universe
9081: 8946: 7819: 7229: 6395: 6347: 6233: 6083: 5782: 4469: 3359: 3337: 3145: 3141: 3063: 2862: 2059:
during which some of the material of the universe was broken into hydrogen ions.
1579: 1507: 1434: 1422: 1412: 670: 529: 464: 449: 434: 419: 409: 273: 170: 12468: 8733: 7152: 7099: 4760:
Harrison, E. R. (1970). "Fluctuations at the threshold of classical cosmology".
4196: 3377:, new supernova surveys ESSENCE and SNLS, and baryon acoustic oscillations from 1582:-distance relation are together regarded as the best available evidence for the 12768: 12710: 12382: 12366: 12362: 12265: 12235: 12092: 11995: 11457: 11338: 9717: 9585: 9552: 8675: 8640: 8589: 8404: 8288: 7931: 7591:"POLARBEAR project offers clues about origin of universe's cosmic growth spurt" 7409: 7205: 6029: 5783: 5339: 5303: 4409: 4136: 3703: 3418: 3363: 3326: 3206: 3019: 2875: 2786: 2759:
The temperature variation in the CMB temperature maps at higher multipoles, or
2273: 2208: 2083: 1966: 1667: 1476: 1379: 1312: 1228: 1224: 1078: 839: 796: 784: 514: 474: 10110: 9920: 9792: 9783:
Cowen, Ron (2015-01-30). "Gravitational waves discovery now officially dead".
8841: 8786: 7513: 6882: 6859: 3056: 12838: 12700: 12680: 12675: 12590: 12458: 12286: 12230: 12062: 12015: 11378: 11333: 11308: 10086: 9174: 8741: 7395: 6990: 6924: 6867: 6807: 6753: 5989: 5827: 5611: 5467: 4862: 4835: 4626: 4204: 3930: 3782: 3711: 3617: â€“ Branch of cosmology which studies mathematical models of the universe 3173: 3166: 3148:
theoretically predict microwave background fluctuation amplitudes created by
3078: 3001: 2959: 2822: 1941: 1586:
event. Measurements of the CMB have made the inflationary Big Bang model the
1209: 1161: 1035: 969: 889: 740: 499: 484: 384: 9457: 5974: 5474: 4783: 3799:
Fixsen, D. J. (2009). "The Temperature of the Cosmic Microwave Background".
3447:
is released, with improved measurements of the polarization on large scales.
3296:
high-resolution data, but improves on the intermediate resolution maps from
1274:
models based on 6 free parameters and fitting in to Big Bang cosmology with
935:
brightly as the Sun. The energy density of the CMB is 0.260 eV/cm (4.17
12792: 12720: 12640: 12605: 12135: 12097: 11801: 11303: 10576: 9667: 9465: 9402: 9192: 9165: 9003: 8967: 8002: 7893: 7642: 7327: 6998: 6932: 6081:
Gawiser, E.; Silk, J. (2000). "The cosmic microwave background radiation".
5619: 5546: 5281: 5273: 5155: 4542: 4477: 4362: 3611: â€“ Large gravitationally bound system of stars and interstellar matter 3516: 3126: 3118: 3085: 3074: 3037: 3030: 2934: 2056: 1744: 1721:
According to standard cosmology, the CMB gives a snapshot of the hot early
1157: 1047: 1027: 1003: 973: 965: 690: 504: 479: 454: 439: 295: 7227:
Lewis, A.; Challinor, A. (2006). "Weak gravitational lensing of the CMB".
5835: 5500: 3858: 3088:
estimates 7 K based on a model that does not rely on a free parameter
2885:
of the WMAP power spectrum demonstrates that the quadrupole prediction of
2195: 1471:(10) of a second. Apparently, these ripples gave rise to the present vast 12504: 12473: 12020: 11755: 11745: 11482: 11373: 11368: 11298: 10118: 10039: 9993:"WandaVision's 'cosmic microwave background radiation' is real, actually" 9440: 9377: 9359:"Detection of polarization in the cosmic microwave background using DASI" 9337: 9319: 9114: 8824: 8572: 8501: 8442: 8387: 8328: 8271: 8206: 8187: 8044: 7977: 7914: 7855: 7802: 7243: 7188: 7135: 7082: 7026: 6899: 6883:"Detection of polarization in the cosmic microwave background using DASI" 6659: 6600: 6367: 6337: 6279: 6093: 6012: 5952: 5863: 5651: 5603: 5586: 5521: 5375: 5357: 5248: 5193: 5130: 5075: 4991: 4926:"Structure in the COBE differential microwave radiometer first-year maps" 3905: 3670:"New physics from the polarized light of the cosmic microwave background" 3524: 3437: 3162: 3049: 2998: 2942: 2867: 2705: 2286: 1880: 1492: 1488: 1480: 1128: 957: 792: 252: 245: 9394: 6916: 5538: 3569: â€“ Random background of gravitational waves permeating the Universe 3421:, which if confirmed, would provide clear experimental evidence for the 2878:
emission, and from experimental uncertainty in the monopole and dipole.
12715: 12281: 12125: 12120: 11750: 10426: 10416: 6469: 5948:
The Inflationary Universe: The Quest for a New Theory of Cosmic Origins
5322: 4902: 3554: â€“ Fluctuations in the energy spectrum of the microwave background 3246: 3238:
in the cosmic microwave background at the Moscow astrophysical seminar.
3235: 3023: 2948: 2922: 2833: 2322: 2224: 1883:
damping). The acoustic oscillations arise because of a conflict in the
1869: 1391: 1375: 1350: 1308: 1271: 998:
on which Penzias and Wilson discovered the cosmic microwave background.
836: 759: 494: 42:
heat map of temperature fluctuations in the cosmic microwave background
9294: 8185: 7620: 6949:"Detection of B -Mode Polarization at Degree Angular Scales by BICEP2" 6496: 4836:"A hypothesis, unifying the structure and the entropy of the Universe" 4533: 4506: 3548: â€“ Universe's background particle radiation composed of neutrinos 3103:
observe the cosmic microwave background at a wavelength of 3.2 cm
2832:
multipole controversy. Even in the COBE map, it was observed that the
12112: 11564: 11487: 10715: 10451: 8481:
Copi, C.J.; Huterer, Dragan; Schwarz, D. J.; Starkman, G. D. (2006).
5265: 4354: 4309: 3605: â€“ Study of the origin of the universe (structure and evolution) 3505: 2981: 2930: 2310: 1543: 1430: 1387: 1102: 877: 824: 812: 811:
Graph of cosmic microwave background spectrum around its peak in the
780: 739:
to travel freely through space. However, the photons have grown less
682: 674: 444: 9358: 8553: 8368: 8145: 8112: 8091: 7954: 7895: 6641: 5993: 5890: 1613:
predicts that after about 10 seconds the nascent universe underwent
1538:(SPT) is a 10-metre (390 in) diameter telescope located at the 972:, in a correction they prepared for a paper by Alpher's PhD advisor 835:
The cosmic microwave background radiation is an emission of uniform
12655: 12005: 11708: 11593: 11583: 11348: 11200:
Special Astrophysical Observatory of the Russian Academy of Science
11090: 10295: 10274: 10262: 9881: 9828: 9761: 8716: 8657: 8459: 8345: 8233: 7872: 7690: 7370: 7043: 6676: 6617: 6313:"History of the 2.7 K Temperature Prior to Penzias and Wilson" 5819: 5744: 5392: 5210: 5147: 5092: 5008: 4952: 4925: 4820: 4673: 4610: 4583: 4386:"History of the 2.7 K Temperature Prior to Penzias and Wilson" 4179: 4119: 4002: 3958: 3774: 3686: 3231: 3213: 2696:
From the CMB data, it is seen that the Sun appears to be moving at
2093:, and is a period which is under intense study by astronomers (see 2079: 1900: 1864:(2004) instruments. Also shown is a theoretical model (solid line). 1836: 1764: 1734: 1726: 1722: 1658: 1650: 1631: 1618: 1606: 1602: 1583: 1442: 1399: 1212:
as the leading theory of cosmic structure formation, and suggested
1095: 701: 177: 79: 72: 10516: 9642: 9625: 8769: 7747: 7551: 7461: 7302: 7120: 6965: 6842: 6728: 6414: 5911: 5802: 5442: 4286:
Alpher, R. A.; Herman, R. C. (1948). "Evolution of the Universe".
4054: 3815: 3152:
variations between observers and the last scattering surface (see
2239:
in a heterogeneous plasma. E-modes were first seen in 2002 by the
1725:
at the point in time when the temperature dropped enough to allow
1590:. The discovery of the CMB in the mid-1960s curtailed interest in 10941: 9139:
Alpher, Ralph A.; Gamow, George; Herman, Robert (December 1967).
7663:"COBE Differential Microwave Radiometers: Calibration Techniques" 4650:
Dicke, R. H.; et al. (1965). "Cosmic Black-Body Radiation".
3425:. However, on 19 June 2014, lowered confidence in confirming the 3415: 2926: 2855: 2613:{\displaystyle C_{\ell }\equiv \langle |a_{\ell m}|^{2}\rangle .} 1993:), the probability that a CMB photon last scattered between time 1316: 1164:
as a major component of cosmic structure formation and suggested
842:
coming from all directions. Intensity of the CMB is expressed in
736: 8254: 8085:
Liu, Hao; Li, Ti-Pei (2009). "Improved CMB Map from WMAP Data".
7896:"The significance of the largest scale CMB fluctuations in WMAP" 6361:
Fixsen, D. J. (1995). "Formation of Structure in the Universe".
5776: 1542:, Antarctica. The telescope is designed for observations in the 12335: 10961: 10566: 10300: 10159: 8310: 5643:
Sixteenth International Symposium on Space Terahertz Technology
4507:"The Measurement of Thermal Radiation at Microwave Frequencies" 3067: 2970: 2921:
Assuming the universe keeps expanding and it does not suffer a
1922: 1888: 1884: 1730: 1654: 1635: 1627: 1484: 885: 873:
at any wavelength can be converted to a blackbody temperature.
843: 828: 711:, during the earliest periods, the universe was filled with an 8638: 8369:"Assessing the effects of foregrounds and sky removal in WMAP" 8026:"Low-order multipole maps of CMB anisotropy derived from WMAP" 6453:
Dodelson, S. (2003). "Coherent Phase Argument for Inflation".
1374:(ACT) was a cosmological millimeter-wave telescope located on 758:
The CMB is not completely smooth and uniform, showing a faint
11896: 11080: 10466: 10371: 9141:"Thermal Cosmic Radiation and the Formation of Protogalaxies" 9042:
Contributions from the Observatory, University of St. Andrews
8974: 7729:
Rossmanith, G.; RĂ€th, C.; Banday, A. J.; Morfill, G. (2009).
7354:"The Quest for B Modes from Inflationary Gravitational Waves" 6230:
The New Cosmos, An Introduction to Astronomy and Astrophysics
3277:
2003 – E-mode polarization spectrum obtained by the CBI. The
3026:
radiation in an expanding universe cools but remains thermal.
2182:
is one of the best results of experimental cosmology and the
1985:(PVF). This function is defined so that, denoting the PVF by 1958: 1383: 1346:
experiment. In 2002 the team reported the first detection of
11533: 8425: 5567: 3370:
in 2006 for their work on precision measurement of the CMBR.
2685:), a cosine function. The amplitude of CMB dipole is around 2301:
The second type of B-modes was discovered in 2013 using the
2070:
The physics of how photons are scattered by free electrons (
1448:
On 21 March 2013, the European-led research team behind the
815:
frequency range, as measured by the FIRAS instrument on the
62: 34: 12316: 10562: 10456: 10325: 9530: 8554:"CMB multipole measurements in the presence of foregrounds" 7728: 7534: 6776:"Standard Cosmology and Alternatives: A Critical Appraisal" 6700: 6270: 5680: 5414: 4876: 3374: 3348: 3057:
Microwave background radiation predictions and measurements
2895: 1944:
would produce mostly isocurvature primordial perturbations.
1845: 1426: 1319:) in ten bands. The instrument is similar in design to the 1266: 1262: 1258: 1195: 1121: 1113: 20: 12787: 9757:"Cosmic inflation: Confidence lowered for Big Bang signal" 9119:
The Historical Development of Two Theories of the Universe
8480: 8133:
Monthly Notices of the Royal Astronomical Society: Letters
7952: 6311:
Assis, A. K. T.; Paulo, SĂŁo; Neves, M. C. D. (July 1995).
4584:"A Measurement of Excess Antenna Temperature at 4080 Mc/s" 3454:
analyses of their final 2018 data continue to be released.
2960:
Thermal (non-microwave background) temperature predictions
1708: 884:
variations are just over 100 ÎŒK, after subtracting a
7787: 7446: 6880: 4731:(1 ed.). Oxford University Press. pp. 292–345. 4680: 2643:, is the constant isotropic mean temperature of the CMB, 2494:
term measures the strength of the angular oscillation in
1929:
predicts that the primordial perturbations are adiabatic.
1187: 892:
of the background radiation. The latter is caused by the
10858:
Combined Array for Research in Millimeter-wave Astronomy
8612:"Planck shows almost perfect cosmos – plus axis of evil" 8551: 7953:
Schwarz, D. J.; Starkman, Glenn D.; et al. (2004).
7840: 5987: 4156: 4154: 4039: 3987: 3943: 3436:
announced that the signal can be entirely attributed to
3137:
interpret this radiation as a signature of the Big Bang.
9497: 9244:
Naselsky, P. D.; Novikov, D.I.; Novikov, I. D. (2006).
6774:
Narlikar, Jayant V.; Padmanabhan, T. (September 2001).
6190: 5789:
Publications of the Astronomical Society of the Pacific
2747:. The dipole is now used to calibrate mapping studies. 1246: 807: 727:, and so the universe became transparent. Known as the 9243: 9056:
Publications of the Dominion Astrophysical Observatory
8882:
A Source Book in Astronomy and Astrophysics, 1900–1975
8876:
Lang, Kenneth R.; Gingerich, Owen, eds. (1979-12-31).
7834: 7781: 7648:
Cosmic Microwave Background review by Scott and Smoot.
6769: 6767: 6765: 6763: 6637: 6635: 5916:
Frame of the universe: a history of physical cosmology
4728:
The Oxford Handbook of the History of Modern Cosmology
3410:
collaboration announced the detection of inflationary
3230:
January 1992 – Scientists that analysed data from the
3184:
of microwave background photons by hot electrons (see
3125:
measure the temperature to be approximately 3 K.
2969:
estimates the "radiation of the stars" to be 5–6 
1281: 1152:
experiments. These measurements demonstrated that the
677:
and is not associated with any star, galaxy, or other
12752: 10104:
Visualization of the CMB data from the Planck mission
9316:
Nobel Prize In Physics: Russia's Missed Opportunities
8697: 8626:"Found: Hawking's initials written into the universe" 8023: 7347: 7345: 6945: 5849:
Scott, D. (2005). "The Standard Cosmological Model".
4151: 2557: 2500: 2470: 2378: 2336: 2161: 2134: 1820:
at recombination. Either such coherence is acausally
1573:
Big Bang § Cosmic microwave background radiation
1483:. Based on the 2013 data, the universe contains 4.9% 1338:. This announcement was done in conjunction with the 1101:
The other key event in the 1980s was the proposal by
1026:
to measure the cosmic microwave background. In 1964,
10103: 9866: 9813: 8024:
Bielewicz, P.; Gorski, K. M.; Banday, A. J. (2004).
7173: 7067: 6191:
Hobson, M.P.; Efstathiou, G.; Lasenby, A.N. (2006).
5729: 4246: 4244: 4161:Ćirković, Milan M.; Perović, Slobodan (2018-05-01). 3562:
Pages displaying wikidata descriptions as a fallback
3303:
2004 – E-mode polarization spectrum obtained by the
2949:
Timeline of prediction, discovery and interpretation
1816:
on angular scales that are larger than the apparent
697:
was the culmination of work initiated in the 1940s.
19:"CMB" and "CMBR" redirect here. For the Republic of 9270: 8641:"A Test of the Cosmological Principle with Quasars" 8483:"On the large-angle anomalies of the microwave sky" 8186:Hinshaw, G.; (WMAP collaboration); Bennett, C. L.; 6773: 6760: 6632: 6400:at high redshift from carbon monoxide excitation". 5674:Clavin, Whitney; Harrington, J.D. (21 March 2013). 4331:Gamow, G. (1948). "The evolution of the universe". 3663: 3661: 1386:. ACT made high-sensitivity, arcminute resolution, 9556: 8919: 8120: 8099: 7351: 7342: 7167: 7063: 7061: 6195:General Relativity: An Introduction for Physicists 5913: 4720: 4718: 4716: 4714: 4712: 4710: 4708: 4575: 3882: 3880: 3878: 2612: 2531: 2486: 2456: 2360: 2174: 2147: 1578:The cosmic microwave background radiation and the 986:Discovery of cosmic microwave background radiation 10962:Multi-Element Radio Linked Interferometer Network 9945:"The Three-Body Problem: "The Universe Flickers"" 9138: 8488:Monthly Notices of the Royal Astronomical Society 8078: 8031:Monthly Notices of the Royal Astronomical Society 7735:Monthly Notices of the Royal Astronomical Society 7722: 7352:Kamionkowski, Marc; Kovetz, Ely D. (2016-09-19). 5676:"Planck Mission Brings Universe Into Sharp Focus" 4841:Monthly Notices of the Royal Astronomical Society 4241: 3406:2014 – On March 17, 2014, astrophysicists of the 2669: 2263: 12836: 9776: 9621: 9619: 7630:Progress of Theoretical and Experimental Physics 6306: 6304: 6302: 6300: 6298: 5673: 3852: 3850: 3658: 3552:Cosmic microwave background spectral distortions 3066:detected a "rotational" temperature of 2.3  2905:Measurements of the density of quasars based on 707:for the origin of the universe. In the Big Bang 9722:"Astronomers Hedge on Big Bang Detection Claim" 9331: 9145:Proceedings of the National Academy of Sciences 8105: 7621:P.A. Zyla et al. (Particle Data Group) (2020). 7058: 7005: 6712:) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS" 6310: 4705: 4404: 4402: 4160: 3875: 3325:begin the first surveys for very high redshift 1178:List of cosmic microwave background experiments 1144:experiment and the result was confirmed by the 673:detects a faint background glow that is almost 10848:Canadian Hydrogen Intensity Mapping Experiment 9517: 9247:The Physics of the Cosmic Microwave Background 8884:. Harvard University Press. pp. 281–290. 8754: 8698:Perivolaropoulos, L.; Skara, F. (2022-12-01). 7678:Journal of Cosmology and Astroparticle Physics 7414:"Study Confirms Criticism of Big Bang Finding" 7226: 6446: 6267:Proceedings of the Los Angeles Meeting, DPF 99 3794: 3792: 3385:, continue to be consistent with the standard 3358:2006 – Two of COBE's principal investigators, 3216:Soviet CMB anisotropy experiment was launched. 1812:in particular. Moreover, the fluctuations are 1357: 1334:in the CMB, which were important evidence for 11912: 11549: 10532: 10145: 10111:"CMBR: Cosmic Microwave Background Radiation" 9748: 9710: 9616: 9578: 9558:"Space Ripples Reveal Big Bang's Smoking Gun" 9545: 9526:"NASA Technology Views Birth of the Universe" 8986:p.50 (Dover reprint of revised 1961 edition) 8875: 8807: 8748: 6819: 6817: 6696: 6694: 6577: 6295: 6265:White, M. (1999). "Anisotropies in the CMB". 5912:Durham, Frank; Purrington, Robert D. (1983). 5695: 5667: 5483:"Listen Closely: From Tiny Hum Came Big Bang" 4879:"Small-scale fluctuations of relic radiation" 4581: 4217:K.A. Olive and J.A. Peacock (September 2017) 3887:Hu, Wayne; Dodelson, Scott (September 2002). 3847: 2627: 1804:The high degree of uniformity throughout the 1299:(DASI) was a telescope installed at the U.S. 1168:was the right theory of structure formation. 685:region of the radio spectrum. The accidental 622: 10838:Australian Square Kilometre Array Pathfinder 9489: 9038:Ueber die Rotverschiebung der Spektrallinien 8878:"45. The Internal Constitution of the Stars" 8632: 8366: 7616: 7614: 7612: 7610: 7608: 7606: 7604: 7499: 7440: 7402: 5353: 5351: 5349: 5231: 4399: 4285: 3748: 3312:Arcminute Cosmology Bolometer Array Receiver 2604: 2571: 2532:{\displaystyle Y_{\ell m}(\theta ,\varphi )} 2281:of B-mode polarization had been measured by 1439:Arcminute Cosmology Bolometer Array Receiver 10632:500 meter Aperture Spherical Telescope 10161:Cosmic microwave background radiation (CMB) 9688:: CS1 maint: numeric names: authors list ( 8552:de Oliveira-Costa, A.; Tegmark, M. (2006). 7358:Annual Review of Astronomy and Astrophysics 6780:Annual Review of Astronomy and Astrophysics 6716:The Astrophysical Journal Supplement Series 6383:"Converted number: Conversion from K to eV" 6080: 5723: 5430:The Astrophysical Journal Supplement Series 4627:"The Cosmic Microwave Background Radiation" 4624: 3893:Annual Review of Astronomy and Astrophysics 3789: 3749:Fixsen, D. J.; Mather, J. C. (2002-12-20). 2861:Ultimately, due to the foregrounds and the 2776: 850:unit of temperature. The CMB has a thermal 11919: 11905: 11556: 11542: 10539: 10525: 10152: 10138: 8179: 7502:"Polarization detected in Big Bang's echo" 6830:Journal of the Korean Astronomical Society 6814: 6691: 6227: 5113: 4383: 4094: 4033: 3889:"Cosmic Microwave Background Anisotropies" 3886: 3241:1992 – Scientists that analysed data from 1171: 629: 615: 61: 11627:Religious interpretations of the Big Bang 9969:"Astronomy in your wallet - NCCR PlanetS" 9880: 9827: 9641: 9439: 9376: 9332:Sanders, R.; Kahn, J. (13 October 2006). 9182: 9164: 8913: 8911: 8909: 8823: 8768: 8715: 8674: 8656: 8571: 8528: 8518: 8500: 8441: 8386: 8327: 8270: 8223: 8205: 8162: 8144: 8111: 8090: 8061: 8043: 7976: 7913: 7854: 7801: 7764: 7746: 7689: 7641: 7601: 7550: 7460: 7369: 7301: 7242: 7187: 7134: 7081: 7025: 6964: 6898: 6841: 6727: 6658: 6599: 6486: 6468: 6413: 6366: 6278: 6110: 6092: 6011: 5880: 5862: 5801: 5743: 5650: 5585: 5520: 5441: 5374: 5346: 5321: 5247: 5192: 5129: 5074: 4990: 4951: 4861: 4833: 4796: 4724: 4609: 4532: 4384:Assis, A. K. T.; Neves, M. C. D. (1995). 4178: 4118: 4053: 4001: 3957: 3904: 3814: 3685: 3591:List of cosmological computation software 3263:, BOOMERANG, and Maxima Experiments. The 1394:surveys of the sky in order to study the 904:near its boundary with the constellation 11617:Discovery of cosmic microwave background 10952:Molonglo Observatory Synthesis Telescope 10789:Warkworth Radio Astronomical Observatory 10108: 9423: 9214: 9080: 9053: 6826:"Polarization and Polarimetry: A Review" 6452: 6340:(2014). "First Second of the Big Bang". 5408: 5302: 4759: 3443:2018 – The final data and maps from the 3399:2013 – An improved all-sky map from the 2321: 2296: 2194: 1835: 1181: 1131:in physics for 2006 for this discovery. 989: 806: 783:components that can be represented by a 33: 9716: 9584: 9551: 9062:(6). Vancouver, B.C., Canada: 251–272. 8856: 8193:Astrophysical Journal Supplement Series 7656: 7654: 7408: 6646:Astrophysical Journal Supplement Series 6583: 6517: 5640: 5426:) OBSERVATIONS: FINAL MAPS AND RESULTS" 5362:Astrophysical Journal Supplement Series 4974: 4444: 4408: 4250: 3667: 3643:University of Tokyo Atacama Observatory 3593: â€“ Software for cosmology research 3373:2006–2011 – Improved measurements from 2980:estimates the non-thermal radiation of 2111: 2045: 1709:Predictions based on the Big Bang model 1521: 1398:(CMB), the relic radiation left by the 16:Trace radiation from the early universe 12837: 10038: 9523: 9215:Shmaonov, T. A. (1957). "Commentary". 8926:. Princeton University Press. p.  8906: 8129:"Diagnosing Timing Error in WMAP Data" 7281: 7011: 6823: 6360: 6172:"NASA's "CMB Surface of Last Scatter"" 6050: 5920:. Columbia University Press. pp.  5506: 5176: 5058: 5029: 4582:Penzias, A. A.; Wilson, R. W. (1965). 4100: 3981: 3937: 3923:10.1146/annurev.astro.40.060401.093926 3798: 3392:2010 – The first all-sky map from the 1879:(also called collisionless damping or 1810:ΛCDM ("Lambda Cold Dark Matter") model 1782:of the CMB as a function of redshift, 1701:of the total density of the universe. 1315:operating between 26 and 36 GHz ( 1134: 1018:and Peter Roll, Dicke's colleagues at 689:in 1965 by American radio astronomers 11900: 11537: 11453:Cosmic microwave background radiation 11190:Pushchino Radio Astronomy Observatory 10912:Large Latin American Millimeter Array 10520: 10133: 10060: 10019: 9782: 9495: 9356: 9047: 9002: 8943: 8917: 8801: 8084: 7675: 6264: 6258: 6141: 5848: 5701: 5480: 4923: 4649: 4504: 4426:from the original on 5 September 2023 4330: 3726:"LAMBDA - Cosmic Background Explorer" 3575: â€“ Possible fate of the universe 3458: 2317: 1831: 1566: 1396:cosmic microwave background radiation 1261:launched a second CMB space mission, 1071: 947: 779:of the anisotropy across the sky has 11518: 11166:National Radio Astronomy Observatory 11060:Westerbork Synthesis Radio Telescope 9754: 7651: 6706:WILKINSON MICROWAVE ANISOTROPY PROBE 6568: 6553: 6336: 5944: 5420:WILKINSON MICROWAVE ANISOTROPY PROBE 4737:10.1093/oxfordhb/9780198817666.013.8 3290:Wilkinson Microwave Anisotropy Probe 2750: 2361:{\displaystyle T(\theta ,\varphi ),} 2285:instrument were later attributed to 1452:released the mission's all-sky map ( 1253:Wilkinson Microwave Anisotropy Probe 1247:Wilkinson Microwave Anisotropy Probe 939:10 J/m), about 411 photons/cm. 700:The CMB is landmark evidence of the 40:Wilkinson Microwave Anisotropy Probe 12491:Tolman–Oppenheimer–Volkoff equation 12444:Friedmann–LemaĂźtre–Robertson–Walker 11158:Mullard Radio Astronomy Observatory 10546: 9942: 9925:(Video). YouTube. November 10, 2010 9704:"BICEP2 News | Not Even Wrong" 8126: 7660: 7528: 7388:10.1146/annurev-astro-081915-023433 3587: â€“ Model of Big Bang cosmology 3347:2006 – The long-awaited three-year 3249:in the cosmic microwave background. 2916: 2907:Wide-field Infrared Survey Explorer 2241:Degree Angular Scale Interferometer 2203:The cosmic microwave background is 1297:Degree Angular Scale Interferometer 1289:Degree Angular Scale Interferometer 1282:Degree Angular Scale Interferometer 1237:Degree Angular Scale Interferometer 1156:is approximately flat, rather than 880:to roughly one part in 25,000: the 13: 10992:Northern Extended Millimeter Array 10013: 9524:Clavin, Whitney (March 17, 2014). 8757:General Relativity and Gravitation 7583: 4924:Smoot, G. F.; et al. (1992). 4877:Sunyaev RA; Zel'dovich YB (1970). 3856: 3645:is significantly higher than both. 3270:2002 – Polarization discovered by 2984:in the galaxy "... by the formula 2551:, giving power spectrum term  1932:Isocurvature density perturbations 1406: 1014:, in the spring of 1964. In 1964, 357:2dF Galaxy Redshift Survey ("2dF") 14: 12891: 12261:Hamilton–Jacobi–Einstein equation 11632:Timeline of cosmological theories 10828:Australia Telescope Compact Array 10650:Caltech Submillimeter Observatory 10593:Very Long Baseline Interferometry 10087:Student Friendly Intro to the CMB 10080: 9357:Kovac, J.M.; et al. (2002). 8890:10.4159/harvard.9780674366688.c50 8645:The Astrophysical Journal Letters 6053:"Microwave (WMAP) All-Sky Survey" 5117:The Astrophysical Journal Letters 4688:"The Nobel Prize in Physics 1978" 3621:Timeline of cosmological theories 3013:Telegraph & Telephone Journal 2955:Timeline of cosmological theories 1844:). The data shown comes from the 1540:Amundsen–Scott South Pole Station 1305:Amundsen–Scott South Pole Station 572:Timeline of cosmological theories 337:Cosmic Background Explorer (COBE) 12822: 12810: 12798: 12786: 12774: 12762: 12739: 12738: 11880: 11517: 11508: 11507: 9985: 9961: 9936: 9913: 9860: 9807: 9755:Amos, Jonathan (June 19, 2014). 9696: 9480: 9417: 9350: 9325: 9309: 9264: 9237: 9208: 9199: 9132: 9108: 9074: 9030: 8996: 8869: 8700:"Challenges for ΛCDM: An update" 8691: 8618: 8604: 8545: 8530:10.1111/j.1365-2966.2005.09980.x 8474: 8419: 8360: 8304: 8248: 8164:10.1111/j.1745-3933.2011.01041.x 8063:10.1111/j.1365-2966.2004.08405.x 7766:10.1111/j.1365-2966.2009.15421.x 7282:Hanson, D.; et al. (2013). 5030:Grupen, C.; et al. (2005). 4512:Review of Scientific Instruments 4254:Principles of Physical Cosmology 4101:Chluba, J.; et al. (2021). 3668:Komatsu, Eiichiro (2022-05-18). 3579:Horizons: Exploring the Universe 3558:Cosmological perturbation theory 1670:through space, resulting in the 1527:This section is an excerpt from 1363:This section is an excerpt from 1287:This section is an excerpt from 1062: 681:. This glow is strongest in the 596: 585: 584: 11725:Future of an expanding universe 10882:Giant Metrewave Radio Telescope 10750:UTR-2 decameter radio telescope 10044:The Cosmic Microwave Background 8367:Slosar, A.; Seljak, U. (2004). 8017: 7946: 7887: 7669: 7493: 7275: 7220: 7114: 6939: 6874: 6562: 6547: 6511: 6389: 6375: 6354: 6330: 6221: 6184: 6164: 6135: 6074: 6044: 5988:Cirigliano, D.; de Vega, H.J.; 5981: 5938: 5905: 5842: 5634: 5561: 5296: 5225: 5170: 5107: 5052: 5023: 4968: 4917: 4870: 4827: 4790: 4753: 4643: 4618: 4558: 4498: 4487:from the original on 2006-09-25 4438: 4377: 4324: 4279: 4224: 4211: 4085: 3634: 3609:Observation history of galaxies 3195:Cambridge Radio Astronomy Group 2211:, in which the electric field ( 2190: 1918:Adiabatic density perturbations 1605:model for the formation of the 352:Sloan Digital Sky Survey (SDSS) 205:Future of an expanding universe 12875:Physical cosmological concepts 12068:Mass–energy equivalence (E=mc) 11926: 11622:History of the Big Bang theory 10982:Northern Cross Radio Telescope 10818:Atacama Large Millimeter Array 10046:. Cambridge University Press. 9660:10.1103/PhysRevLett.112.241101 9250:. Cambridge University Press. 9218:Pribory I Tekhnika Experimenta 8127:Liu, Hao; et al. (2010). 7500:Samuel Reich, Eugenie (2013). 7320:10.1103/PhysRevLett.111.141301 6983:10.1103/PhysRevLett.112.241101 6800:10.1146/annurev.astro.39.1.211 3742: 3718: 3199:Owens Valley Radio Observatory 2594: 2575: 2543:is the multipole number while 2526: 2514: 2451: 2439: 2394: 2382: 2368:is written as coefficients of 2352: 2340: 2264:Primordial gravitational waves 2029:results put the time at which 1748:, which is much less than the 1691:the surface of last scattering 567:History of the Big Bang theory 363:Wilkinson Microwave Anisotropy 1: 11730:Ultimate fate of the universe 11658:Gravitational wave background 11563: 9498:"BICEP2 2014 Results Release" 9231:10.1016/S0890-5096(06)60772-3 9117:, Cosmology and Controversy: 8315:Astrophysical Journal Letters 7995:10.1103/PhysRevLett.93.221301 7959:microwave background cosmic?" 7708:10.1088/1475-7516/2016/01/046 7261:10.1016/j.physrep.2006.03.002 6228:Unsöld, A.; Bodo, B. (2002). 6121:10.1016/S0370-1573(00)00025-9 4978:Astrophysical Journal Letters 4931:Astrophysical Journal Letters 4625:Smoot Group (28 March 1996). 3859:"Cosmic Microwave Background" 3652: 3567:Gravitational wave background 1081:, using the alternative name 559:Discovery of cosmic microwave 210:Ultimate fate of the universe 11432:Gravitational-wave astronomy 11010:Primeval Structure Telescope 10367:Arcminute Microkelvin Imager 9090:. New York: Wiley. pp.  8983:The Creation Of The Universe 7623:"Review of Particle Physics" 7449:Astronomy & Astrophysics 5732:Astronomy & Astrophysics 5704:"Mapping the Early Universe" 4470:10.1126/science.205.4406.549 3319:Arcminute Microkelvin Imager 3245:DMR report the discovery of 3193:1983 – Researchers from the 3091:1955 – Émile Le Roux of the 2808: 2549:angular correlation function 1116:Cosmic Background Explorer ( 1044:Holmdel Township, New Jersey 979: 819:. While vastly exaggerated " 661:that fills all space in the 7: 12855:Cosmic background radiation 12083:Relativistic Doppler effect 11648:Cosmic microwave background 11344:Christiaan Alexander Muller 11210:Vermilion River Observatory 11118:Algonquin Radio Observatory 10583:Astronomical interferometer 10442:Mobile Anisotropy Telescope 10402:Cosmic Anisotropy Telescope 10362:Atacama Cosmology Telescope 9899:10.1051/0004-6361/201936386 9846:10.1051/0004-6361/201833880 9590:"Ripples From the Big Bang" 9503:National Science Foundation 8734:10.1016/j.newar.2022.101659 7569:10.1088/0004-637X/794/2/171 7479:10.1051/0004-6361/201425034 7153:10.1103/PhysRevLett.78.2058 7100:10.1103/PhysRevLett.78.2054 6432:10.1051/0004-6361/201016140 6087:. 333–334 (2000): 245–267. 5851:Canadian Journal of Physics 5762:10.1051/0004-6361/201525830 5481:Glanz, James (2001-04-30). 4197:10.1016/j.shpsb.2017.04.005 4072:10.1051/0004-6361/201321556 4020:10.1051/0004-6361/201833880 3976:10.1051/0004-6361/201936386 3833:10.1088/0004-637X/707/2/916 3532: 3254:Cosmic Anisotropy Telescope 1588:Standard Cosmological Model 1417:A third space mission, the 1372:Atacama Cosmology Telescope 1365:Atacama Cosmology Telescope 1358:Atacama Cosmology Telescope 1301:National Science Foundation 1227:. A number of ground-based 1040:Bell Telephone Laboratories 896:of the Sun relative to the 802: 643:cosmic microwave background 327:Black Hole Initiative (BHI) 10: 12896: 12845:Astronomical radio sources 12554:In computational physics: 12078:Relativity of simultaneity 11653:Cosmic neutrino background 11589:Chronology of the universe 10684:Large Millimeter Telescope 10172:Discovery of CMB radiation 9869:Astronomy and Astrophysics 9816:Astronomy and Astrophysics 9036:Erwin Finlay-Freundlich, " 9014:Courier Dover Publications 8590:10.1103/PhysRevD.74.023005 8405:10.1103/PhysRevD.70.083002 8289:10.1103/PhysRevD.68.123523 7932:10.1103/PhysRevD.69.063516 7820:10.1051/0004-6361:20065585 7790:Astronomy and Astrophysics 7206:10.1103/PhysRevD.58.023003 6746:10.1088/0067-0049/208/2/19 6520:"The Physics of Inflation" 6456:AIP Conference Proceedings 6402:Astronomy and Astrophysics 6201:Cambridge University Press 6030:10.1103/PhysRevD.71.103518 5460:10.1088/0067-0049/208/2/20 5340:10.1103/PhysRevD.68.023506 4259:Princeton University Press 4137:10.1007/s10686-021-09729-5 3990:Astronomy and Astrophysics 3946:Astronomy and Astrophysics 3704:10.1038/s42254-022-00452-4 3581: â€“ Astronomy textbook 3573:Heat death of the universe 3546:Cosmic neutrino background 3522:In the 2021 Marvel series 3470:TV series (2009–2011), an 3221:Cosmic Background Explorer 2952: 2939:evaporation of black holes 2812: 2487:{\displaystyle a_{\ell m}} 2307:Herschel Space Observatory 2289:due to new results of the 2246: 2230: 2115: 1983:photon visibility function 1570: 1526: 1410: 1362: 1286: 1250: 1175: 983: 942: 753:surface of last scattering 90:Chronology of the universe 18: 12736: 12568: 12433: 12405: 12391:Lense–Thirring precession 12274: 12223: 12185: 12164: 12153: 12111: 12055: 12039: 11981: 11973:Doubly special relativity 11945: 11934: 11876: 11820: 11774: 11738: 11717: 11699:Expansion of the universe 11676: 11640: 11607: 11571: 11503: 11440: 11402: 11256: 11221: 11108: 11073: 10972:Murchison Widefield Array 10892:Green Bank Interferometer 10800: 10716:RATAN-600 Radio Telescope 10622: 10607: 10599:Astronomical radio source 10554: 10344: 10288: 10250: 10241: 10224: 10185: 10177:Timeline of CMB astronomy 10167: 9943:Liu, Cixin (2014-09-23). 9793:10.1038/nature.2015.16830 8842:10.1103/RevModPhys.69.337 8811:Reviews of Modern Physics 8787:10.1007/s10714-007-0472-9 7843:The Astrophysical Journal 7595:Christian Science Monitor 7538:The Astrophysical Journal 7514:10.1038/nature.2013.13441 6860:10.5303/JKAS.2014.47.1.15 6571:"Radiation Driving Force" 4834:Zeldovich, Y. B. (1972). 4589:The Astrophysical Journal 4251:Peebles, P. J. E (1993). 3802:The Astrophysical Journal 3755:The Astrophysical Journal 3342:National Medal of Science 3331:Sunyaev–Zel'dovich effect 3203:Sunyaev–Zel'dovich effect 3187:Sunyaev–Zel'dovich effect 2967:Charles Édouard Guillaume 1897:curvature of the universe 1674:of matter and radiation. 1560:Sunyaev–Zel'dovich effect 789:curvature of the universe 749:expansion of the universe 183:Expansion of the universe 12251:Post-Newtonian formalism 12241:Einstein field equations 12177:Mathematical formulation 12001:Hyperbolic orthogonality 11182:Onsala Space Observatory 11174:Nançay Radio Observatory 11150:Jodrell Bank Observatory 11050:Very Long Baseline Array 10726:Sardinia Radio Telescope 10407:Cosmic Background Imager 10213:Sunyaev–Zeldovich effect 10123:University of Nottingham 9367:(Submitted manuscript). 8862:Guillaume, C.-É., 1896, 8676:10.3847/2041-8213/abdd40 8562:(Submitted manuscript). 8377:(Submitted manuscript). 7967:(Submitted manuscript). 7904:(Submitted manuscript). 6002:(Submitted manuscript). 4447:"The origin of elements" 4219:"21. Big-Bang Cosmology" 3627: 3540:Axis of evil (cosmology) 3323:Sunyaev–Zel'dovich Array 3234:report the discovery of 3112:Igor Dmitrievich Novikov 3093:Nançay Radio Observatory 2819:Axis of evil (cosmology) 2803:Markov chain Monte Carlo 2777:Data analysis challenges 2670:CMBR dipole anisotropy ( 2223:-field) has a vanishing 2219:and the magnetic field ( 2215:-field) has a vanishing 2102:Sunyaev–Zeldovich effect 1775:. The color temperature 1716:electromagnetic spectrum 1556:electromagnetic spectrum 1421:(European Space Agency) 1321:Cosmic Background Imager 1241:Cosmic Background Imager 1154:geometry of the universe 827:spectrum for 2.725  347:Planck space observatory 133:Gravitational wave (GWB) 12870:Observational astronomy 11962:Galilean transformation 11953:Principle of relativity 11853:Observational cosmology 11412:Submillimetre astronomy 11024:Australia, South Africa 10876:Event Horizon Telescope 10094:CMBR Theme on arxiv.org 9891:2020A&A...641A...5P 9838:2020A&A...641A...1P 9629:Physical Review Letters 9496:Staff (17 March 2014). 9458:10.1126/science.1105598 7964:Physical Review Letters 7812:2007A&A...464..479B 7471:2016A&A...586A.133P 7380:2016ARA&A..54..227K 7289:Physical Review Letters 6953:Physical Review Letters 6824:Trippe, Sascha (2014). 6792:2001ARA&A..39..211N 6527:University of Cambridge 6424:2011A&A...526L...7N 6346:. Season 3. Episode 4. 5754:2016A&A...594A..13P 5702:Staff (21 March 2013). 4895:1970Ap&SS...7....3S 4784:10.1103/PhysRevD.1.2726 4445:Penzias, A. A. (2006). 4064:2014A&A...571A..27P 4012:2020A&A...641A...1P 3968:2020A&A...641A...5P 3915:2002ARA&A..40..171H 3603:Observational cosmology 3150:gravitational potential 3046:Erwin Finlay-Freundlich 2235:The E-modes arise from 2095:21 centimeter radiation 1172:Observations after COBE 1088: 1022:, began constructing a 200:Inhomogeneous cosmology 12047:Lorentz transformation 11704:Accelerating expansion 11134:Green Bank Observatory 11020:Square Kilometre Array 10061:Evans, Rhodri (2015). 10020:Balbi, Amedeo (2008). 9274:Soviet Physics Doklady 9166:10.1073/pnas.58.6.2179 8968:10.1103/PhysRev.70.340 6343:How the Universe Works 4863:10.1093/mnras/160.1.1P 3674:Nature Reviews Physics 3597:Non-standard cosmology 3511:The 2017 issue of the 3501:The Three-Body Problem 3429:findings was reported. 3368:Nobel Prize in Physics 2911:cosmological principle 2815:Cosmological principle 2614: 2533: 2488: 2458: 2362: 2327: 2268:Models of "slow-roll" 2200: 2176: 2149: 2118:Non-standard cosmology 1961:begins to break down: 1865: 1796:= 2.725 K × (1 + 1769:inversely proportional 1611:inflationary cosmology 1450:Planck cosmology probe 1311:. It was a 13-element 1216:was the right theory. 1204: 1057:Nobel Prize in Physics 999: 871:brightness temperature 832: 43: 27:. For other uses, see 12865:Inflation (cosmology) 12860:Gravitational lensing 12515:Weyl−Lewis−Papapetrou 12256:Raychaudhuri equation 12195:Equivalence principle 11807:Shape of the universe 11797:Large-scale structure 11610:cosmological theories 11427:High-energy astronomy 11314:Sebastian von Hoerner 10922:Long Wavelength Array 10868:European VLBI Network 10808:Allen Telescope Array 10708:Qitai Radio Telescope 8704:New Astronomy Reviews 8429:Astrophysical Journal 7412:(22 September 2014). 7014:Astrophysical Journal 6587:Astrophysical Journal 6556:"Baryons and Inertia" 6142:Smoot, G. F. (2006). 5180:Astrophysical Journal 5062:Astrophysical Journal 5032:Astroparticle Physics 4800:Astrophysical Journal 4653:Astrophysical Journal 4631:Lawrence Berkeley Lab 4505:Dicke, R. H. (1946). 4107:Voyage 2050 Proposals 3434:European Space Agency 3123:Robert Woodrow Wilson 3095:, in a sky survey at 2805:sampling techniques. 2620:Increasing values of 2615: 2534: 2489: 2459: 2363: 2325: 2297:Gravitational lensing 2198: 2177: 2175:{\displaystyle T_{0}} 2150: 2148:{\displaystyle T_{0}} 1839: 1580:cosmological redshift 1185: 1059:for their discovery. 1032:Robert Woodrow Wilson 993: 810: 745:cosmological redshift 291:Large-scale structure 269:Shape of the universe 37: 12556:Numerical relativity 12397:pulsar timing arrays 11887:astronomy portal 11495:Solar radio emission 11284:Jocelyn Bell Burnell 11142:Haystack Observatory 10676:Green Bank Telescope 10660:Effelsberg Telescope 10487:South Pole Telescope 10231:image (2018) of the 10024:. Berlin: Springer. 8866:24, series 2, p. 234 7643:10.1093/ptep/ptaa104 6518:Baumann, D. (2011). 5945:Guth, A. H. (1998). 5604:10.1364/AO.46.003444 5038:. pp. 240–241. 4883:Astrophys. Space Sci 4412:(5 September 2023). 3730:lambda.gsfc.nasa.gov 3513:Swiss 20 francs bill 3487:, a novel (2000) by 3327:clusters of galaxies 3265:BOOMERanG experiment 3225:intergalactic medium 3219:1990 – FIRAS on the 3207:clusters of galaxies 2887:Lambda-CDM cosmology 2716:in the direction of 2628:CMBR monopole term ( 2555: 2498: 2468: 2376: 2334: 2303:South Pole Telescope 2276:predicts primordial 2159: 2132: 2112:Alternative theories 2053:intergalactic medium 2046:Late time anisotropy 1818:cosmological horizon 1536:South Pole Telescope 1529:South Pole Telescope 1522:South Pole Telescope 1516:0.46 (km/s)/Mpc 1221:BOOMERanG experiment 1020:Princeton University 1016:David Todd Wilkinson 996:Holmdel Horn Antenna 929:spectral distortions 888:anisotropy from the 854:at a temperature of 747:associated with the 721:sub-atomic particles 687:discovery of the CMB 603:Astronomy portal 561:background radiation 538:List of cosmologists 29:CMB (disambiguation) 12448:Friedmann equations 12342:Hulse–Taylor binary 12304:Gravitational waves 12200:Riemannian geometry 12026:Proper acceleration 12011:Maxwell's equations 11957:Galilean relativity 11812:Structure formation 11775:Structure formation 11689:Friedmann equations 11599:Observable universe 11579:Age of the universe 11468:Pulsar timing array 11274:Edward George Bowen 11264:Elizabeth Alexander 11126:Arecibo Observatory 11030:Submillimeter Array 10932:Low-Frequency Array 10902:Korean VLBI Network 10768:Southern Hemisphere 10679:(West Virginia, US) 10387:BICEP (1,2,3,Array) 9652:2014PhRvL.112x1101B 9450:2004Sci...306..836R 9395:10.1038/nature01269 9387:2002Natur.420..772K 9287:1999EnST...33.4292W 9157:1967PNAS...58.2179A 9068:1941PDAO....7..251M 8960:1946PhRv...70..340D 8834:1997RvMP...69..337A 8779:2007GReGr..39.1545K 8726:2022NewAR..9501659P 8667:2021ApJ...908L..51S 8582:2006PhRvD..74b3005D 8511:2006MNRAS.367...79C 8452:2005ApJ...635..750B 8397:2004PhRvD..70h3002S 8338:2004ApJ...617L..99O 8281:2003PhRvD..68l3523T 8216:2007ApJS..170..288H 8155:2011MNRAS.413L..96L 8054:2004MNRAS.355.1283B 7987:2004PhRvL..93v1301S 7924:2004PhRvD..69f3516D 7865:2005ApJ...629L...1J 7757:2009MNRAS.399.1921R 7700:2016JCAP...01..046G 7597:. October 21, 2014. 7561:2014ApJ...794..171P 7312:2013PhRvL.111n1301H 7253:2006PhR...429....1L 7198:1998PhRvD..58b3003Z 7145:1997PhRvL..78.2058K 7092:1997PhRvL..78.2054S 7036:1997ApJ...482....6S 6975:2014PhRvL.112x1101B 6917:10.1038/nature01269 6909:2002Natur.420..772K 6852:2014JKAS...47...15T 6738:2013ApJS..208...19H 6669:2003ApJS..148..175S 6610:1996ApJ...471...30H 6479:2003AIPC..689..184D 6289:1999dpf..conf.....W 6242:2001ncia.book.....U 6103:2000PhR...333..245G 6051:Abbott, B. (2007). 6022:2005PhRvD..71j3518C 5873:2006CaJPh..84..419S 5812:2011PASP..123..568C 5661:2005stt..conf...64M 5596:2007ApOpt..46.3444F 5539:10.1038/nature01271 5531:2002Natur.420..763L 5452:2013ApJS..208...20B 5385:2003ApJS..148....1B 5332:2003PhRvD..68b3506P 5258:2000Natur.404..955D 5203:2000ApJ...545L...5H 5140:2000ApJ...536L..63M 5085:1999ApJ...521L..79T 5001:1996ApJ...464L...1B 4944:1992ApJ...396L...1S 4854:1972MNRAS.160P...1Z 4813:1970ApJ...162..815P 4776:1970PhRvD...1.2726H 4666:1965ApJ...142..414D 4602:1965ApJ...142..419P 4525:1946RScI...17..268D 4347:1948Natur.162..680G 4302:1948Natur.162..774A 4189:2018SHPMP..62....1C 4129:2021ExA....51.1515C 3825:2009ApJ...707..916F 3767:2002ApJ...581..817F 3696:2022NatRP...4..452K 3423:theory of inflation 3412:gravitational waves 2636:The monopole term, 2370:spherical harmonics 2305:with help from the 2278:gravitational waves 2253:gravitational waves 1806:observable universe 1596:steady state theory 1510:was measured to be 1445:balloon telescope. 1135:Precision cosmology 1052:antenna temperature 908:The CMB dipole and 852:black body spectrum 709:cosmological models 663:observable universe 659:microwave radiation 303:Structure formation 195:Friedmann equations 85:Age of the universe 49:Part of a series on 23:radio station, see 12497:Reissner–Nordström 12415:Brans–Dicke theory 12246:Linearized gravity 12073:Length contraction 11991:Frame of reference 11968:Special relativity 11792:Large quasar group 11448:Aperture synthesis 11417:Infrared astronomy 11354:Joseph Lade Pawsey 11324:Kenneth Kellermann 11294:Nan Dieter-Conklin 11002:One-Mile Telescope 10781:Parkes Observatory 10482:Simons Observatory 10218:Thomson scattering 10208:Sachs–Wolfe effect 9997:SYFY Official Site 9727:The New York Times 9595:The New York Times 9588:(March 24, 2014). 9564:The New York Times 9555:(March 17, 2014). 8918:Kragh, H. (1999). 7419:The New York Times 6057:Hayden Planetarium 5709:The New York Times 5487:The New York Times 4903:10.1007/BF00653471 4419:The New York Times 3615:Physical cosmology 3504:, a 2008 novel by 3459:In popular culture 3182:Compton scattering 3180:study the inverse 3155:Sachs–Wolfe effect 3133:, P. G. Roll, and 3108:A. G. Doroshkevich 3048:in support of his 2900:Charles L. Bennett 2718:galactic longitude 2610: 2529: 2484: 2454: 2412: 2358: 2328: 2318:Multipole analysis 2237:Thomson scattering 2201: 2184:steady state model 2172: 2145: 2106:Sachs–Wolfe effect 2072:Thomson scattering 1866: 1832:Primary anisotropy 1615:exponential growth 1567:Theoretical models 1552:submillimeter-wave 1506:years old and the 1205: 1072:Progress on theory 1008:A. G. Doroshkevich 1000: 948:Early speculations 833: 725:Thomson scattering 715:fog of dense, hot 665:. With a standard 342:Dark Energy Survey 286:Large quasar group 55:Physical cosmology 44: 25:Radio Enciclopedia 12750: 12749: 12564: 12563: 12543:OzsvĂĄth–SchĂŒcking 12149: 12148: 12131:Minkowski diagram 12088:Thomas precession 12031:Relativistic mass 11894: 11893: 11848:Illustris project 11531: 11530: 11473:Radio propagation 11422:Optical astronomy 11319:Karl Guthe Jansky 11129:(Puerto Rico, US) 11104: 11103: 10896:West Virginia, US 10645:(Puerto Rico, US) 10642:Arecibo Telescope 10514: 10513: 10510: 10509: 10198:Diffusion damping 10072:978-3-319-09927-9 10053:978-0-521-84704-9 10031:978-3-540-78726-6 9720:(June 19, 2014). 9434:(5697): 836–844. 9371:(6917): 772–787. 9295:10.1021/es990537g 9281:(23): 4292–4298. 9257:978-0-521-85550-1 9101:978-0-471-92567-5 9023:978-0-486-43868-9 8937:978-0-691-00546-1 8899:978-0-674-36668-8 8763:(10): 1545–1550. 8559:Physical Review D 8374:Physical Review D 8258:Physical Review D 7901:Physical Review D 7176:Physical Review D 7129:(11): 2058–2061. 7076:(11): 2054–2057. 6893:(6917): 772–787. 6497:10.1063/1.1627736 6348:Discovery Science 6251:978-3-540-67877-9 6214:978-0-521-82951-9 5999:Physical Review D 5931:978-0-231-05393-8 5580:(17): 3444–3454. 5515:(6917): 763–771. 5309:Physical Review D 5242:(6781): 955–959. 5045:978-3-540-25312-9 4770:(10): 2726–2730. 4763:Physical Review D 4746:978-0-19-881766-6 4534:10.1063/1.1770483 4341:(4122): 680–682. 4296:(4124): 774–775. 4272:978-0-691-01933-8 3467:Stargate Universe 3440:in the Milky Way. 3201:first detect the 2883:Bayesian analysis 2400: 2291:Planck experiment 1877:diffusion damping 1679:color temperature 1160:. They ruled out 962:Richard C. Tolman 894:peculiar velocity 667:optical telescope 639: 638: 310: 309: 152: 151: 12887: 12827: 12826: 12825: 12815: 12814: 12813: 12803: 12802: 12801: 12791: 12790: 12779: 12778: 12777: 12767: 12766: 12758: 12742: 12741: 12525:van Stockum dust 12297:Two-body problem 12215:Mach's principle 12162: 12161: 12103:Terrell rotation 11943: 11942: 11921: 11914: 11907: 11898: 11897: 11885: 11884: 11883: 11787:Galaxy formation 11766:Lambda-CDM model 11677:Present universe 11558: 11551: 11544: 11535: 11534: 11521: 11520: 11511: 11510: 11488:HD 164595 signal 11463:Odd radio circle 11441:Related articles 11359:Ruby Payne-Scott 11289:Arthur Covington 11279:Ronald Bracewell 11249: 11241: 11233: 11214: 11205: 11195: 11186: 11178: 11170: 11162: 11154: 11146: 11138: 11130: 11122: 11096: 11086: 11065: 11055: 11045: 11040:Very Large Array 11035: 11025: 11015: 11006: 10997: 10987: 10977: 10967: 10957: 10947: 10937: 10927: 10917: 10916:Argentina/Brazil 10907: 10897: 10887: 10872: 10863: 10853: 10843: 10833: 10823: 10813: 10793: 10785: 10777: 10769: 10762: 10758:Yevpatoria RT-70 10754: 10746: 10738: 10730: 10721: 10712: 10704: 10696: 10692:Lovell Telescope 10688: 10680: 10672: 10664: 10655: 10646: 10637: 10620: 10619: 10609:Radio telescopes 10541: 10534: 10527: 10518: 10517: 10502:Very Small Array 10248: 10247: 10154: 10147: 10140: 10131: 10130: 10126: 10076: 10057: 10035: 10008: 10007: 10005: 10004: 9989: 9983: 9982: 9980: 9979: 9965: 9959: 9958: 9956: 9955: 9940: 9934: 9933: 9931: 9930: 9917: 9911: 9910: 9884: 9864: 9858: 9857: 9831: 9811: 9805: 9804: 9780: 9774: 9773: 9771: 9769: 9752: 9746: 9745: 9743: 9741: 9735: 9730:. Archived from 9714: 9708: 9707: 9700: 9694: 9693: 9687: 9679: 9645: 9623: 9614: 9613: 9611: 9609: 9603: 9598:. Archived from 9582: 9576: 9575: 9573: 9571: 9560: 9549: 9543: 9542: 9540: 9538: 9521: 9515: 9514: 9512: 9510: 9493: 9487: 9484: 9478: 9477: 9443: 9441:astro-ph/0409569 9421: 9415: 9414: 9380: 9378:astro-ph/0209478 9354: 9348: 9347: 9345: 9344: 9338:UC Berkeley News 9329: 9323: 9313: 9307: 9306: 9268: 9262: 9261: 9241: 9235: 9234: 9212: 9206: 9203: 9197: 9196: 9186: 9168: 9151:(6): 2179–2186. 9136: 9130: 9112: 9106: 9105: 9082:Weinberg, Steven 9078: 9072: 9071: 9051: 9045: 9034: 9028: 9027: 9000: 8994: 8978: 8972: 8971: 8954:(5–6): 340–348. 8941: 8925: 8915: 8904: 8903: 8873: 8867: 8860: 8854: 8853: 8827: 8825:astro-ph/9701131 8805: 8799: 8798: 8772: 8752: 8746: 8745: 8719: 8695: 8689: 8688: 8678: 8660: 8636: 8630: 8629: 8622: 8616: 8615: 8608: 8602: 8601: 8575: 8573:astro-ph/0603369 8549: 8543: 8542: 8532: 8522: 8504: 8502:astro-ph/0508047 8478: 8472: 8471: 8445: 8443:astro-ph/0507186 8423: 8417: 8416: 8390: 8388:astro-ph/0404567 8364: 8358: 8357: 8331: 8329:astro-ph/0407027 8308: 8302: 8300: 8274: 8272:astro-ph/0302496 8252: 8246: 8245: 8227: 8209: 8207:astro-ph/0603451 8183: 8177: 8176: 8166: 8148: 8124: 8118: 8117: 8115: 8103: 8097: 8096: 8094: 8082: 8076: 8075: 8065: 8047: 8045:astro-ph/0405007 8038:(4): 1283–1302. 8021: 8015: 8014: 7980: 7978:astro-ph/0403353 7950: 7944: 7943: 7917: 7915:astro-ph/0307282 7891: 7885: 7884: 7858: 7856:astro-ph/0503213 7838: 7832: 7831: 7805: 7803:astro-ph/0511666 7785: 7779: 7778: 7768: 7750: 7741:(4): 1921–1933. 7726: 7720: 7719: 7693: 7673: 7667: 7666: 7658: 7649: 7647: 7645: 7627: 7618: 7599: 7598: 7587: 7581: 7580: 7554: 7532: 7526: 7525: 7497: 7491: 7490: 7464: 7444: 7438: 7437: 7435: 7433: 7427: 7422:. Archived from 7406: 7400: 7399: 7373: 7349: 7340: 7339: 7305: 7279: 7273: 7272: 7246: 7244:astro-ph/0601594 7224: 7218: 7217: 7191: 7189:astro-ph/9803150 7171: 7165: 7164: 7138: 7136:astro-ph/9609132 7118: 7112: 7111: 7085: 7083:astro-ph/9609169 7065: 7056: 7055: 7029: 7027:astro-ph/9608131 7009: 7003: 7002: 6968: 6943: 6937: 6936: 6902: 6900:astro-ph/0209478 6878: 6872: 6871: 6845: 6821: 6812: 6811: 6771: 6758: 6757: 6731: 6698: 6689: 6688: 6662: 6660:astro-ph/0302209 6639: 6630: 6629: 6603: 6601:astro-ph/9602019 6581: 6575: 6574: 6566: 6560: 6559: 6551: 6545: 6544: 6542: 6541: 6535: 6529:. Archived from 6524: 6515: 6509: 6508: 6490: 6472: 6450: 6444: 6443: 6417: 6393: 6387: 6386: 6379: 6373: 6372: 6370: 6368:astro-ph/9508159 6358: 6352: 6351: 6334: 6328: 6327: 6317: 6308: 6293: 6292: 6282: 6280:astro-ph/9903232 6262: 6256: 6255: 6232:(5th ed.). 6225: 6219: 6218: 6198: 6188: 6182: 6181: 6179: 6178: 6168: 6162: 6161: 6159: 6158: 6152:Nobel Foundation 6139: 6133: 6132: 6114: 6096: 6094:astro-ph/0002044 6078: 6072: 6071: 6069: 6068: 6059:. Archived from 6048: 6042: 6041: 6015: 6013:astro-ph/0412634 5985: 5979: 5978: 5942: 5936: 5935: 5919: 5909: 5903: 5902: 5884: 5866: 5864:astro-ph/0510731 5857:(6–7): 419–435. 5846: 5840: 5839: 5805: 5796:(903): 568–581. 5780: 5774: 5773: 5747: 5727: 5721: 5720: 5718: 5716: 5699: 5693: 5692: 5690: 5688: 5671: 5665: 5664: 5654: 5652:astro-ph/0505273 5638: 5632: 5631: 5589: 5587:astro-ph/0701020 5565: 5559: 5558: 5524: 5522:astro-ph/0209476 5504: 5498: 5497: 5495: 5493: 5478: 5472: 5471: 5445: 5412: 5406: 5404: 5378: 5376:astro-ph/0302207 5355: 5344: 5343: 5325: 5300: 5294: 5293: 5266:10.1038/35010035 5251: 5249:astro-ph/0004404 5229: 5223: 5222: 5196: 5194:astro-ph/0005123 5174: 5168: 5167: 5133: 5131:astro-ph/9911445 5111: 5105: 5104: 5078: 5076:astro-ph/9905100 5056: 5050: 5049: 5027: 5021: 5020: 4994: 4992:astro-ph/9601067 4972: 4966: 4965: 4955: 4921: 4915: 4914: 4874: 4868: 4867: 4865: 4831: 4825: 4824: 4794: 4788: 4787: 4757: 4751: 4750: 4722: 4703: 4702: 4700: 4699: 4692:Nobel Foundation 4684: 4678: 4677: 4647: 4641: 4640: 4638: 4637: 4622: 4616: 4615: 4613: 4579: 4573: 4572: 4570: 4562: 4556: 4554: 4536: 4502: 4496: 4495: 4493: 4492: 4486: 4462:Nobel Foundation 4451: 4442: 4436: 4435: 4433: 4431: 4406: 4397: 4396: 4390: 4381: 4375: 4374: 4355:10.1038/162680a0 4328: 4322: 4321: 4310:10.1038/162774b0 4283: 4277: 4276: 4248: 4239: 4238: 4236: 4228: 4222: 4215: 4209: 4208: 4182: 4158: 4149: 4148: 4122: 4113:(3): 1515–1554. 4098: 4092: 4089: 4083: 4082: 4057: 4037: 4031: 4030: 4005: 3985: 3979: 3978: 3961: 3941: 3935: 3934: 3908: 3906:astro-ph/0110414 3884: 3873: 3872: 3870: 3869: 3857:Wright, Edward. 3854: 3845: 3844: 3818: 3796: 3787: 3786: 3746: 3740: 3739: 3737: 3736: 3722: 3716: 3715: 3689: 3665: 3646: 3638: 3585:Lambda-CDM model 3563: 3452:Planck telescope 3445:Planck telescope 3427:cosmic inflation 3401:Planck telescope 3394:Planck telescope 3387:Lambda-CDM model 3283:Very Small Array 3178:Yakov Zel'dovich 2993: 2978:Arthur Eddington 2917:Future evolution 2892:Planck telescope 2849: 2842: 2798:power spectrum. 2772: 2765: 2746: 2745: 2743: 2732: 2731: 2729: 2715: 2713: 2703: 2701: 2692: 2690: 2684: 2661: 2660: 2658: 2642: 2619: 2617: 2616: 2611: 2603: 2602: 2597: 2591: 2590: 2578: 2567: 2566: 2538: 2536: 2535: 2530: 2513: 2512: 2493: 2491: 2490: 2485: 2483: 2482: 2463: 2461: 2460: 2455: 2438: 2437: 2425: 2424: 2411: 2367: 2365: 2364: 2359: 2270:cosmic inflation 2257:cosmic inflation 2181: 2179: 2178: 2173: 2171: 2170: 2155:. This value of 2154: 2152: 2151: 2146: 2144: 2143: 2018: 2006: 1927:Cosmic inflation 1842:multipole moment 1826:cosmic inflation 1751: 1747: 1700: 1698: 1688: 1686: 1653:to combine with 1641:As the universe 1517: 1515: 1502: 1500: 1466: 1465: 1429:radiometers and 1382:in the north of 1336:inflation theory 1325:Very Small Array 1276:cosmic inflation 1239:(DASI), and the 1233:Very Small Array 1214:cosmic inflation 1203:(March 21, 2013) 1166:cosmic inflation 1107:cosmic inflation 1024:Dicke radiometer 1006:astrophysicists 954:Georges LemaĂźtre 938: 882:root mean square 868: 866: 862: 859: 631: 624: 617: 601: 600: 599: 588: 587: 281:Galaxy formation 241:Lambda-CDM model 230: 229: 222:Components  104: 103: 65: 46: 45: 12895: 12894: 12890: 12889: 12888: 12886: 12885: 12884: 12880:Radio astronomy 12835: 12834: 12833: 12823: 12821: 12811: 12809: 12799: 12797: 12785: 12775: 12773: 12761: 12753: 12751: 12746: 12732: 12560: 12464:BKL singularity 12454:LemaĂźtre–Tolman 12429: 12425:Quantum gravity 12407: 12401: 12387:geodetic effect 12361:(together with 12331:LISA Pathfinder 12270: 12219: 12205:Penrose diagram 12187: 12181: 12156: 12145: 12141:Minkowski space 12107: 12051: 12035: 11983: 11977: 11937: 11930: 11925: 11895: 11890: 11881: 11879: 11872: 11816: 11782:Galaxy filament 11770: 11734: 11718:Future universe 11713: 11672: 11668:Nucleosynthesis 11636: 11609: 11603: 11567: 11562: 11532: 11527: 11499: 11436: 11404: 11398: 11384:Gart Westerhout 11252: 11247: 11239: 11231: 11217: 11212: 11203: 11193: 11192:(PRAO ASC LPI, 11184: 11176: 11168: 11160: 11152: 11144: 11136: 11128: 11120: 11100: 11094: 11084: 11069: 11063: 11053: 11043: 11033: 11023: 11013: 11004: 10995: 10985: 10975: 10965: 10955: 10945: 10935: 10925: 10915: 10905: 10895: 10885: 10870: 10861: 10851: 10841: 10831: 10821: 10811: 10801:Interferometers 10796: 10791: 10783: 10775: 10767: 10760: 10752: 10744: 10742:Usuda Telescope 10736: 10728: 10719: 10710: 10702: 10694: 10686: 10678: 10670: 10662: 10653: 10644: 10635: 10624: 10611: 10603: 10573:Radio telescope 10550: 10548:Radio astronomy 10545: 10515: 10506: 10340: 10284: 10237: 10236: 10222: 10193:Cosmic variance 10181: 10163: 10158: 10083: 10073: 10054: 10032: 10016: 10014:Further reading 10011: 10002: 10000: 9991: 9990: 9986: 9977: 9975: 9973:nccr-planets.ch 9967: 9966: 9962: 9953: 9951: 9941: 9937: 9928: 9926: 9919: 9918: 9914: 9865: 9861: 9812: 9808: 9781: 9777: 9767: 9765: 9753: 9749: 9739: 9737: 9718:Overbye, Dennis 9715: 9711: 9702: 9701: 9697: 9681: 9680: 9624: 9617: 9607: 9605: 9586:Overbye, Dennis 9583: 9579: 9569: 9567: 9553:Overbye, Dennis 9550: 9546: 9536: 9534: 9522: 9518: 9508: 9506: 9494: 9490: 9485: 9481: 9422: 9418: 9355: 9351: 9342: 9340: 9330: 9326: 9314: 9310: 9269: 9265: 9258: 9242: 9238: 9213: 9209: 9204: 9200: 9137: 9133: 9113: 9109: 9102: 9079: 9075: 9052: 9048: 9035: 9031: 9024: 9001: 8997: 8979: 8975: 8947:Physical Review 8938: 8916: 8907: 8900: 8874: 8870: 8861: 8857: 8806: 8802: 8753: 8749: 8696: 8692: 8637: 8633: 8624: 8623: 8619: 8610: 8609: 8605: 8550: 8546: 8520:10.1.1.490.6391 8479: 8475: 8424: 8420: 8365: 8361: 8322:(2): L99–L102. 8309: 8305: 8253: 8249: 8225:10.1.1.471.7186 8184: 8180: 8139:(1): L96–L100. 8125: 8121: 8104: 8100: 8083: 8079: 8022: 8018: 7951: 7947: 7892: 7888: 7839: 7835: 7786: 7782: 7727: 7723: 7674: 7670: 7659: 7652: 7625: 7619: 7602: 7589: 7588: 7584: 7533: 7529: 7498: 7494: 7445: 7441: 7431: 7429: 7410:Overbye, Dennis 7407: 7403: 7350: 7343: 7280: 7276: 7230:Physics Reports 7225: 7221: 7172: 7168: 7123:Phys. Rev. Lett 7119: 7115: 7070:Phys. Rev. Lett 7066: 7059: 7010: 7006: 6944: 6940: 6879: 6875: 6822: 6815: 6772: 6761: 6699: 6692: 6640: 6633: 6582: 6578: 6567: 6563: 6552: 6548: 6539: 6537: 6533: 6522: 6516: 6512: 6488:10.1.1.344.3524 6451: 6447: 6399: 6394: 6390: 6381: 6380: 6376: 6359: 6355: 6335: 6331: 6315: 6309: 6296: 6263: 6259: 6252: 6236:. p. 485. 6234:Springer-Verlag 6226: 6222: 6215: 6189: 6185: 6176: 6174: 6170: 6169: 6165: 6156: 6154: 6140: 6136: 6112:10.1.1.588.3349 6084:Physics Reports 6079: 6075: 6066: 6064: 6049: 6045: 5986: 5982: 5967: 5943: 5939: 5932: 5910: 5906: 5891:10.1139/P06-066 5882:10.1.1.317.2954 5847: 5843: 5784:J. E. Carlstrom 5781: 5777: 5728: 5724: 5714: 5712: 5700: 5696: 5686: 5684: 5672: 5668: 5639: 5635: 5566: 5562: 5505: 5501: 5491: 5489: 5479: 5475: 5413: 5409: 5356: 5347: 5301: 5297: 5230: 5226: 5175: 5171: 5112: 5108: 5057: 5053: 5046: 5028: 5024: 4973: 4969: 4922: 4918: 4875: 4871: 4832: 4828: 4795: 4791: 4758: 4754: 4747: 4723: 4706: 4697: 4695: 4686: 4685: 4681: 4648: 4644: 4635: 4633: 4623: 4619: 4580: 4576: 4568: 4564: 4563: 4559: 4503: 4499: 4490: 4488: 4484: 4449: 4443: 4439: 4429: 4427: 4410:Overbye, Dennis 4407: 4400: 4388: 4382: 4378: 4329: 4325: 4284: 4280: 4273: 4249: 4242: 4234: 4230: 4229: 4225: 4216: 4212: 4159: 4152: 4099: 4095: 4090: 4086: 4038: 4034: 3986: 3982: 3942: 3938: 3885: 3876: 3867: 3865: 3855: 3848: 3797: 3790: 3747: 3743: 3734: 3732: 3724: 3723: 3719: 3666: 3659: 3655: 3650: 3649: 3639: 3635: 3630: 3625: 3561: 3535: 3461: 3366:, received the 3340:is awarded the 3338:Ralph A. Alpher 3146:Arthur M. Wolfe 3142:Rainer K. Sachs 3135:D. T. Wilkinson 3064:Andrew McKellar 3059: 2985: 2962: 2957: 2951: 2919: 2863:cosmic variance 2844: 2837: 2825: 2811: 2779: 2767: 2760: 2757: 2741: 2739: 2734: 2727: 2725: 2720: 2711: 2709: 2699: 2697: 2688: 2686: 2679: 2676: 2656: 2654: 2652: 2644: 2637: 2634: 2598: 2593: 2592: 2583: 2579: 2574: 2562: 2558: 2556: 2553: 2552: 2505: 2501: 2499: 2496: 2495: 2475: 2471: 2469: 2466: 2465: 2430: 2426: 2417: 2413: 2404: 2377: 2374: 2373: 2335: 2332: 2331: 2320: 2299: 2266: 2249: 2233: 2193: 2166: 2162: 2160: 2157: 2156: 2139: 2135: 2133: 2130: 2129: 2120: 2114: 2048: 2016: 1998: 1965:the increasing 1834: 1795: 1781: 1749: 1742: 1711: 1696: 1694: 1684: 1682: 1576: 1569: 1564: 1563: 1554:regions of the 1548:millimeter-wave 1532: 1524: 1513: 1511: 1508:Hubble constant 1498: 1496: 1485:ordinary matter 1477:galaxy clusters 1463: 1461: 1435:Viper telescope 1423:Planck Surveyor 1415: 1413:Planck Surveyor 1409: 1407:Planck Surveyor 1404: 1403: 1368: 1360: 1355: 1354: 1292: 1284: 1255: 1249: 1229:interferometers 1202: 1180: 1174: 1137: 1091: 1083:relic radiation 1074: 1065: 988: 982: 950: 945: 936: 864: 860: 857: 855: 805: 797:galaxy clusters 735:event released 671:radio telescope 655:relic radiation 635: 597: 595: 577: 576: 563: 560: 553: 551:Subject history 543: 542: 534: 379: 371: 370: 367: 364: 322: 312: 311: 274:Galaxy filament 227: 215: 214: 166: 161:Expansion  154: 153: 138:Microwave (CMB) 117:Nucleosynthesis 101: 32: 17: 12: 11: 5: 12893: 12883: 12882: 12877: 12872: 12867: 12862: 12857: 12852: 12847: 12832: 12831: 12819: 12807: 12795: 12783: 12771: 12748: 12747: 12737: 12734: 12733: 12731: 12730: 12723: 12718: 12713: 12708: 12703: 12698: 12693: 12688: 12683: 12678: 12673: 12668: 12663: 12658: 12653: 12651:Choquet-Bruhat 12648: 12643: 12638: 12633: 12628: 12623: 12618: 12613: 12608: 12603: 12598: 12593: 12588: 12583: 12578: 12572: 12570: 12566: 12565: 12562: 12561: 12559: 12558: 12551: 12550: 12545: 12540: 12533: 12532: 12527: 12522: 12517: 12512: 12503:Axisymmetric: 12500: 12499: 12494: 12488: 12477: 12476: 12471: 12466: 12461: 12456: 12451: 12442:Cosmological: 12439: 12437: 12431: 12430: 12428: 12427: 12422: 12417: 12411: 12409: 12403: 12402: 12400: 12399: 12394: 12383:frame-dragging 12380: 12375: 12370: 12367:Einstein rings 12363:Einstein cross 12356: 12345: 12344: 12339: 12333: 12328: 12323: 12310: 12300: 12299: 12294: 12289: 12284: 12278: 12276: 12272: 12271: 12269: 12268: 12266:Ernst equation 12263: 12258: 12253: 12248: 12243: 12238: 12236:BSSN formalism 12233: 12227: 12225: 12221: 12220: 12218: 12217: 12212: 12207: 12202: 12197: 12191: 12189: 12183: 12182: 12180: 12179: 12174: 12168: 12166: 12159: 12151: 12150: 12147: 12146: 12144: 12143: 12138: 12133: 12128: 12123: 12117: 12115: 12109: 12108: 12106: 12105: 12100: 12095: 12093:Ladder paradox 12090: 12085: 12080: 12075: 12070: 12065: 12059: 12057: 12053: 12052: 12050: 12049: 12043: 12041: 12037: 12036: 12034: 12033: 12028: 12023: 12018: 12013: 12008: 12003: 11998: 11996:Speed of light 11993: 11987: 11985: 11979: 11978: 11976: 11975: 11970: 11965: 11959: 11949: 11947: 11940: 11932: 11931: 11924: 11923: 11916: 11909: 11901: 11892: 11891: 11877: 11874: 11873: 11871: 11870: 11865: 11860: 11855: 11850: 11845: 11840: 11835: 11830: 11824: 11822: 11818: 11817: 11815: 11814: 11809: 11804: 11799: 11794: 11789: 11784: 11778: 11776: 11772: 11771: 11769: 11768: 11763: 11758: 11753: 11748: 11742: 11740: 11736: 11735: 11733: 11732: 11727: 11721: 11719: 11715: 11714: 11712: 11711: 11706: 11701: 11696: 11691: 11686: 11680: 11678: 11674: 11673: 11671: 11670: 11665: 11660: 11655: 11650: 11644: 11642: 11638: 11637: 11635: 11634: 11629: 11624: 11619: 11613: 11611: 11605: 11604: 11602: 11601: 11596: 11591: 11586: 11581: 11575: 11573: 11569: 11568: 11561: 11560: 11553: 11546: 11538: 11529: 11528: 11526: 11525: 11515: 11504: 11501: 11500: 11498: 11497: 11492: 11491: 11490: 11485: 11475: 11470: 11465: 11460: 11458:Interferometry 11455: 11450: 11444: 11442: 11438: 11437: 11435: 11434: 11429: 11424: 11419: 11414: 11408: 11406: 11400: 11399: 11397: 11396: 11391: 11386: 11381: 11376: 11371: 11366: 11361: 11356: 11351: 11346: 11341: 11339:Bernard Lovell 11336: 11331: 11326: 11321: 11316: 11311: 11306: 11301: 11296: 11291: 11286: 11281: 11276: 11271: 11269:John G. Bolton 11266: 11260: 11258: 11254: 11253: 11251: 11250: 11242: 11237:ESA New Norcia 11234: 11225: 11223: 11219: 11218: 11216: 11215: 11207: 11197: 11187: 11179: 11171: 11163: 11155: 11147: 11139: 11131: 11123: 11114: 11112: 11106: 11105: 11102: 11101: 11099: 11098: 11088: 11077: 11075: 11071: 11070: 11068: 11067: 11057: 11047: 11044:New Mexico, US 11037: 11027: 11017: 11007: 10999: 10989: 10979: 10969: 10959: 10949: 10939: 10929: 10926:New Mexico, US 10919: 10909: 10899: 10889: 10879: 10873: 10865: 10862:California, US 10855: 10845: 10835: 10825: 10815: 10812:California, US 10804: 10802: 10798: 10797: 10795: 10794: 10786: 10778: 10776:(South Africa) 10770: 10764: 10763: 10755: 10747: 10739: 10731: 10723: 10713: 10705: 10700:Ooty Telescope 10697: 10689: 10681: 10673: 10665: 10657: 10647: 10639: 10628: 10626: 10617: 10605: 10604: 10602: 10601: 10596: 10590: 10580: 10570: 10558: 10556: 10552: 10551: 10544: 10543: 10536: 10529: 10521: 10512: 10511: 10508: 10507: 10505: 10504: 10499: 10494: 10489: 10484: 10479: 10474: 10469: 10464: 10459: 10454: 10449: 10444: 10439: 10434: 10429: 10424: 10419: 10414: 10409: 10404: 10399: 10394: 10389: 10384: 10379: 10374: 10369: 10364: 10359: 10354: 10348: 10346: 10342: 10341: 10339: 10338: 10333: 10328: 10323: 10318: 10313: 10308: 10303: 10298: 10292: 10290: 10286: 10285: 10283: 10282: 10277: 10272: 10265: 10260: 10254: 10252: 10245: 10239: 10238: 10226: 10225: 10223: 10221: 10220: 10215: 10210: 10205: 10200: 10195: 10189: 10187: 10183: 10182: 10180: 10179: 10174: 10168: 10165: 10164: 10157: 10156: 10149: 10142: 10134: 10128: 10127: 10109:Copeland, Ed. 10106: 10101: 10096: 10091: 10082: 10081:External links 10079: 10078: 10077: 10071: 10058: 10052: 10036: 10030: 10015: 10012: 10010: 10009: 9984: 9960: 9935: 9912: 9859: 9806: 9775: 9747: 9709: 9695: 9636:(24): 241101. 9615: 9577: 9544: 9516: 9488: 9479: 9416: 9349: 9324: 9322:, Nov 21, 2006 9308: 9263: 9256: 9236: 9221:(in Russian). 9207: 9198: 9131: 9107: 9100: 9073: 9046: 9029: 9022: 9016:. p. 40. 8995: 8980:George Gamow, 8973: 8936: 8905: 8898: 8868: 8855: 8818:(2): 337–372. 8800: 8747: 8690: 8631: 8617: 8603: 8544: 8473: 8460:10.1086/497263 8418: 8359: 8346:10.1086/427386 8303: 8265:(12): 123523. 8247: 8234:10.1086/513698 8200:(2): 288–334. 8178: 8119: 8098: 8077: 8016: 7971:(22): 221301. 7945: 7886: 7873:10.1086/444454 7833: 7796:(2): 479–485. 7780: 7721: 7668: 7650: 7600: 7582: 7527: 7492: 7439: 7401: 7364:(1): 227–269. 7341: 7296:(14): 141301. 7274: 7219: 7166: 7113: 7057: 7044:10.1086/304123 7004: 6959:(24): 241101. 6938: 6873: 6813: 6786:(1): 211–248. 6759: 6690: 6677:10.1086/377226 6653:(1): 175–194. 6631: 6618:10.1086/177951 6576: 6561: 6546: 6510: 6470:hep-ph/0309057 6445: 6397: 6388: 6374: 6353: 6329: 6294: 6257: 6250: 6220: 6213: 6183: 6163: 6134: 6073: 6043: 6006:(10): 77–115. 5990:Sanchez, N. G. 5980: 5966:978-0201328400 5965: 5937: 5930: 5904: 5841: 5820:10.1086/659879 5775: 5722: 5694: 5666: 5633: 5574:Applied Optics 5560: 5499: 5473: 5407: 5393:10.1086/377253 5345: 5323:hep-th/0304188 5295: 5224: 5211:10.1086/317322 5169: 5148:10.1086/312744 5124:(2): L63–L66. 5106: 5093:10.1086/312197 5069:(2): L79–L82. 5051: 5044: 5022: 5009:10.1086/310075 4967: 4953:10.1086/186504 4916: 4869: 4826: 4821:10.1086/150713 4789: 4752: 4745: 4704: 4679: 4674:10.1086/148306 4642: 4617: 4611:10.1086/148307 4596:(1): 419–421. 4574: 4557: 4519:(7): 268–275. 4497: 4437: 4398: 4376: 4323: 4278: 4271: 4240: 4223: 4210: 4150: 4093: 4084: 4032: 3980: 3936: 3899:(1): 171–216. 3874: 3863:astro.ucla.edu 3846: 3809:(2): 916–920. 3788: 3775:10.1086/344402 3761:(2): 817–822. 3741: 3717: 3680:(7): 452–469. 3656: 3654: 3651: 3648: 3647: 3632: 3631: 3629: 3626: 3624: 3623: 3618: 3612: 3606: 3600: 3594: 3588: 3582: 3576: 3570: 3564: 3555: 3549: 3543: 3536: 3534: 3531: 3530: 3529: 3520: 3509: 3496: 3479: 3460: 3457: 3456: 3455: 3448: 3441: 3430: 3419:power spectrum 3404: 3397: 3390: 3371: 3356: 3345: 3334: 3315: 3308: 3301: 3295: 3286: 3275: 3268: 3257: 3250: 3239: 3228: 3217: 3210: 3191: 3170: 3159: 3138: 3115: 3104: 3100: 3089: 3082: 3071: 3058: 3055: 3054: 3053: 3042: 3034: 3027: 3020:Richard Tolman 3016: 3005: 2995: 2974: 2961: 2958: 2950: 2947: 2918: 2915: 2876:Bremsstrahlung 2852:ecliptic plane 2810: 2807: 2787:Bremsstrahlung 2778: 2775: 2756: 2749: 2702:0.11 km/s 2691:0.0010 mK 2675: 2668: 2648: 2633: 2626: 2609: 2606: 2601: 2596: 2589: 2586: 2582: 2577: 2573: 2570: 2565: 2561: 2528: 2525: 2522: 2519: 2516: 2511: 2508: 2504: 2481: 2478: 2474: 2453: 2450: 2447: 2444: 2441: 2436: 2433: 2429: 2423: 2420: 2416: 2410: 2407: 2403: 2399: 2396: 2393: 2390: 2387: 2384: 2381: 2357: 2354: 2351: 2348: 2345: 2342: 2339: 2319: 2316: 2298: 2295: 2274:early universe 2265: 2262: 2248: 2245: 2232: 2229: 2209:electrostatics 2192: 2189: 2169: 2165: 2142: 2138: 2116:Main article: 2113: 2110: 2084:population III 2076: 2075: 2068: 2047: 2044: 2040: 1974: 1973: 1970: 1967:mean free path 1946: 1945: 1942:cosmic strings 1939: 1933: 1930: 1919: 1833: 1830: 1802: 1801: 1793: 1779: 1710: 1707: 1568: 1565: 1533: 1525: 1523: 1520: 1458:3600x1800 jpeg 1411:Main article: 1408: 1405: 1380:Atacama Desert 1369: 1361: 1359: 1356: 1332:acoustic peaks 1323:(CBI) and the 1313:interferometer 1293: 1285: 1283: 1280: 1257:In June 2001, 1251:Main article: 1248: 1245: 1210:cosmic strings 1186:Comparison of 1176:Main article: 1173: 1170: 1162:cosmic strings 1136: 1133: 1090: 1087: 1079:Rashid Sunyaev 1073: 1070: 1064: 1061: 981: 978: 949: 946: 944: 941: 840:thermal energy 804: 801: 785:power spectrum 637: 636: 634: 633: 626: 619: 611: 608: 607: 606: 605: 593: 579: 578: 575: 574: 569: 564: 557: 554: 549: 548: 545: 544: 541: 540: 533: 532: 527: 522: 517: 512: 507: 502: 497: 492: 487: 482: 477: 472: 467: 462: 457: 452: 447: 442: 437: 432: 427: 422: 417: 412: 407: 402: 397: 392: 387: 381: 380: 377: 376: 373: 372: 369: 368: 361: 359: 354: 349: 344: 339: 334: 329: 323: 318: 317: 314: 313: 308: 307: 306: 305: 293: 288: 283: 271: 263: 262: 258: 257: 256: 255: 243: 235: 234: 228: 221: 220: 217: 216: 213: 212: 207: 202: 197: 185: 180: 167: 160: 159: 156: 155: 150: 149: 148: 147: 145:Neutrino (CNB) 135: 127: 126: 122: 121: 120: 119: 102: 100:Early universe 99: 98: 95: 94: 93: 92: 87: 82: 67: 66: 58: 57: 51: 50: 15: 9: 6: 4: 3: 2: 12892: 12881: 12878: 12876: 12873: 12871: 12868: 12866: 12863: 12861: 12858: 12856: 12853: 12851: 12848: 12846: 12843: 12842: 12840: 12830: 12820: 12818: 12808: 12806: 12796: 12794: 12789: 12784: 12782: 12772: 12770: 12765: 12760: 12759: 12756: 12745: 12735: 12729: 12728: 12724: 12722: 12719: 12717: 12714: 12712: 12709: 12707: 12704: 12702: 12699: 12697: 12694: 12692: 12689: 12687: 12684: 12682: 12679: 12677: 12674: 12672: 12669: 12667: 12664: 12662: 12659: 12657: 12654: 12652: 12649: 12647: 12644: 12642: 12639: 12637: 12636:Chandrasekhar 12634: 12632: 12629: 12627: 12624: 12622: 12619: 12617: 12614: 12612: 12609: 12607: 12604: 12602: 12599: 12597: 12596:Schwarzschild 12594: 12592: 12589: 12587: 12584: 12582: 12579: 12577: 12574: 12573: 12571: 12567: 12557: 12553: 12552: 12549: 12546: 12544: 12541: 12539: 12535: 12534: 12531: 12528: 12526: 12523: 12521: 12518: 12516: 12513: 12510: 12506: 12502: 12501: 12498: 12495: 12492: 12489: 12487: 12483: 12482:Schwarzschild 12479: 12478: 12475: 12472: 12470: 12467: 12465: 12462: 12460: 12457: 12455: 12452: 12449: 12445: 12441: 12440: 12438: 12436: 12432: 12426: 12423: 12421: 12418: 12416: 12413: 12412: 12410: 12404: 12398: 12395: 12392: 12388: 12384: 12381: 12379: 12378:Shapiro delay 12376: 12374: 12371: 12368: 12364: 12360: 12357: 12354: 12350: 12347: 12346: 12343: 12340: 12337: 12334: 12332: 12329: 12327: 12324: 12322: 12321:collaboration 12318: 12314: 12311: 12309: 12305: 12302: 12301: 12298: 12295: 12293: 12290: 12288: 12287:Event horizon 12285: 12283: 12280: 12279: 12277: 12273: 12267: 12264: 12262: 12259: 12257: 12254: 12252: 12249: 12247: 12244: 12242: 12239: 12237: 12234: 12232: 12231:ADM formalism 12229: 12228: 12226: 12222: 12216: 12213: 12211: 12208: 12206: 12203: 12201: 12198: 12196: 12193: 12192: 12190: 12184: 12178: 12175: 12173: 12170: 12169: 12167: 12163: 12160: 12158: 12152: 12142: 12139: 12137: 12136:Biquaternions 12134: 12132: 12129: 12127: 12124: 12122: 12119: 12118: 12116: 12114: 12110: 12104: 12101: 12099: 12096: 12094: 12091: 12089: 12086: 12084: 12081: 12079: 12076: 12074: 12071: 12069: 12066: 12064: 12063:Time dilation 12061: 12060: 12058: 12054: 12048: 12045: 12044: 12042: 12038: 12032: 12029: 12027: 12024: 12022: 12019: 12017: 12016:Proper length 12014: 12012: 12009: 12007: 12004: 12002: 11999: 11997: 11994: 11992: 11989: 11988: 11986: 11980: 11974: 11971: 11969: 11966: 11963: 11960: 11958: 11954: 11951: 11950: 11948: 11944: 11941: 11939: 11933: 11929: 11922: 11917: 11915: 11910: 11908: 11903: 11902: 11899: 11889: 11888: 11875: 11869: 11866: 11864: 11861: 11859: 11856: 11854: 11851: 11849: 11846: 11844: 11841: 11839: 11836: 11834: 11831: 11829: 11826: 11825: 11823: 11819: 11813: 11810: 11808: 11805: 11803: 11800: 11798: 11795: 11793: 11790: 11788: 11785: 11783: 11780: 11779: 11777: 11773: 11767: 11764: 11762: 11759: 11757: 11754: 11752: 11749: 11747: 11744: 11743: 11741: 11737: 11731: 11728: 11726: 11723: 11722: 11720: 11716: 11710: 11707: 11705: 11702: 11700: 11697: 11695: 11692: 11690: 11687: 11685: 11682: 11681: 11679: 11675: 11669: 11666: 11664: 11661: 11659: 11656: 11654: 11651: 11649: 11646: 11645: 11643: 11641:Past universe 11639: 11633: 11630: 11628: 11625: 11623: 11620: 11618: 11615: 11614: 11612: 11606: 11600: 11597: 11595: 11592: 11590: 11587: 11585: 11582: 11580: 11577: 11576: 11574: 11570: 11566: 11559: 11554: 11552: 11547: 11545: 11540: 11539: 11536: 11524: 11516: 11514: 11506: 11505: 11502: 11496: 11493: 11489: 11486: 11484: 11481: 11480: 11479: 11476: 11474: 11471: 11469: 11466: 11464: 11461: 11459: 11456: 11454: 11451: 11449: 11446: 11445: 11443: 11439: 11433: 11430: 11428: 11425: 11423: 11420: 11418: 11415: 11413: 11410: 11409: 11407: 11401: 11395: 11394:Robert Wilson 11392: 11390: 11387: 11385: 11382: 11380: 11379:Govind Swarup 11377: 11375: 11372: 11370: 11367: 11365: 11362: 11360: 11357: 11355: 11352: 11350: 11347: 11345: 11342: 11340: 11337: 11335: 11334:John D. Kraus 11332: 11330: 11329:Frank J. Kerr 11327: 11325: 11322: 11320: 11317: 11315: 11312: 11310: 11309:Antony Hewish 11307: 11305: 11302: 11300: 11297: 11295: 11292: 11290: 11287: 11285: 11282: 11280: 11277: 11275: 11272: 11270: 11267: 11265: 11262: 11261: 11259: 11255: 11246: 11243: 11238: 11235: 11230: 11227: 11226: 11224: 11220: 11211: 11208: 11201: 11198: 11191: 11188: 11183: 11180: 11175: 11172: 11167: 11164: 11159: 11156: 11151: 11148: 11143: 11140: 11135: 11132: 11127: 11124: 11119: 11116: 11115: 11113: 11111: 11110:Observatories 11107: 11092: 11089: 11082: 11079: 11078: 11076: 11072: 11061: 11058: 11051: 11048: 11041: 11038: 11031: 11028: 11021: 11018: 11011: 11008: 11003: 11000: 10993: 10990: 10983: 10980: 10973: 10970: 10963: 10960: 10953: 10950: 10943: 10940: 10933: 10930: 10923: 10920: 10913: 10910: 10903: 10900: 10893: 10890: 10883: 10880: 10877: 10874: 10869: 10866: 10859: 10856: 10849: 10846: 10839: 10836: 10829: 10826: 10819: 10816: 10809: 10806: 10805: 10803: 10799: 10790: 10787: 10782: 10779: 10774: 10771: 10766: 10765: 10759: 10756: 10751: 10748: 10743: 10740: 10735: 10732: 10727: 10724: 10717: 10714: 10709: 10706: 10701: 10698: 10693: 10690: 10685: 10682: 10677: 10674: 10669: 10668:Galenki RT-70 10666: 10661: 10658: 10651: 10648: 10643: 10640: 10633: 10630: 10629: 10627: 10621: 10618: 10615: 10610: 10606: 10600: 10597: 10594: 10591: 10588: 10584: 10581: 10578: 10574: 10571: 10568: 10564: 10560: 10559: 10557: 10553: 10549: 10542: 10537: 10535: 10530: 10528: 10523: 10522: 10519: 10503: 10500: 10498: 10495: 10493: 10490: 10488: 10485: 10483: 10480: 10478: 10475: 10473: 10470: 10468: 10465: 10463: 10460: 10458: 10455: 10453: 10450: 10448: 10445: 10443: 10440: 10438: 10435: 10433: 10430: 10428: 10425: 10423: 10420: 10418: 10415: 10413: 10410: 10408: 10405: 10403: 10400: 10398: 10395: 10393: 10390: 10388: 10385: 10383: 10380: 10378: 10375: 10373: 10370: 10368: 10365: 10363: 10360: 10358: 10355: 10353: 10350: 10349: 10347: 10343: 10337: 10334: 10332: 10329: 10327: 10324: 10322: 10319: 10317: 10314: 10312: 10309: 10307: 10304: 10302: 10299: 10297: 10294: 10293: 10291: 10287: 10281: 10278: 10276: 10273: 10271: 10270: 10266: 10264: 10261: 10259: 10256: 10255: 10253: 10249: 10246: 10244: 10240: 10234: 10230: 10219: 10216: 10214: 10211: 10209: 10206: 10204: 10203:Recombination 10201: 10199: 10196: 10194: 10191: 10190: 10188: 10184: 10178: 10175: 10173: 10170: 10169: 10166: 10162: 10155: 10150: 10148: 10143: 10141: 10136: 10135: 10132: 10124: 10120: 10116: 10115:Sixty Symbols 10112: 10107: 10105: 10102: 10100: 10097: 10095: 10092: 10088: 10085: 10084: 10074: 10068: 10064: 10059: 10055: 10049: 10045: 10041: 10037: 10033: 10027: 10023: 10018: 10017: 9998: 9994: 9988: 9974: 9970: 9964: 9950: 9946: 9939: 9924: 9923: 9916: 9908: 9904: 9900: 9896: 9892: 9888: 9883: 9878: 9874: 9870: 9863: 9855: 9851: 9847: 9843: 9839: 9835: 9830: 9825: 9821: 9817: 9810: 9802: 9798: 9794: 9790: 9786: 9779: 9764: 9763: 9758: 9751: 9736:on 2022-01-01 9734: 9729: 9728: 9723: 9719: 9713: 9705: 9699: 9691: 9685: 9677: 9673: 9669: 9665: 9661: 9657: 9653: 9649: 9644: 9639: 9635: 9631: 9630: 9622: 9620: 9604:on 2022-01-01 9602: 9597: 9596: 9591: 9587: 9581: 9566: 9565: 9559: 9554: 9548: 9533: 9532: 9527: 9520: 9505: 9504: 9499: 9492: 9483: 9475: 9471: 9467: 9463: 9459: 9455: 9451: 9447: 9442: 9437: 9433: 9429: 9428: 9420: 9412: 9408: 9404: 9400: 9396: 9392: 9388: 9384: 9379: 9374: 9370: 9366: 9365: 9360: 9353: 9339: 9335: 9328: 9321: 9317: 9312: 9304: 9300: 9296: 9292: 9288: 9284: 9280: 9276: 9275: 9267: 9259: 9253: 9249: 9248: 9240: 9232: 9228: 9224: 9220: 9219: 9211: 9202: 9194: 9190: 9185: 9180: 9176: 9172: 9167: 9162: 9158: 9154: 9150: 9146: 9142: 9135: 9128: 9127:0-691-00546-X 9124: 9120: 9116: 9111: 9103: 9097: 9093: 9089: 9088: 9083: 9077: 9069: 9065: 9061: 9057: 9050: 9043: 9039: 9033: 9025: 9019: 9015: 9011: 9010: 9005: 8999: 8993: 8992:0-486-43868-6 8989: 8985: 8984: 8977: 8969: 8965: 8961: 8957: 8953: 8949: 8948: 8939: 8933: 8929: 8924: 8923: 8914: 8912: 8910: 8901: 8895: 8891: 8887: 8883: 8879: 8872: 8865: 8859: 8851: 8847: 8843: 8839: 8835: 8831: 8826: 8821: 8817: 8813: 8812: 8804: 8796: 8792: 8788: 8784: 8780: 8776: 8771: 8766: 8762: 8758: 8751: 8743: 8739: 8735: 8731: 8727: 8723: 8718: 8713: 8709: 8705: 8701: 8694: 8686: 8682: 8677: 8672: 8668: 8664: 8659: 8654: 8650: 8646: 8642: 8635: 8627: 8621: 8613: 8607: 8599: 8595: 8591: 8587: 8583: 8579: 8574: 8569: 8566:(2): 023005. 8565: 8561: 8560: 8555: 8548: 8540: 8536: 8531: 8526: 8521: 8516: 8512: 8508: 8503: 8498: 8495:(1): 79–102. 8494: 8490: 8489: 8484: 8477: 8469: 8465: 8461: 8457: 8453: 8449: 8444: 8439: 8436:(2): 750–60. 8435: 8431: 8430: 8422: 8414: 8410: 8406: 8402: 8398: 8394: 8389: 8384: 8381:(8): 083002. 8380: 8376: 8375: 8370: 8363: 8355: 8351: 8347: 8343: 8339: 8335: 8330: 8325: 8321: 8317: 8316: 8307: 8298: 8294: 8290: 8286: 8282: 8278: 8273: 8268: 8264: 8260: 8259: 8251: 8243: 8239: 8235: 8231: 8226: 8221: 8217: 8213: 8208: 8203: 8199: 8195: 8194: 8189: 8182: 8174: 8170: 8165: 8160: 8156: 8152: 8147: 8142: 8138: 8134: 8130: 8123: 8114: 8109: 8102: 8093: 8088: 8081: 8073: 8069: 8064: 8059: 8055: 8051: 8046: 8041: 8037: 8033: 8032: 8027: 8020: 8012: 8008: 8004: 8000: 7996: 7992: 7988: 7984: 7979: 7974: 7970: 7966: 7965: 7960: 7958: 7949: 7941: 7937: 7933: 7929: 7925: 7921: 7916: 7911: 7908:(6): 063516. 7907: 7903: 7902: 7897: 7890: 7882: 7878: 7874: 7870: 7866: 7862: 7857: 7852: 7848: 7844: 7837: 7829: 7825: 7821: 7817: 7813: 7809: 7804: 7799: 7795: 7791: 7784: 7776: 7772: 7767: 7762: 7758: 7754: 7749: 7744: 7740: 7736: 7732: 7725: 7717: 7713: 7709: 7705: 7701: 7697: 7692: 7687: 7683: 7679: 7672: 7664: 7657: 7655: 7644: 7639: 7636:(8): 083C01. 7635: 7631: 7624: 7617: 7615: 7613: 7611: 7609: 7607: 7605: 7596: 7592: 7586: 7578: 7574: 7570: 7566: 7562: 7558: 7553: 7548: 7544: 7540: 7539: 7531: 7523: 7519: 7515: 7511: 7507: 7503: 7496: 7488: 7484: 7480: 7476: 7472: 7468: 7463: 7458: 7455:(133): A133. 7454: 7450: 7443: 7428:on 2022-01-01 7426: 7421: 7420: 7415: 7411: 7405: 7397: 7393: 7389: 7385: 7381: 7377: 7372: 7367: 7363: 7359: 7355: 7348: 7346: 7337: 7333: 7329: 7325: 7321: 7317: 7313: 7309: 7304: 7299: 7295: 7291: 7290: 7285: 7278: 7270: 7266: 7262: 7258: 7254: 7250: 7245: 7240: 7236: 7232: 7231: 7223: 7215: 7211: 7207: 7203: 7199: 7195: 7190: 7185: 7182:(2): 023003. 7181: 7177: 7170: 7162: 7158: 7154: 7150: 7146: 7142: 7137: 7132: 7128: 7124: 7117: 7109: 7105: 7101: 7097: 7093: 7089: 7084: 7079: 7075: 7071: 7064: 7062: 7053: 7049: 7045: 7041: 7037: 7033: 7028: 7023: 7019: 7015: 7008: 7000: 6996: 6992: 6988: 6984: 6980: 6976: 6972: 6967: 6962: 6958: 6954: 6950: 6942: 6934: 6930: 6926: 6922: 6918: 6914: 6910: 6906: 6901: 6896: 6892: 6888: 6884: 6877: 6869: 6865: 6861: 6857: 6853: 6849: 6844: 6839: 6835: 6831: 6827: 6820: 6818: 6809: 6805: 6801: 6797: 6793: 6789: 6785: 6781: 6777: 6770: 6768: 6766: 6764: 6755: 6751: 6747: 6743: 6739: 6735: 6730: 6725: 6721: 6717: 6713: 6711: 6707: 6697: 6695: 6686: 6682: 6678: 6674: 6670: 6666: 6661: 6656: 6652: 6648: 6647: 6638: 6636: 6627: 6623: 6619: 6615: 6611: 6607: 6602: 6597: 6593: 6589: 6588: 6580: 6572: 6565: 6557: 6550: 6536:on 2018-09-21 6532: 6528: 6521: 6514: 6506: 6502: 6498: 6494: 6489: 6484: 6480: 6476: 6471: 6466: 6462: 6458: 6457: 6449: 6441: 6437: 6433: 6429: 6425: 6421: 6416: 6411: 6407: 6403: 6392: 6384: 6378: 6369: 6364: 6357: 6349: 6345: 6344: 6339: 6333: 6325: 6321: 6314: 6307: 6305: 6303: 6301: 6299: 6290: 6286: 6281: 6276: 6272: 6268: 6261: 6253: 6247: 6243: 6239: 6235: 6231: 6224: 6216: 6210: 6206: 6202: 6197: 6196: 6187: 6173: 6167: 6153: 6149: 6148:Nobel Lecture 6145: 6138: 6130: 6126: 6122: 6118: 6113: 6108: 6104: 6100: 6095: 6090: 6086: 6085: 6077: 6063:on 2013-02-13 6062: 6058: 6054: 6047: 6039: 6035: 6031: 6027: 6023: 6019: 6014: 6009: 6005: 6001: 6000: 5995: 5991: 5984: 5976: 5972: 5968: 5962: 5958: 5954: 5950: 5949: 5941: 5933: 5927: 5923: 5918: 5917: 5908: 5900: 5896: 5892: 5888: 5883: 5878: 5874: 5870: 5865: 5860: 5856: 5852: 5845: 5837: 5833: 5829: 5825: 5821: 5817: 5813: 5809: 5804: 5799: 5795: 5791: 5790: 5785: 5779: 5771: 5767: 5763: 5759: 5755: 5751: 5746: 5741: 5737: 5733: 5726: 5711: 5710: 5705: 5698: 5683: 5682: 5677: 5670: 5662: 5658: 5653: 5648: 5644: 5637: 5629: 5625: 5621: 5617: 5613: 5609: 5605: 5601: 5597: 5593: 5588: 5583: 5579: 5575: 5571: 5564: 5556: 5552: 5548: 5544: 5540: 5536: 5532: 5528: 5523: 5518: 5514: 5510: 5503: 5488: 5484: 5477: 5469: 5465: 5461: 5457: 5453: 5449: 5444: 5439: 5435: 5431: 5427: 5425: 5421: 5411: 5402: 5398: 5394: 5390: 5386: 5382: 5377: 5372: 5368: 5364: 5363: 5354: 5352: 5350: 5341: 5337: 5333: 5329: 5324: 5319: 5316:(2): 023506. 5315: 5311: 5310: 5305: 5299: 5291: 5287: 5283: 5279: 5275: 5274:10044/1/60851 5271: 5267: 5263: 5259: 5255: 5250: 5245: 5241: 5237: 5236: 5228: 5220: 5216: 5212: 5208: 5204: 5200: 5195: 5190: 5186: 5182: 5181: 5173: 5165: 5161: 5157: 5153: 5149: 5145: 5141: 5137: 5132: 5127: 5123: 5119: 5118: 5110: 5102: 5098: 5094: 5090: 5086: 5082: 5077: 5072: 5068: 5064: 5063: 5055: 5047: 5041: 5037: 5033: 5026: 5018: 5014: 5010: 5006: 5002: 4998: 4993: 4988: 4984: 4980: 4979: 4971: 4963: 4959: 4954: 4949: 4945: 4941: 4937: 4933: 4932: 4927: 4920: 4912: 4908: 4904: 4900: 4896: 4892: 4888: 4884: 4880: 4873: 4864: 4859: 4855: 4851: 4847: 4843: 4842: 4837: 4830: 4822: 4818: 4814: 4810: 4806: 4802: 4801: 4793: 4785: 4781: 4777: 4773: 4769: 4765: 4764: 4756: 4748: 4742: 4738: 4734: 4730: 4729: 4721: 4719: 4717: 4715: 4713: 4711: 4709: 4693: 4689: 4683: 4675: 4671: 4667: 4663: 4659: 4655: 4654: 4646: 4632: 4628: 4621: 4612: 4607: 4603: 4599: 4595: 4591: 4590: 4585: 4578: 4567: 4561: 4552: 4548: 4544: 4540: 4535: 4530: 4526: 4522: 4518: 4514: 4513: 4508: 4501: 4483: 4479: 4475: 4471: 4467: 4463: 4459: 4455: 4448: 4441: 4425: 4421: 4420: 4415: 4411: 4405: 4403: 4394: 4387: 4380: 4372: 4368: 4364: 4360: 4356: 4352: 4348: 4344: 4340: 4336: 4335: 4327: 4319: 4315: 4311: 4307: 4303: 4299: 4295: 4291: 4290: 4282: 4274: 4268: 4264: 4260: 4256: 4255: 4247: 4245: 4233: 4227: 4220: 4214: 4206: 4202: 4198: 4194: 4190: 4186: 4181: 4176: 4172: 4168: 4164: 4157: 4155: 4146: 4142: 4138: 4134: 4130: 4126: 4121: 4116: 4112: 4108: 4104: 4097: 4088: 4081: 4077: 4073: 4069: 4065: 4061: 4056: 4051: 4047: 4043: 4036: 4029: 4025: 4021: 4017: 4013: 4009: 4004: 3999: 3995: 3991: 3984: 3977: 3973: 3969: 3965: 3960: 3955: 3951: 3947: 3940: 3932: 3928: 3924: 3920: 3916: 3912: 3907: 3902: 3898: 3894: 3890: 3883: 3881: 3879: 3864: 3860: 3853: 3851: 3842: 3838: 3834: 3830: 3826: 3822: 3817: 3812: 3808: 3804: 3803: 3795: 3793: 3784: 3780: 3776: 3772: 3768: 3764: 3760: 3756: 3752: 3745: 3731: 3727: 3721: 3713: 3709: 3705: 3701: 3697: 3693: 3688: 3683: 3679: 3675: 3671: 3664: 3662: 3657: 3644: 3637: 3633: 3622: 3619: 3616: 3613: 3610: 3607: 3604: 3601: 3598: 3595: 3592: 3589: 3586: 3583: 3580: 3577: 3574: 3571: 3568: 3565: 3559: 3556: 3553: 3550: 3547: 3544: 3541: 3538: 3537: 3527: 3526: 3521: 3518: 3517:light-seconds 3514: 3510: 3507: 3503: 3502: 3497: 3494: 3490: 3486: 3485: 3480: 3477: 3473: 3469: 3468: 3463: 3462: 3453: 3449: 3446: 3442: 3439: 3435: 3431: 3428: 3424: 3420: 3417: 3413: 3409: 3405: 3402: 3398: 3395: 3391: 3388: 3384: 3380: 3376: 3372: 3369: 3365: 3361: 3357: 3354: 3350: 3346: 3343: 3339: 3335: 3332: 3328: 3324: 3320: 3316: 3313: 3309: 3306: 3302: 3299: 3293: 3291: 3287: 3284: 3280: 3276: 3273: 3269: 3266: 3262: 3258: 3255: 3251: 3248: 3244: 3240: 3237: 3233: 3229: 3226: 3222: 3218: 3215: 3211: 3208: 3204: 3200: 3196: 3192: 3189: 3188: 3183: 3179: 3175: 3174:R. A. Sunyaev 3171: 3168: 3167:Dennis Sciama 3164: 3160: 3157: 3156: 3151: 3147: 3143: 3139: 3136: 3132: 3131:James Peebles 3128: 3124: 3120: 3116: 3113: 3109: 3105: 3101: 3098: 3094: 3090: 3087: 3083: 3080: 3079:Robert Herman 3076: 3072: 3069: 3065: 3061: 3060: 3051: 3047: 3043: 3039: 3035: 3032: 3028: 3025: 3021: 3017: 3014: 3010: 3006: 3003: 3002:Erich Regener 3000: 2996: 2992: 2988: 2983: 2979: 2975: 2972: 2968: 2964: 2963: 2956: 2946: 2944: 2940: 2936: 2932: 2928: 2924: 2914: 2912: 2908: 2903: 2901: 2897: 2893: 2888: 2884: 2879: 2877: 2873: 2869: 2864: 2859: 2857: 2853: 2847: 2840: 2835: 2831: 2824: 2823:CMB cold spot 2820: 2816: 2806: 2804: 2799: 2796: 2792: 2788: 2783: 2774: 2770: 2763: 2754: 2748: 2737: 2723: 2719: 2707: 2694: 2682: 2673: 2667: 2665: 2659:0.0006 K 2651: 2647: 2640: 2631: 2625: 2623: 2607: 2599: 2587: 2584: 2580: 2568: 2563: 2559: 2550: 2546: 2542: 2523: 2520: 2517: 2509: 2506: 2502: 2479: 2476: 2472: 2448: 2445: 2442: 2434: 2431: 2427: 2421: 2418: 2414: 2408: 2405: 2401: 2397: 2391: 2388: 2385: 2379: 2371: 2355: 2349: 2346: 2343: 2337: 2324: 2315: 2312: 2308: 2304: 2294: 2292: 2288: 2284: 2279: 2275: 2271: 2261: 2258: 2254: 2244: 2242: 2238: 2228: 2226: 2222: 2218: 2214: 2210: 2206: 2197: 2188: 2185: 2167: 2163: 2140: 2136: 2126: 2119: 2109: 2107: 2103: 2098: 2096: 2092: 2087: 2085: 2081: 2073: 2069: 2066: 2065: 2064: 2060: 2058: 2054: 2043: 2038: 2036: 2032: 2028: 2023: 2021: 2014: 2010: 2005: 2001: 1996: 1992: 1988: 1984: 1978: 1971: 1968: 1964: 1963: 1962: 1960: 1955: 1952: 1943: 1937: 1934: 1931: 1928: 1924: 1920: 1917: 1916: 1915: 1913: 1909: 1904: 1902: 1899:(but not the 1898: 1893: 1890: 1886: 1882: 1878: 1873: 1871: 1863: 1859: 1855: 1851: 1847: 1843: 1838: 1829: 1827: 1823: 1819: 1815: 1811: 1807: 1799: 1792: 1789: 1788: 1787: 1785: 1778: 1774: 1770: 1766: 1761: 1759: 1755: 1754:recombination 1746: 1740: 1736: 1732: 1728: 1724: 1719: 1717: 1706: 1702: 1692: 1687:0.0013 K 1680: 1675: 1673: 1669: 1664: 1663:recombination 1660: 1656: 1652: 1648: 1644: 1639: 1637: 1633: 1629: 1625: 1620: 1616: 1612: 1608: 1604: 1599: 1597: 1593: 1589: 1585: 1581: 1574: 1561: 1557: 1553: 1549: 1545: 1541: 1537: 1530: 1519: 1509: 1505: 1494: 1490: 1486: 1482: 1478: 1474: 1470: 1459: 1455: 1451: 1446: 1444: 1440: 1436: 1432: 1428: 1424: 1420: 1414: 1401: 1397: 1393: 1389: 1385: 1381: 1377: 1373: 1366: 1352: 1349: 1345: 1341: 1337: 1333: 1328: 1326: 1322: 1318: 1314: 1310: 1306: 1302: 1298: 1290: 1279: 1277: 1273: 1268: 1264: 1260: 1254: 1244: 1242: 1238: 1234: 1230: 1226: 1222: 1217: 1215: 1211: 1201: 1197: 1193: 1190:results from 1189: 1184: 1179: 1169: 1167: 1163: 1159: 1155: 1151: 1147: 1143: 1132: 1130: 1126: 1123: 1119: 1115: 1110: 1108: 1104: 1099: 1097: 1086: 1084: 1080: 1077:of 10 or 10. 1069: 1063:Cosmic origin 1060: 1058: 1053: 1049: 1045: 1041: 1037: 1036:Crawford Hill 1033: 1029: 1025: 1021: 1017: 1013: 1009: 1005: 997: 992: 987: 977: 975: 971: 970:Robert Herman 967: 963: 959: 955: 940: 932: 930: 925: 921: 919: 914: 911: 907: 903: 899: 895: 891: 890:Doppler shift 887: 883: 879: 874: 872: 853: 849: 845: 841: 838: 830: 826: 822: 818: 814: 809: 800: 798: 794: 790: 786: 782: 778: 773: 769: 765: 761: 756: 754: 750: 746: 742: 738: 734: 730: 729:recombination 726: 722: 718: 714: 710: 706: 703: 698: 696: 695:Robert Wilson 692: 688: 684: 680: 676: 672: 668: 664: 660: 656: 652: 648: 644: 632: 627: 625: 620: 618: 613: 612: 610: 609: 604: 594: 592: 583: 582: 581: 580: 573: 570: 568: 565: 562: 556: 555: 552: 547: 546: 539: 536: 535: 531: 528: 526: 523: 521: 518: 516: 513: 511: 508: 506: 503: 501: 498: 496: 493: 491: 488: 486: 483: 481: 478: 476: 473: 471: 468: 466: 463: 461: 458: 456: 453: 451: 448: 446: 443: 441: 438: 436: 433: 431: 428: 426: 423: 421: 418: 416: 413: 411: 408: 406: 403: 401: 398: 396: 393: 391: 388: 386: 383: 382: 375: 374: 366: 360: 358: 355: 353: 350: 348: 345: 343: 340: 338: 335: 333: 330: 328: 325: 324: 321: 316: 315: 304: 301: 297: 294: 292: 289: 287: 284: 282: 279: 275: 272: 270: 267: 266: 265: 264: 260: 259: 254: 251: 247: 244: 242: 239: 238: 237: 236: 232: 231: 225: 219: 218: 211: 208: 206: 203: 201: 198: 196: 193: 189: 186: 184: 181: 179: 176: 172: 169: 168: 164: 158: 157: 146: 143: 139: 136: 134: 131: 130: 129: 128: 124: 123: 118: 115: 111: 108: 107: 106: 105: 97: 96: 91: 88: 86: 83: 81: 78: 74: 71: 70: 69: 68: 64: 60: 59: 56: 53: 52: 48: 47: 41: 36: 30: 26: 22: 12850:Astrophysics 12829:Solar System 12726: 12420:Kaluza–Klein 12172:Introduction 12098:Twin paradox 11878: 11802:Reionization 11761:Quintessence 11694:Hubble's law 11647: 11452: 11403:Astronomy by 11364:Arno Penzias 11304:Cyril Hazard 10946:South Africa 10737:(Uzbekistan) 10577:Radio window 10267: 10160: 10114: 10065:. Springer. 10062: 10043: 10040:Durrer, Ruth 10021: 10001:. Retrieved 9999:. 2021-02-03 9996: 9987: 9976:. Retrieved 9972: 9963: 9952:. Retrieved 9948: 9938: 9927:. Retrieved 9921: 9915: 9872: 9868: 9862: 9819: 9815: 9809: 9784: 9778: 9766:. Retrieved 9760: 9750: 9738:. Retrieved 9733:the original 9725: 9712: 9698: 9684:cite journal 9633: 9627: 9606:. Retrieved 9601:the original 9593: 9580: 9568:. Retrieved 9562: 9547: 9535:. Retrieved 9529: 9519: 9507:. Retrieved 9501: 9491: 9482: 9431: 9425: 9419: 9368: 9362: 9352: 9341:. Retrieved 9327: 9315: 9311: 9278: 9272: 9266: 9246: 9239: 9222: 9216: 9210: 9201: 9148: 9144: 9134: 9110: 9086: 9076: 9059: 9055: 9049: 9041: 9032: 9008: 8998: 8981: 8976: 8951: 8945: 8921: 8881: 8871: 8863: 8858: 8815: 8809: 8803: 8760: 8756: 8750: 8707: 8703: 8693: 8648: 8644: 8634: 8620: 8606: 8563: 8557: 8547: 8492: 8486: 8476: 8433: 8427: 8421: 8378: 8372: 8362: 8319: 8313: 8306: 8262: 8256: 8250: 8197: 8191: 8181: 8136: 8132: 8122: 8101: 8080: 8035: 8029: 8019: 7968: 7962: 7956: 7955:"Is the low- 7948: 7905: 7899: 7889: 7849:(1): L1–L4. 7846: 7842: 7836: 7793: 7789: 7783: 7738: 7734: 7724: 7681: 7677: 7671: 7661:Bennett, C. 7633: 7629: 7594: 7585: 7542: 7536: 7530: 7505: 7495: 7452: 7448: 7442: 7432:22 September 7430:. Retrieved 7425:the original 7417: 7404: 7361: 7357: 7293: 7287: 7277: 7234: 7228: 7222: 7179: 7175: 7169: 7126: 7122: 7116: 7073: 7069: 7017: 7013: 7007: 6956: 6952: 6941: 6890: 6886: 6876: 6836:(1): 15–39. 6833: 6829: 6783: 6779: 6719: 6715: 6709: 6705: 6650: 6644: 6591: 6585: 6579: 6564: 6549: 6538:. Retrieved 6531:the original 6513: 6460: 6454: 6448: 6405: 6401: 6391: 6377: 6356: 6341: 6332: 6323: 6319: 6266: 6260: 6229: 6223: 6194: 6186: 6175:. Retrieved 6166: 6155:. Retrieved 6147: 6137: 6082: 6076: 6065:. Retrieved 6061:the original 6046: 6003: 5997: 5983: 5947: 5940: 5915: 5907: 5854: 5850: 5844: 5793: 5787: 5778: 5735: 5731: 5725: 5713:. Retrieved 5707: 5697: 5685:. Retrieved 5679: 5669: 5642: 5636: 5577: 5573: 5563: 5512: 5508: 5502: 5490:. Retrieved 5486: 5476: 5433: 5429: 5423: 5419: 5410: 5366: 5360: 5313: 5307: 5304:Pogosian, L. 5298: 5239: 5233: 5227: 5187:(1): L5–L9. 5184: 5178: 5172: 5121: 5115: 5109: 5066: 5060: 5054: 5031: 5025: 4982: 4976: 4970: 4938:(1): L1–L5. 4935: 4929: 4919: 4886: 4882: 4872: 4845: 4839: 4829: 4804: 4798: 4792: 4767: 4761: 4755: 4727: 4696:. Retrieved 4682: 4657: 4651: 4645: 4634:. Retrieved 4620: 4593: 4587: 4577: 4560: 4516: 4510: 4500: 4489:. Retrieved 4457: 4453: 4440: 4428:. Retrieved 4417: 4392: 4379: 4338: 4332: 4326: 4293: 4287: 4281: 4253: 4226: 4213: 4170: 4166: 4110: 4106: 4096: 4087: 4045: 4041: 4035: 3993: 3989: 3983: 3949: 3945: 3939: 3896: 3892: 3866:. Retrieved 3862: 3806: 3800: 3758: 3754: 3744: 3733:. Retrieved 3729: 3720: 3677: 3673: 3636: 3523: 3499: 3482: 3475: 3465: 3396:is released. 3360:George Smoot 3353:polarization 3185: 3153: 3127:Robert Dicke 3119:Arno Penzias 3096: 3086:George Gamow 3075:Ralph Alpher 3038:George Gamow 3031:Robert Dicke 3012: 3008: 3007:1931 – Term 2990: 2986: 2935:proton decay 2920: 2904: 2880: 2874:, dust, and 2860: 2845: 2838: 2829: 2826: 2800: 2784: 2780: 2768: 2761: 2758: 2752: 2735: 2721: 2714:15 km/s 2695: 2680: 2677: 2671: 2649: 2645: 2638: 2635: 2629: 2621: 2544: 2540: 2329: 2300: 2267: 2250: 2234: 2220: 2212: 2202: 2191:Polarization 2121: 2099: 2088: 2077: 2061: 2057:reionization 2049: 2034: 2030: 2024: 2019: 2012: 2008: 2007:is given by 2003: 1999: 1994: 1990: 1986: 1982: 1979: 1975: 1956: 1950: 1947: 1912:isocurvature 1911: 1907: 1905: 1894: 1874: 1867: 1860:(2004), and 1803: 1797: 1790: 1783: 1776: 1773:scale length 1762: 1750:13.6 eV 1720: 1712: 1703: 1690: 1676: 1661:atoms. This 1640: 1600: 1594:such as the 1592:alternatives 1577: 1454:565x318 jpeg 1447: 1416: 1351:anisotropies 1348:polarization 1294: 1256: 1218: 1206: 1138: 1111: 1100: 1092: 1082: 1075: 1066: 1048:Project Echo 1038:location of 1028:Arno Penzias 1012:Igor Novikov 1001: 974:George Gamow 966:Ralph Alpher 951: 933: 926: 922: 918:polarization 915: 875: 834: 777:distribution 757: 752: 731:epoch, this 699: 691:Arno Penzias 654: 650: 646: 642: 640: 365:Probe (WMAP) 299: 296:Reionization 277: 249: 223: 191: 174: 171:Hubble's law 162: 141: 137: 113: 76: 12817:Outer space 12805:Spaceflight 12509:Kerr–Newman 12480:Spherical: 12349:Other tests 12292:Singularity 12224:Formulation 12186:Fundamental 12040:Formulation 12021:Proper time 11982:Fundamental 11821:Experiments 11756:Dark matter 11746:Dark energy 11684:FLRW metric 11483:Wow! signal 11374:Martin Ryle 11369:Grote Reber 11299:Frank Drake 11240:(Australia) 11074:Space-based 11064:Netherlands 10936:Netherlands 10906:South Korea 10784:(Australia) 10734:Suffa RT-70 10243:Experiments 10119:Brady Haran 9320:RIA Novosti 9115:Helge Kragh 8146:1009.2701v1 8113:1006.1270v1 8092:0907.2731v3 7237:(1): 1–65. 7020:(1): 6–16. 6704:"NINE-YEAR 6463:: 184–196. 6326:(3): 79–87. 6203:. pp.  5953:Basic Books 5738:(13): A13. 5418:"NINE-YEAR 5369:(1): 1–27. 4889:(1): 3–19. 4807:: 815–836. 4660:: 414–419. 4430:5 September 4395:(3): 79–87. 4261:. pp.  4048:(27): A27, 3525:WandaVision 3489:Ian Stewart 3474:spaceship, 3364:John Mather 3317:2005 – The 3310:2004 – The 3288:2003 – The 3252:1995 – The 3163:Martin Rees 3050:tired light 3022:shows that 3015:XVII. 179/1 2999:Cosmologist 2976:1926 – Sir 2943:positronium 2872:synchrotron 2868:Max Tegmark 2791:synchrotron 2751:Multipole ( 2706:Local Group 2666:satellite. 2287:cosmic dust 2125:fine-tuning 1493:dark energy 1489:dark matter 1481:dark matter 1469:nonillionth 1353:in the CMB. 1129:Nobel Prize 958:cosmic rays 793:dark matter 743:due to the 320:Experiments 253:Dark matter 246:Dark energy 188:FLRW metric 125:Backgrounds 12839:Categories 12661:Zel'dovich 12569:Scientists 12548:Alcubierre 12355:of Mercury 12353:precession 12282:Black hole 12165:Background 12157:relativity 12126:World line 12121:Light cone 11946:Background 11938:relativity 11928:Relativity 11751:Dark fluid 11739:Components 11608:History of 11572:Background 11405:EM methods 10625:telescopes 10623:Individual 10437:LSPE/STRIP 10432:Keck Array 10427:GroundBIRD 10417:COSMOSOMAS 10311:LSPE/SWIPE 10003:2023-01-23 9978:2023-01-23 9954:2023-01-23 9929:2023-02-28 9882:1907.12875 9829:1807.06205 9343:2008-12-11 8717:2105.05208 8710:: 101659. 8658:2009.14826 8651:(2): L51. 7691:1507.04078 7684:(1): 046. 7545:(2): 171. 7371:1510.06042 6569:Wayne Hu. 6554:Wayne Hu. 6540:2015-05-09 6177:2023-07-05 6157:2008-12-22 6067:2008-01-13 5955:. p.  5745:1502.01589 4698:2009-01-08 4636:2008-12-11 4491:2006-10-04 4464:: 549–54. 4180:1705.07721 4120:1909.01593 4003:1807.06205 3959:1907.12875 3868:2024-05-28 3735:2024-05-17 3687:2202.13919 3653:References 3493:Jack Cohen 3329:using the 3247:anisotropy 3236:anisotropy 3117:1964–65 – 3041:radiation. 3024:black-body 2953:See also: 2923:Big Crunch 2834:quadrupole 2813:See also: 2464:where the 2225:divergence 1870:anisotropy 1828:occurred. 1822:fine-tuned 1765:redshifted 1758:decoupling 1743:0.26  1672:decoupling 1657:, forming 1491:and 68.3% 1473:cosmic web 1437:as ACBAR ( 1392:wavelength 1376:Cerro Toco 1309:Antarctica 1272:Lambda CDM 1042:in nearby 984:See also: 910:aberration 837:black body 821:error bars 760:anisotropy 733:decoupling 400:Copernicus 378:Scientists 233:Components 38:Nine-year 12781:Astronomy 12631:Robertson 12616:Friedmann 12611:Eddington 12601:de Sitter 12435:Solutions 12313:detectors 12308:astronomy 12275:Phenomena 12210:Geodesics 12113:Spacetime 12056:Phenomena 11838:BOOMERanG 11663:Inflation 11565:Cosmology 11389:Paul Wild 11222:Multi-use 11202:(SAORAS, 10976:Australia 10964:(MERLIN, 10956:Australia 10842:Australia 10832:Australia 10761:(Ukraine) 10753:(Ukraine) 10663:(Germany) 10477:Saskatoon 10452:POLARBEAR 10306:BOOMERanG 9907:198985935 9854:119185252 9801:124938210 9643:1403.3985 9608:March 24, 9570:March 17, 9537:March 17, 9175:0027-8424 9040:" (1953) 9006:(2004) . 9004:Gamow, G. 8864:La Nature 8795:123442313 8770:0704.0221 8742:1387-6473 8685:222066749 8515:CiteSeerX 8413:119443655 8354:118150531 8220:CiteSeerX 8173:118739762 7940:119463060 7748:0905.2854 7716:118553819 7577:118598825 7552:1403.2369 7522:211730550 7462:1409.5738 7396:0066-4146 7303:1307.5830 7214:119512504 6991:0031-9007 6966:1403.3985 6925:0028-0836 6868:1225-4614 6843:1401.1911 6808:0066-4146 6754:0067-0049 6729:1212.5226 6722:(2): 19. 6594:: 30–51. 6483:CiteSeerX 6440:118485014 6415:1012.3164 6107:CiteSeerX 5877:CiteSeerX 5836:Q56603073 5828:0004-6280 5803:0907.4445 5770:119262962 5612:0003-6935 5468:0067-0049 5443:1212.5225 5436:(2): 20. 5219:119495132 4985:: L1–L4. 4962:120701913 4911:117050217 4848:: 1P–4P. 4205:1355-2198 4145:202539910 4055:1303.5087 4042:Astronomy 4028:119185252 3931:0066-4146 3841:119217397 3816:0911.1955 3783:0004-637X 3712:2522-5820 3506:Liu Cixin 3298:BOOMERanG 3009:microwave 2982:starlight 2931:starlight 2856:equinoxes 2809:Anomalies 2605:⟩ 2585:ℓ 2572:⟨ 2569:≡ 2564:ℓ 2524:φ 2518:θ 2507:ℓ 2477:ℓ 2449:φ 2443:θ 2432:ℓ 2419:ℓ 2406:ℓ 2402:∑ 2392:φ 2386:θ 2350:φ 2344:θ 2311:POLARBEAR 2205:polarized 1908:adiabatic 1854:Boomerang 1739:scattered 1727:electrons 1651:electrons 1647:adiabatic 1632:electrons 1544:microwave 1431:bolometer 1388:microwave 1340:BOOMERanG 1327:(VSA). 1146:BOOMERanG 1103:Alan Guth 980:Discovery 952:In 1931, 878:isotropic 846:(K), the 825:blackbody 813:microwave 781:frequency 741:energetic 683:microwave 530:Zeldovich 430:Friedmann 405:de Sitter 332:BOOMERanG 261:Structure 226:Structure 110:Inflation 12744:Category 12621:LemaĂźtre 12586:Einstein 12576:PoincarĂ© 12536:Others: 12520:Taub–NUT 12486:interior 12408:theories 12406:Advanced 12373:redshift 12188:concepts 12006:Rapidity 11984:concepts 11709:Redshift 11594:Universe 11584:Big Bang 11513:Category 11349:Jan Oort 11248:(Canada) 11232:(Canada) 11185:(Sweden) 11177:(France) 11121:(Canada) 11091:Spektr-R 10934:(LOFAR, 10914:(LLAMA, 10871:(Europe) 10860:(CARMA, 10850:(CHIME, 10840:(ASKAP, 10687:(Mexico) 10671:(Russia) 10555:Concepts 10497:Tenerife 10296:Archeops 10275:RELIKT-1 10263:LiteBIRD 10121:for the 10042:(2008). 9768:June 20, 9762:BBC News 9740:June 20, 9676:22780831 9668:24996078 9509:18 March 9466:15472038 9403:12490941 9303:96773397 9193:16591578 9084:(1972). 8850:12173790 8297:17981329 8242:15554608 8188:Bean, R. 8011:12554281 8003:15601079 7881:15521559 7828:16138962 7775:11586058 7328:24138230 7161:17330375 7108:30795875 7052:16825580 6999:24996078 6933:12490941 6685:10794058 6505:18570203 6338:Kaku, M. 6129:15398837 6038:36572996 5992:(2005). 5975:35701222 5899:15606491 5832:Wikidata 5715:23 March 5687:21 March 5628:10833374 5620:17514303 5555:13967570 5547:12490940 5492:4 August 5282:10801117 5164:27518923 5156:10859119 5101:16534514 5036:Springer 5017:18144842 4551:26658623 4543:20991753 4482:Archived 4478:17729659 4460:(4406). 4424:Archived 4363:18893719 4173:: 1–18. 3533:See also 3484:Wheelers 3321:and the 3281:and the 3261:MAT/TOCO 3232:RELIKT-1 3214:RELIKT-1 3197:and the 2997:1930s – 2243:(DASI). 2091:Dark Age 2080:redshift 1901:topology 1856:(2005), 1848:(2006), 1814:coherent 1735:hydrogen 1733:to form 1723:universe 1659:hydrogen 1643:expanded 1619:inflaton 1607:universe 1603:Big Bang 1584:Big Bang 1487:, 26.8% 1443:Archeops 1400:Big Bang 1142:MAT/TOCO 1096:RELIKT-1 898:comoving 803:Features 702:Big Bang 591:Category 510:Suntzeff 470:LemaĂźtre 420:Einstein 385:Aaronson 178:Redshift 80:Universe 73:Big Bang 12769:Physics 12755:Portals 12686:Hawking 12681:Penrose 12666:Novikov 12646:Wheeler 12591:Hilbert 12581:Lorentz 12538:pp-wave 12359:lensing 12155:General 11936:Special 11523:Commons 11062:(WSRT, 11052:(VLBA, 11012:(PaST, 10954:(MOST, 10942:MeerKAT 10884:(GMRT, 10830:(ATCA, 10820:(ALMA, 10773:HartRAO 10745:(Japan) 10729:(Italy) 10711:(China) 10703:(India) 10634:(FAST, 10587:History 10561:Units ( 10472:QUIJOTE 10289:Balloon 10227:4-year 10186:Effects 9949:Tor.com 9887:Bibcode 9834:Bibcode 9648:Bibcode 9474:9234000 9446:Bibcode 9427:Science 9411:4359884 9383:Bibcode 9283:Bibcode 9153:Bibcode 9121:(1999) 9064:Bibcode 8956:Bibcode 8830:Bibcode 8775:Bibcode 8722:Bibcode 8663:Bibcode 8598:5238226 8578:Bibcode 8539:6184966 8507:Bibcode 8468:1103733 8448:Bibcode 8393:Bibcode 8334:Bibcode 8277:Bibcode 8212:Bibcode 8151:Bibcode 8072:5564564 8050:Bibcode 7983:Bibcode 7920:Bibcode 7861:Bibcode 7808:Bibcode 7753:Bibcode 7696:Bibcode 7557:Bibcode 7487:9857299 7467:Bibcode 7376:Bibcode 7336:9437637 7308:Bibcode 7269:1731891 7249:Bibcode 7194:Bibcode 7141:Bibcode 7088:Bibcode 7032:Bibcode 6971:Bibcode 6905:Bibcode 6848:Bibcode 6788:Bibcode 6734:Bibcode 6665:Bibcode 6626:8791666 6606:Bibcode 6475:Bibcode 6420:Bibcode 6320:Apeiron 6285:Bibcode 6238:Bibcode 6099:Bibcode 6018:Bibcode 5922:193–209 5869:Bibcode 5808:Bibcode 5750:Bibcode 5657:Bibcode 5592:Bibcode 5527:Bibcode 5448:Bibcode 5381:Bibcode 5328:Bibcode 5290:4412370 5254:Bibcode 5199:Bibcode 5136:Bibcode 5081:Bibcode 4997:Bibcode 4940:Bibcode 4891:Bibcode 4850:Bibcode 4809:Bibcode 4772:Bibcode 4662:Bibcode 4598:Bibcode 4521:Bibcode 4454:Science 4393:Apeiron 4371:4793163 4343:Bibcode 4318:4113488 4298:Bibcode 4263:139–148 4185:Bibcode 4125:Bibcode 4080:5398329 4060:Bibcode 4008:Bibcode 3964:Bibcode 3911:Bibcode 3821:Bibcode 3763:Bibcode 3692:Bibcode 3476:Destiny 3472:ancient 3464:In the 3450:2019 – 3414:in the 3383:WiggleZ 3336:2005 – 3212:1983 – 3172:1969 – 3161:1968 – 3140:1966 – 3106:1964 – 3084:1953 – 3073:1948 – 3062:1941 – 3044:1953 – 3036:1946 – 3029:1946 – 3018:1934 – 2965:1896 – 2945:decay. 2927:Big Rip 2881:A full 2272:in the 2255:during 2247:B-modes 2231:E-modes 2017:  1923:photons 1852:(2004) 1731:protons 1655:protons 1636:baryons 1628:photons 1601:In the 1504:billion 1378:in the 1317:Ka band 1034:at the 943:History 867: K 737:photons 675:uniform 515:Sunyaev 500:Schmidt 490:Penzias 485:Penrose 460:Huygens 450:Hawking 435:Galileo 12727:others 12716:Thorne 12706:Misner 12691:Taylor 12676:Geroch 12671:Ehlers 12641:Zwicky 12459:Kasner 11858:Planck 11257:People 11204:Russia 11194:Russia 11095:Russia 11042:(VLA, 11032:(SMA, 11022:(SKA, 10996:France 10974:(MWA, 10924:(LWA, 10904:(KVN, 10894:(GBI, 10852:Canada 10810:(ATA, 10720:Russia 10652:(CSO, 10595:(VLBI) 10567:jansky 10397:CAPMAP 10345:Ground 10336:TopHat 10331:Spider 10321:MAXIMA 10301:ARCADE 10269:Planck 10229:Planck 10090:texts. 10069:  10050:  10028:  9905:  9875:: A5. 9852:  9822:: A1. 9799:  9785:Nature 9674:  9666:  9472:  9464:  9409:  9401:  9364:Nature 9301:  9254:  9225:: 83. 9191:  9184:223817 9181:  9173:  9125:  9098:  9020:  8990:  8934:  8896:  8848:  8793:  8740:  8683:  8596:  8537:  8517:  8466:  8411:  8352:  8295:  8240:  8222:  8171:  8070:  8009:  8001:  7938:  7879:  7826:  7773:  7714:  7575:  7520:  7506:Nature 7485:  7394:  7334:  7326:  7267:  7212:  7159:  7106:  7050:  6997:  6989:  6931:  6923:  6887:Nature 6866:  6806:  6752:  6683:  6624:  6503:  6485:  6438:  6408:: L7. 6248:  6211:  6127:  6109:  6036:  5973:  5963:  5928:  5897:  5879:  5834:  5826:  5768:  5645:: 64. 5626:  5618:  5610:  5553:  5545:  5509:Nature 5466:  5401:115601 5399:  5288:  5280:  5235:Nature 5217:  5162:  5154:  5099:  5042:  5015:  4960:  4909:  4743:  4694:. 1978 4549:  4541:  4476:  4369:  4361:  4334:Nature 4316:  4289:Nature 4269:  4203:  4143:  4078:  4026:  3996:: A1, 3952:: A5, 3929:  3839:  3781:  3710:  3491:& 3416:B-mode 3408:BICEP2 2941:, and 2821:, and 2793:, and 2771:⋍ 1100 2726:271.9° 2698:369.82 2687:3.3621 2655:2.7255 2539:, and 2283:BICEP2 1889:baryon 1885:photon 1683:2.7260 1668:freely 1634:, and 1624:plasma 1550:, and 1497:13.799 1344:MAXIMA 1200:Planck 1158:curved 1150:MAXIMA 1004:Soviet 902:Crater 886:dipole 844:kelvin 772:Planck 751:. The 717:plasma 713:opaque 705:theory 679:object 653:), or 589:  525:Wilson 520:Tolman 480:Newton 475:Mather 465:Kepler 455:Hubble 415:Ehlers 395:Alpher 390:AlfvĂ©n 298:  276:  248:  190:  173:  165:Future 140:  112:  75:  12793:Stars 12721:Weiss 12701:Bondi 12696:Hulse 12626:Milne 12530:discs 12474:Milne 12469:Gödel 12326:Virgo 11085:Japan 11081:HALCA 11014:China 10986:Italy 10886:India 10878:(EHT) 10822:Chile 10636:China 10467:QUIET 10462:QUBIC 10412:CLASS 10372:AMiBA 10357:ACBAR 10251:Space 9903:S2CID 9877:arXiv 9850:S2CID 9824:arXiv 9797:S2CID 9672:S2CID 9638:arXiv 9470:S2CID 9436:arXiv 9407:S2CID 9373:arXiv 9299:S2CID 8846:S2CID 8820:arXiv 8791:S2CID 8765:arXiv 8712:arXiv 8681:S2CID 8653:arXiv 8594:S2CID 8568:arXiv 8535:S2CID 8497:arXiv 8464:S2CID 8438:arXiv 8409:S2CID 8383:arXiv 8350:S2CID 8324:arXiv 8293:S2CID 8267:arXiv 8238:S2CID 8202:arXiv 8169:S2CID 8141:arXiv 8108:arXiv 8087:arXiv 8068:S2CID 8040:arXiv 8007:S2CID 7973:arXiv 7936:S2CID 7910:arXiv 7877:S2CID 7851:arXiv 7824:S2CID 7798:arXiv 7771:S2CID 7743:arXiv 7712:S2CID 7686:arXiv 7626:(PDF) 7573:S2CID 7547:arXiv 7518:S2CID 7483:S2CID 7457:arXiv 7366:arXiv 7332:S2CID 7298:arXiv 7265:S2CID 7239:arXiv 7210:S2CID 7184:arXiv 7178:. 2. 7157:S2CID 7131:arXiv 7104:S2CID 7078:arXiv 7048:S2CID 7022:arXiv 6961:arXiv 6895:arXiv 6838:arXiv 6724:arXiv 6681:S2CID 6655:arXiv 6622:S2CID 6596:arXiv 6534:(PDF) 6523:(PDF) 6501:S2CID 6465:arXiv 6436:S2CID 6410:arXiv 6363:arXiv 6316:(PDF) 6275:arXiv 6125:S2CID 6089:arXiv 6034:S2CID 6008:arXiv 5895:S2CID 5859:arXiv 5798:arXiv 5766:S2CID 5740:arXiv 5647:arXiv 5624:S2CID 5582:arXiv 5551:S2CID 5517:arXiv 5438:arXiv 5397:S2CID 5371:arXiv 5318:arXiv 5286:S2CID 5244:arXiv 5215:S2CID 5189:arXiv 5160:S2CID 5126:arXiv 5097:S2CID 5071:arXiv 5013:S2CID 4987:arXiv 4958:S2CID 4907:S2CID 4569:(PDF) 4547:S2CID 4485:(PDF) 4450:(PDF) 4389:(PDF) 4367:S2CID 4314:S2CID 4235:(PDF) 4175:arXiv 4141:S2CID 4115:arXiv 4076:S2CID 4050:arXiv 4024:S2CID 3998:arXiv 3954:arXiv 3901:arXiv 3837:S2CID 3811:arXiv 3682:arXiv 3628:Notes 3355:data. 3205:from 1959:fluid 1850:Acbar 1824:, or 1512:67.74 1501:0.021 1384:Chile 1055:1978 863:0.000 856:2.725 657:, is 505:Smoot 495:Rubin 440:Gamow 425:Ellis 410:Dicke 12656:Kerr 12606:Weyl 12505:Kerr 12365:and 12319:and 12317:LIGO 11868:WMAP 11863:SDSS 11843:COBE 11478:SETI 11245:PARL 11229:DRAO 11213:(US) 11169:(US) 11161:(UK) 11153:(UK) 11145:(US) 11137:(US) 11005:(UK) 10792:(NZ) 10695:(UK) 10614:List 10565:and 10563:watt 10457:QUaD 10447:OVRO 10422:DASI 10392:BIMA 10382:ATCA 10377:APEX 10326:QMAP 10316:EBEX 10280:WMAP 10258:COBE 10067:ISBN 10048:ISBN 10026:ISBN 9770:2014 9742:2014 9690:link 9664:PMID 9610:2014 9572:2014 9539:2014 9531:NASA 9511:2014 9462:PMID 9399:PMID 9252:ISBN 9189:PMID 9171:ISSN 9123:ISBN 9096:ISBN 9018:ISBN 8988:ISBN 8932:ISBN 8894:ISBN 8738:ISSN 7999:PMID 7682:2016 7634:2020 7434:2014 7392:ISSN 7324:PMID 6995:PMID 6987:ISSN 6929:PMID 6921:ISSN 6864:ISSN 6804:ISSN 6750:ISSN 6710:WMAP 6271:UCLA 6246:ISBN 6209:ISBN 5971:OCLC 5961:ISBN 5926:ISBN 5824:ISSN 5717:2013 5689:2013 5681:NASA 5616:PMID 5608:ISSN 5543:PMID 5494:2014 5464:ISSN 5424:WMAP 5278:PMID 5152:PMID 5040:ISBN 4741:ISBN 4539:PMID 4474:PMID 4432:2023 4359:PMID 4267:ISBN 4201:ISSN 3927:ISSN 3779:ISSN 3708:ISSN 3438:dust 3381:and 3379:SDSS 3375:WMAP 3362:and 3349:WMAP 3272:DASI 3243:COBE 3176:and 3165:and 3144:and 3121:and 3110:and 3077:and 2925:, a 2896:WMAP 2854:and 2828:low- 2795:dust 2755:≄ 2) 2674:= 1) 2664:COBE 2632:= 0) 2217:curl 2039:long 2027:WMAP 1997:and 1938:less 1910:and 1881:Silk 1868:The 1846:WMAP 1729:and 1677:The 1534:The 1479:and 1427:HEMT 1370:The 1342:and 1295:The 1267:WMAP 1263:WMAP 1259:NASA 1225:flat 1198:and 1196:WMAP 1192:COBE 1148:and 1125:COBE 1122:NASA 1118:COBE 1114:NASA 1112:The 1105:for 1089:COBE 1030:and 1010:and 994:The 968:and 817:COBE 770:and 768:WMAP 764:COBE 693:and 651:CMBR 641:The 445:Guth 21:Cuba 12711:Yau 12336:GEO 11833:6dF 11828:2dF 10492:SZA 10352:ABS 10233:CMB 9895:doi 9873:641 9842:doi 9820:641 9789:doi 9656:doi 9634:112 9454:doi 9432:306 9391:doi 9369:420 9291:doi 9227:doi 9179:PMC 9161:doi 9092:514 8964:doi 8928:135 8886:doi 8838:doi 8783:doi 8730:doi 8671:doi 8649:908 8586:doi 8525:doi 8493:367 8456:doi 8434:635 8401:doi 8342:doi 8320:617 8285:doi 8230:doi 8198:170 8159:doi 8137:413 8058:doi 8036:355 7991:doi 7928:doi 7869:doi 7847:629 7816:doi 7794:464 7761:doi 7739:399 7704:doi 7638:doi 7565:doi 7543:794 7510:doi 7475:doi 7453:586 7384:doi 7316:doi 7294:111 7257:doi 7235:429 7202:doi 7149:doi 7096:doi 7040:doi 7018:482 6979:doi 6957:112 6913:doi 6891:420 6856:doi 6796:doi 6742:doi 6720:208 6673:doi 6651:148 6614:doi 6592:471 6493:doi 6461:689 6428:doi 6406:526 6398:CMB 6205:388 6117:doi 6026:doi 5957:186 5887:doi 5816:doi 5794:123 5758:doi 5736:594 5600:doi 5535:doi 5513:420 5456:doi 5434:208 5389:doi 5367:148 5336:doi 5270:hdl 5262:doi 5240:404 5207:doi 5185:545 5144:doi 5122:536 5089:doi 5067:521 5005:doi 4983:464 4948:doi 4936:396 4899:doi 4858:doi 4846:160 4817:doi 4805:162 4780:doi 4733:doi 4670:doi 4658:142 4606:doi 4594:142 4529:doi 4466:doi 4458:205 4351:doi 4339:162 4306:doi 4294:162 4193:doi 4133:doi 4068:doi 4046:571 4016:doi 3994:641 3972:doi 3950:641 3919:doi 3829:doi 3807:707 3771:doi 3759:581 3700:doi 3498:In 3481:In 3305:CBI 3279:CBI 2848:= 3 2841:= 2 2764:≄ 2 2740:30° 2710:620 2683:= 1 2641:= 0 2097:). 1862:VSA 1858:CBI 1756:or 1626:of 1475:of 1464:000 1462:370 1419:ESA 1307:in 1303:'s 1188:CMB 906:Leo 719:of 647:CMB 12841:: 12385:/ 12351:: 12306:: 11054:US 11034:US 10966:UK 10654:US 10117:. 10113:. 9995:. 9971:. 9947:. 9901:. 9893:. 9885:. 9871:. 9848:. 9840:. 9832:. 9818:. 9795:. 9787:. 9759:. 9724:. 9686:}} 9682:{{ 9670:. 9662:. 9654:. 9646:. 9632:. 9618:^ 9592:. 9561:. 9528:. 9500:. 9468:. 9460:. 9452:. 9444:. 9430:. 9405:. 9397:. 9389:. 9381:. 9361:. 9336:. 9318:, 9297:. 9289:. 9277:. 9187:. 9177:. 9169:. 9159:. 9149:58 9147:. 9143:. 9094:. 9058:. 9012:. 8962:. 8952:70 8950:. 8930:. 8908:^ 8892:. 8880:. 8844:. 8836:. 8828:. 8816:69 8814:. 8789:. 8781:. 8773:. 8761:39 8759:. 8736:. 8728:. 8720:. 8708:95 8706:. 8702:. 8679:. 8669:. 8661:. 8647:. 8643:. 8592:. 8584:. 8576:. 8564:74 8556:. 8533:. 8523:. 8513:. 8505:. 8491:. 8485:. 8462:. 8454:. 8446:. 8432:. 8407:. 8399:. 8391:. 8379:70 8371:. 8348:. 8340:. 8332:. 8318:. 8291:. 8283:. 8275:. 8263:68 8261:. 8236:. 8228:. 8218:. 8210:. 8196:. 8167:. 8157:. 8149:. 8135:. 8131:. 8066:. 8056:. 8048:. 8034:. 8028:. 8005:. 7997:. 7989:. 7981:. 7969:93 7961:. 7934:. 7926:. 7918:. 7906:69 7898:. 7875:. 7867:. 7859:. 7845:. 7822:. 7814:. 7806:. 7792:. 7769:. 7759:. 7751:. 7737:. 7733:. 7710:. 7702:. 7694:. 7680:. 7653:^ 7632:. 7628:. 7603:^ 7593:. 7571:. 7563:. 7555:. 7541:. 7516:. 7508:. 7504:. 7481:. 7473:. 7465:. 7451:. 7416:. 7390:. 7382:. 7374:. 7362:54 7360:. 7356:. 7344:^ 7330:. 7322:. 7314:. 7306:. 7292:. 7286:. 7263:. 7255:. 7247:. 7233:. 7208:. 7200:. 7192:. 7180:58 7155:. 7147:. 7139:. 7127:78 7125:. 7102:. 7094:. 7086:. 7074:78 7072:. 7060:^ 7046:. 7038:. 7030:. 7016:. 6993:. 6985:. 6977:. 6969:. 6955:. 6951:. 6927:. 6919:. 6911:. 6903:. 6889:. 6885:. 6862:. 6854:. 6846:. 6834:47 6832:. 6828:. 6816:^ 6802:. 6794:. 6784:39 6782:. 6778:. 6762:^ 6748:. 6740:. 6732:. 6718:. 6714:. 6708:( 6693:^ 6679:. 6671:. 6663:. 6649:. 6634:^ 6620:. 6612:. 6604:. 6590:. 6525:. 6499:. 6491:. 6481:. 6473:. 6459:. 6434:. 6426:. 6418:. 6404:. 6322:. 6318:. 6297:^ 6283:. 6273:. 6269:. 6244:. 6207:. 6199:. 6150:. 6146:. 6123:. 6115:. 6105:. 6097:. 6055:. 6032:. 6024:. 6016:. 6004:71 5996:. 5969:. 5959:. 5951:. 5924:. 5893:. 5885:. 5875:. 5867:. 5855:84 5853:. 5830:. 5822:. 5814:. 5806:. 5792:. 5764:. 5756:. 5748:. 5734:. 5706:. 5678:. 5655:. 5622:. 5614:. 5606:. 5598:. 5590:. 5578:46 5576:. 5572:. 5549:. 5541:. 5533:. 5525:. 5511:. 5485:. 5462:. 5454:. 5446:. 5432:. 5428:. 5422:( 5395:. 5387:. 5379:. 5365:. 5348:^ 5334:. 5326:. 5314:68 5312:. 5284:. 5276:. 5268:. 5260:. 5252:. 5238:. 5213:. 5205:. 5197:. 5183:. 5158:. 5150:. 5142:. 5134:. 5120:. 5095:. 5087:. 5079:. 5065:. 5034:. 5011:. 5003:. 4995:. 4981:. 4956:. 4946:. 4934:. 4928:. 4905:. 4897:. 4885:. 4881:. 4856:. 4844:. 4838:. 4815:. 4803:. 4778:. 4766:. 4739:. 4707:^ 4690:. 4668:. 4656:. 4629:. 4604:. 4592:. 4586:. 4545:. 4537:. 4527:. 4517:17 4515:. 4509:. 4480:. 4472:. 4456:. 4452:. 4422:. 4416:. 4401:^ 4391:. 4365:. 4357:. 4349:. 4337:. 4312:. 4304:. 4292:. 4265:. 4257:. 4243:^ 4199:. 4191:. 4183:. 4171:62 4169:. 4165:. 4153:^ 4139:. 4131:. 4123:. 4111:51 4109:. 4105:. 4074:, 4066:, 4058:, 4044:, 4022:, 4014:, 4006:, 3992:, 3970:, 3962:, 3948:, 3925:. 3917:. 3909:. 3897:40 3895:. 3891:. 3877:^ 3861:. 3849:^ 3835:. 3827:. 3819:. 3805:. 3791:^ 3777:. 3769:. 3757:. 3753:. 3728:. 3706:. 3698:. 3690:. 3676:. 3672:. 3660:^ 3300:). 3294:no 3190:). 3158:). 3129:, 2991:σT 2989:= 2937:, 2913:. 2898:, 2817:, 2789:, 2744:3° 2738:= 2733:, 2730:2° 2724:= 2653:= 2372:, 2293:. 2227:. 2022:. 2020:dt 2004:dt 2002:+ 1760:. 1745:eV 1699:10 1645:, 1638:. 1630:, 1609:, 1598:. 1546:, 1518:. 1456:, 1278:. 1235:, 1194:, 960:. 865:57 858:48 848:SI 799:. 766:, 649:, 12757:: 12511:) 12507:( 12493:) 12484:( 12450:) 12446:( 12393:) 12389:( 12369:) 12338:) 12315:( 11964:) 11955:( 11920:e 11913:t 11906:v 11557:e 11550:t 11543:v 11206:) 11196:) 11097:) 11093:( 11087:) 11083:( 11066:) 11056:) 11046:) 11036:) 11026:) 11016:) 10998:) 10994:( 10988:) 10984:( 10978:) 10968:) 10958:) 10948:) 10944:( 10938:) 10928:) 10918:) 10908:) 10898:) 10888:) 10864:) 10854:) 10844:) 10834:) 10824:) 10814:) 10722:) 10718:( 10656:) 10638:) 10616:) 10612:( 10589:) 10585:( 10579:) 10575:( 10569:) 10540:e 10533:t 10526:v 10235:. 10153:e 10146:t 10139:v 10125:. 10075:. 10056:. 10034:. 10006:. 9981:. 9957:. 9932:. 9909:. 9897:: 9889:: 9879:: 9856:. 9844:: 9836:: 9826:: 9803:. 9791:: 9772:. 9744:. 9706:. 9692:) 9678:. 9658:: 9650:: 9640:: 9612:. 9574:. 9541:. 9513:. 9476:. 9456:: 9448:: 9438:: 9413:. 9393:: 9385:: 9375:: 9346:. 9305:. 9293:: 9285:: 9279:9 9260:. 9233:. 9229:: 9223:1 9195:. 9163:: 9155:: 9104:. 9070:. 9066:: 9060:7 9026:. 8970:. 8966:: 8958:: 8940:. 8902:. 8888:: 8852:. 8840:: 8832:: 8822:: 8797:. 8785:: 8777:: 8767:: 8744:. 8732:: 8724:: 8714:: 8687:. 8673:: 8665:: 8655:: 8628:. 8614:. 8600:. 8588:: 8580:: 8570:: 8541:. 8527:: 8509:: 8499:: 8470:. 8458:: 8450:: 8440:: 8415:. 8403:: 8395:: 8385:: 8356:. 8344:: 8336:: 8326:: 8299:. 8287:: 8279:: 8269:: 8244:. 8232:: 8214:: 8204:: 8175:. 8161:: 8153:: 8143:: 8116:. 8110:: 8095:. 8089:: 8074:. 8060:: 8052:: 8042:: 8013:. 7993:: 7985:: 7975:: 7957:ℓ 7942:. 7930:: 7922:: 7912:: 7883:. 7871:: 7863:: 7853:: 7830:. 7818:: 7810:: 7800:: 7777:. 7763:: 7755:: 7745:: 7718:. 7706:: 7698:: 7688:: 7665:. 7646:. 7640:: 7579:. 7567:: 7559:: 7549:: 7524:. 7512:: 7489:. 7477:: 7469:: 7459:: 7436:. 7398:. 7386:: 7378:: 7368:: 7338:. 7318:: 7310:: 7300:: 7271:. 7259:: 7251:: 7241:: 7216:. 7204:: 7196:: 7186:: 7163:. 7151:: 7143:: 7133:: 7110:. 7098:: 7090:: 7080:: 7054:. 7042:: 7034:: 7024:: 7001:. 6981:: 6973:: 6963:: 6935:. 6915:: 6907:: 6897:: 6870:. 6858:: 6850:: 6840:: 6810:. 6798:: 6790:: 6756:. 6744:: 6736:: 6726:: 6687:. 6675:: 6667:: 6657:: 6628:. 6616:: 6608:: 6598:: 6573:. 6558:. 6543:. 6507:. 6495:: 6477:: 6467:: 6442:. 6430:: 6422:: 6412:: 6385:. 6371:. 6365:: 6350:. 6324:2 6291:. 6287:: 6277:: 6254:. 6240:: 6217:. 6180:. 6160:. 6131:. 6119:: 6101:: 6091:: 6070:. 6040:. 6028:: 6020:: 6010:: 5977:. 5934:. 5901:. 5889:: 5871:: 5861:: 5838:. 5818:: 5810:: 5800:: 5772:. 5760:: 5752:: 5742:: 5719:. 5691:. 5663:. 5659:: 5649:: 5630:. 5602:: 5594:: 5584:: 5557:. 5537:: 5529:: 5519:: 5496:. 5470:. 5458:: 5450:: 5440:: 5403:. 5391:: 5383:: 5373:: 5342:. 5338:: 5330:: 5320:: 5292:. 5272:: 5264:: 5256:: 5246:: 5221:. 5209:: 5201:: 5191:: 5166:. 5146:: 5138:: 5128:: 5103:. 5091:: 5083:: 5073:: 5048:. 5019:. 5007:: 4999:: 4989:: 4964:. 4950:: 4942:: 4913:. 4901:: 4893:: 4887:7 4866:. 4860:: 4852:: 4823:. 4819:: 4811:: 4786:. 4782:: 4774:: 4768:1 4749:. 4735:: 4701:. 4676:. 4672:: 4664:: 4639:. 4614:. 4608:: 4600:: 4571:. 4553:. 4531:: 4523:: 4494:. 4468:: 4434:. 4373:. 4353:: 4345:: 4320:. 4308:: 4300:: 4275:. 4237:. 4207:. 4195:: 4187:: 4177:: 4147:. 4135:: 4127:: 4117:: 4070:: 4062:: 4052:: 4018:: 4010:: 4000:: 3974:: 3966:: 3956:: 3933:. 3921:: 3913:: 3903:: 3871:. 3843:. 3831:: 3823:: 3813:: 3785:. 3773:: 3765:: 3738:. 3714:. 3702:: 3694:: 3684:: 3678:4 3519:. 3389:. 3333:. 3307:. 3274:. 3227:. 3209:. 3097:λ 3068:K 2987:E 2973:. 2971:K 2846:ℓ 2839:ℓ 2836:( 2830:ℓ 2769:z 2762:ℓ 2753:ℓ 2742:± 2736:b 2728:± 2722:ℓ 2712:± 2700:± 2689:± 2681:ℓ 2672:ℓ 2657:± 2650:Îł 2646:T 2639:ℓ 2630:ℓ 2622:ℓ 2608:. 2600:2 2595:| 2588:m 2581:a 2576:| 2560:C 2545:m 2541:ℓ 2527:) 2521:, 2515:( 2510:m 2503:Y 2480:m 2473:a 2452:) 2446:, 2440:( 2435:m 2428:Y 2422:m 2415:a 2409:m 2398:= 2395:) 2389:, 2383:( 2380:T 2356:, 2353:) 2347:, 2341:( 2338:T 2221:B 2213:E 2168:0 2164:T 2141:0 2137:T 2035:t 2033:( 2031:P 2015:) 2013:t 2011:( 2009:P 2000:t 1995:t 1991:t 1989:( 1987:P 1951:ℓ 1949:( 1887:– 1800:) 1798:z 1794:r 1791:T 1784:z 1780:r 1777:T 1697:× 1695:6 1685:± 1575:. 1531:. 1514:± 1499:± 1390:- 1367:. 1291:. 937:× 861:± 831:. 829:K 645:( 630:e 623:t 616:v 300:· 278:· 250:· 224:· 192:· 175:· 163:· 142:· 114:· 77:· 31:.

Index

Cuba
Radio Enciclopedia
CMB (disambiguation)

Wilkinson Microwave Anisotropy Probe
Physical cosmology
Full-sky image derived from nine years' WMAP data
Big Bang
Universe
Age of the universe
Chronology of the universe
Inflation
Nucleosynthesis
Gravitational wave (GWB)
Microwave (CMB)
Neutrino (CNB)
Hubble's law
Redshift
Expansion of the universe
FLRW metric
Friedmann equations
Inhomogeneous cosmology
Future of an expanding universe
Ultimate fate of the universe
Lambda-CDM model
Dark energy
Dark matter
Shape of the universe
Galaxy filament
Galaxy formation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑