Knowledge

Edwards equation

Source đź“ť

797:, where nucleophiles with a lone pair of electrons on an atom adjacent to the nucleophilic center have enhanced reactivity. The alpha effect, basicity, and polarizability are still accepted as the main factors in determining nucleophilic reactivity. As such, the Edwards equation is applied in a qualitative sense much more frequently than in a quantitative one. In studying nucleophilic reactions, Edwards and Pearson noticed that for certain classes of nucleophiles most of the contribution of nucleophilic character originated from their basicity, resulting in large β values. For other nucleophiles, most of the nucleophilic character came from their high polarizability, with little contribution from basicity, resulting in large α values. This observation led Pearson to develop his 801:, which is arguably the most important contribution that the Edwards equation has made to current understanding of organic and inorganic chemistry. Nucleophiles, or bases, that were polarizable, with large α values, were categorized as “soft”, and nucleophiles that were non-polarizable, with large β and small α values, were categorized as “hard”. 518:
where 2.60 is the correction for the oxidative dimerization of water, obtained from a least-squares correlation of data in Edwards’ first paper on the subject. α and β are then parameters unique to specific nucleophiles that relate the sensitivity of the substrate to the basicity and polarizability
239:
However, both the Swain–Scott equation and the Brønsted relationship make the rather inaccurate assumption that all nucleophiles have the same reactivity with respect to a specific reaction site. There are several different categories of nucleophiles with different attacking atoms (e.g. oxygen,
35:
The general idea is that most nucleophiles are also good bases because the concentration of negatively charged electron density that defines a nucleophile will strongly attract positively charged protons, which is the definition of a base according to
949:
Swain, C. Gardner; Scott, Carleton B. (January 1953). "Quantitative Correlation of Relative Rates. Comparison of Hydroxide Ion with Other Nucleophilic Reagents toward Alkyl Halides, Esters, Epoxides and Acyl Halides".
523:
was determined to have some dependence on the basicity relative to protons (H) due to some factors that affect basicity also influencing the electrochemical properties of the nucleophile. To account for this,
461: 315: 792:
A later paper by Edwards and Pearson, following research done by Jencks and Carriuolo in 1960 led to the discovery of an additional factor in nucleophilic reactivity, which Edwards and Pearson called the
204: 782: 651: 519:
factors. However, because some β's appeared to be negative as defined by the first generation of the Edwards equation, which theoretically should not occur, Edwards adjusted his equation. The term E
240:
carbon, nitrogen) and each of these atoms has different nucleophilic characteristics. The Edwards equation attempts to account for this additional parameter by introducing a polarizability term.
720: 123: 513: 374: 585: 1115:
Hudson, Michael J.; Laurence M. Harwood; Dominic M. Laventine; Frank W. Lewis (2013). "Use of Soft Heterocyclic N‑Donor Ligands To Separate Actinides and Lanthanides".
139:
Swain and Scott later tried to define a more specific and quantitative relationship by correlating nucleophilic data with a single-parameter equation derived in 1953:
976: 784:, especially since it was republished in that form in a later paper of Edwards’, leading to confusion over which parameters are being defined. 725:
where A= αa and B = β + αb. However, because the second generation of the equation was also the final one, the equation is sometimes written as
56:
quantitatively. Brønsted and Pederson first discovered the relationship between basicity, with respect to protons, and nucleophilicity in 1924:
804:
The Edwards equation parameters have since been used to help categorize acids and bases as hard or soft, due to the approach's simplicity.
40:. Additionally, highly polarizable nucleophiles will have greater nucleophilic character than suggested by their basicity because their 405: 254: 145: 728: 590: 398:
is the term Edwards introduced to account for the polarizability of the nucleophile. It is related to the oxidation potential (E
656:
The values of a and b, obtained by the method of least squares, are 3.60 and 0.0624 respectively. With this new definition of E
37: 823: 1211: 1015: 933: 666: 1088:
Jencks, William P.; Carriuolo, Joan (February 1960). "General Base Catalysis of the Aminolysis of Phenyl Acetate".
63: 32:. This equation was first developed by John O. Edwards in 1954 and later revised based on additional work in 1956. 818: 1178:
Yingst, Austin; MacDaniel, Darl H. (1967). "Use of the Edwards Equation to Determine Hardness of Acids".
469: 1061:
Jencks, William P.; Carriuolo, Joan (April 1960). "Reactivity of Nucleophilic Reagents toward Esters".
328:
O). H is a measure of the basicity of the nucleophile relative to protons, as defined by the equation:
334: 848:
Edwards, J.O. (1954). "Correlation of Relative Rates and Equilibria with a Double Basicity Scale".
813: 542: 383:
is that of the conjugate acid of the nucleophile and the constant 1.74 is the correction for the pK
1034:
Edwards, J.O.; Pearson, Ralph G. (1962). "The Factors Determining Nucleophilic Reactivities".
1114: 917: 910: 213:, of a reaction, normalized to that of a standard reaction with water as the nucleophile ( 8: 228:
that depends on the sensitivity of a substrate to nucleophilic attack (defined as 1 for
1216: 529: 52:
Prior to Edwards developing his equation, other scientists were also working to define
1152: 1132: 1011: 929: 986: 1187: 1160: 1124: 1097: 1070: 1043: 990: 981: 959: 921: 887: 857: 233: 41: 25: 53: 229: 29: 1205: 985:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 878:
Edwards, J.O. (1956). "Polarizability, Basicity and Nucleophilic Character".
994: 1136: 794: 925: 798: 21: 1191: 1164: 1101: 1074: 1047: 963: 891: 861: 1128: 132:
is the rate constant for nitramide decomposition by a base (B) and β
20:
in organic chemistry is a two-parameter equation for correlating
528:
was redefined in terms of basicity and polarizability (given as
456:{\displaystyle \mathrm {2X^{-}\rightleftharpoons X_{2}+2e^{-}} } 310:{\displaystyle \log {\frac {k}{k_{0}}}=\alpha E_{n}+\beta H\,} 44:
can be shifted with relative ease to concentrate in one area.
463:(oxidative dimerization of the nucleophile) by the equation: 1008:
Perspectives on Structure and Mechanism in Organic Chemistry
199:{\displaystyle \log _{10}\left({\frac {k}{k_{0}}}\right)=sn} 1150:
Pearson, Ralph G. (1963). "Hard and Soft Acids and Bases".
777:{\displaystyle \log {\frac {k}{k_{0}}}=\alpha P+\beta H\,} 646:{\displaystyle \ P\equiv \log {\frac {R_{N}}{R_{H_{2}0}}}} 324:
are the rate constants for a nucleophile and a standard (H
916:. Vol. 215. American Chemical Society. pp.  731: 669: 593: 545: 472: 408: 337: 257: 148: 66: 1010:(2 ed.). New Jersey: Wiley. pp. 506–507. 909: 776: 714: 645: 579: 507: 455: 423: 368: 309: 198: 117: 24:, as defined by relative rate constants, with the 1149: 248:The first generation of the Edwards equation was 224:for a given nucleophile and a substrate constant 28:of the nucleophile (relative to protons) and its 1203: 1177: 1087: 1060: 715:{\displaystyle \log {\frac {k}{k_{0}}}=AP+BH\,} 1033: 908:Harris, J. Milton; McManus, Samuel P. (1987). 907: 118:{\displaystyle \log k_{B}=\beta _{n}pK_{b}+C} 660:, the Edwards equation can be rearranged: 948: 773: 711: 306: 1090:Journal of the American Chemical Society 1063:Journal of the American Chemical Society 1036:Journal of the American Chemical Society 952:Journal of the American Chemical Society 903: 901: 880:Journal of the American Chemical Society 850:Journal of the American Chemical Society 209:This equation relates the rate constant 1005: 877: 847: 232:). This equation was modeled after the 1204: 1029: 1027: 898: 873: 871: 843: 841: 839: 243: 13: 1024: 982:Compendium of Chemical Terminology 868: 836: 508:{\displaystyle \ E_{n}=E_{0}+2.60} 443: 427: 414: 14: 1228: 136:is a parameter of the equation. 1171: 1143: 1108: 787: 369:{\displaystyle \ H=pK_{a}+1.74} 38:Brønsted–Lowry acid-base theory 1081: 1054: 999: 970: 942: 220:), to a nucleophilic constant 1: 829: 580:{\displaystyle \ E_{n}=aP+bH} 824:Bell–Evans–Polanyi principle 7: 819:Brønsted catalysis equation 807: 10: 1233: 1212:Physical organic chemistry 799:hard-soft acid-base theory 47: 814:Free-energy relationship 1006:Carroll, Felix (2010). 995:10.1351/goldbook.S06201 22:nucleophilic reactivity 778: 716: 647: 581: 509: 457: 370: 311: 200: 119: 779: 717: 648: 582: 510: 458: 371: 312: 201: 120: 987:Swain–Scott equation 926:10.1021/ba-1987-0215 729: 667: 591: 543: 470: 406: 335: 255: 146: 64: 1192:10.1021/ic50051a051 1180:Inorganic Chemistry 1165:10.1021/ja00905a001 1117:Inorganic Chemistry 1102:10.1021/ja01488a044 1075:10.1021/ja01492a058 1048:10.1021/ja00860a005 964:10.1021/ja01097a041 892:10.1021/ja01590a012 862:10.1021/ja01635a021 774: 712: 643: 577: 530:molar refractivity 505: 453: 402:) of the reaction 366: 307: 196: 115: 1159:(22): 3533–3539. 1153:J. Am. Chem. Soc. 1129:10.1021/ic3008848 753: 691: 641: 596: 548: 475: 340: 279: 244:Edwards equations 181: 1224: 1196: 1195: 1186:(5): 1067–1068. 1175: 1169: 1168: 1147: 1141: 1140: 1123:(7): 3414–3428. 1112: 1106: 1105: 1085: 1079: 1078: 1069:(7): 1778–1786. 1058: 1052: 1051: 1031: 1022: 1021: 1003: 997: 974: 968: 967: 946: 940: 939: 915: 905: 896: 895: 886:(9): 1819–1820. 875: 866: 865: 856:(6): 1540–1547. 845: 783: 781: 780: 775: 754: 752: 751: 739: 721: 719: 718: 713: 692: 690: 689: 677: 652: 650: 649: 644: 642: 640: 639: 635: 634: 620: 619: 610: 594: 586: 584: 583: 578: 558: 557: 546: 514: 512: 511: 506: 498: 497: 485: 484: 473: 462: 460: 459: 454: 452: 451: 450: 435: 434: 422: 421: 375: 373: 372: 367: 359: 358: 338: 316: 314: 313: 308: 296: 295: 280: 278: 277: 265: 234:Hammett equation 205: 203: 202: 197: 186: 182: 180: 179: 167: 158: 157: 124: 122: 121: 116: 108: 107: 95: 94: 82: 81: 42:electron density 18:Edwards equation 1232: 1231: 1227: 1226: 1225: 1223: 1222: 1221: 1202: 1201: 1200: 1199: 1176: 1172: 1148: 1144: 1113: 1109: 1086: 1082: 1059: 1055: 1032: 1025: 1018: 1004: 1000: 975: 971: 947: 943: 936: 912:Nucleophilicity 906: 899: 876: 869: 846: 837: 832: 810: 790: 747: 743: 738: 730: 727: 726: 685: 681: 676: 668: 665: 664: 659: 630: 626: 625: 621: 615: 611: 609: 592: 589: 588: 553: 549: 544: 541: 540: 535: 527: 522: 493: 489: 480: 476: 471: 468: 467: 446: 442: 430: 426: 417: 413: 409: 407: 404: 403: 401: 397: 390: 386: 382: 354: 350: 336: 333: 332: 327: 323: 291: 287: 273: 269: 264: 256: 253: 252: 246: 219: 175: 171: 166: 162: 153: 149: 147: 144: 143: 135: 131: 103: 99: 90: 86: 77: 73: 65: 62: 61: 54:nucleophilicity 50: 12: 11: 5: 1230: 1220: 1219: 1214: 1198: 1197: 1170: 1142: 1107: 1096:(3): 675–681. 1080: 1053: 1023: 1017:978-0470276105 1016: 998: 969: 958:(1): 141–147. 941: 934: 897: 867: 834: 833: 831: 828: 827: 826: 821: 816: 809: 806: 789: 786: 772: 769: 766: 763: 760: 757: 750: 746: 742: 737: 734: 723: 722: 710: 707: 704: 701: 698: 695: 688: 684: 680: 675: 672: 657: 654: 653: 638: 633: 629: 624: 618: 614: 608: 605: 602: 599: 576: 573: 570: 567: 564: 561: 556: 552: 533: 525: 520: 516: 515: 504: 501: 496: 492: 488: 483: 479: 449: 445: 441: 438: 433: 429: 425: 420: 416: 412: 399: 395: 388: 384: 380: 377: 376: 365: 362: 357: 353: 349: 346: 343: 325: 321: 318: 317: 305: 302: 299: 294: 290: 286: 283: 276: 272: 268: 263: 260: 245: 242: 230:methyl bromide 217: 207: 206: 195: 192: 189: 185: 178: 174: 170: 165: 161: 156: 152: 133: 129: 126: 125: 114: 111: 106: 102: 98: 93: 89: 85: 80: 76: 72: 69: 49: 46: 30:polarizability 9: 6: 4: 3: 2: 1229: 1218: 1215: 1213: 1210: 1209: 1207: 1193: 1189: 1185: 1181: 1174: 1166: 1162: 1158: 1155: 1154: 1146: 1138: 1134: 1130: 1126: 1122: 1118: 1111: 1103: 1099: 1095: 1091: 1084: 1076: 1072: 1068: 1064: 1057: 1049: 1045: 1041: 1037: 1030: 1028: 1019: 1013: 1009: 1002: 996: 992: 988: 984: 983: 978: 973: 965: 961: 957: 953: 945: 937: 935:9780841209527 931: 927: 923: 919: 914: 913: 904: 902: 893: 889: 885: 881: 874: 872: 863: 859: 855: 851: 844: 842: 840: 835: 825: 822: 820: 817: 815: 812: 811: 805: 802: 800: 796: 785: 770: 767: 764: 761: 758: 755: 748: 744: 740: 735: 732: 708: 705: 702: 699: 696: 693: 686: 682: 678: 673: 670: 663: 662: 661: 636: 631: 627: 622: 616: 612: 606: 603: 600: 597: 574: 571: 568: 565: 562: 559: 554: 550: 539: 538: 537: 531: 502: 499: 494: 490: 486: 481: 477: 466: 465: 464: 447: 439: 436: 431: 418: 410: 392: 363: 360: 355: 351: 347: 344: 341: 331: 330: 329: 320:where k and k 303: 300: 297: 292: 288: 284: 281: 274: 270: 266: 261: 258: 251: 250: 249: 241: 237: 235: 231: 227: 223: 216: 212: 193: 190: 187: 183: 176: 172: 168: 163: 159: 154: 150: 142: 141: 140: 137: 112: 109: 104: 100: 96: 91: 87: 83: 78: 74: 70: 67: 59: 58: 57: 55: 45: 43: 39: 33: 31: 27: 23: 19: 1183: 1179: 1173: 1156: 1151: 1145: 1120: 1116: 1110: 1093: 1089: 1083: 1066: 1062: 1056: 1042:(1): 16–24. 1039: 1035: 1007: 1001: 980: 972: 955: 951: 944: 911: 883: 879: 853: 849: 803: 795:alpha effect 791: 788:Significance 724: 655: 517: 393: 379:where the pK 378: 319: 247: 238: 225: 221: 214: 210: 208: 138: 127: 51: 34: 17: 15: 1206:Categories 830:References 1217:Equations 768:β 759:α 736:⁡ 674:⁡ 607:⁡ 601:≡ 448:− 424:⇌ 419:− 301:β 285:α 262:⁡ 160:⁡ 88:β 71:⁡ 1137:22867058 808:See also 587:where 26:basicity 128:where k 48:History 1135:  1014:  932:  595:  547:  474:  339:  60:where 977:IUPAC 1133:PMID 1012:ISBN 930:ISBN 503:2.60 387:of H 364:1.74 16:The 1188:doi 1161:doi 1125:doi 1098:doi 1071:doi 1044:doi 991:doi 989:". 960:doi 922:doi 918:7–8 888:doi 858:doi 733:log 671:log 604:log 536:): 532:, R 391:O. 259:log 151:log 68:log 1208:: 1182:. 1157:85 1131:. 1121:52 1119:. 1094:82 1092:. 1067:82 1065:. 1040:84 1038:. 1026:^ 979:, 956:75 954:. 928:. 920:. 900:^ 884:78 882:. 870:^ 854:76 852:. 838:^ 236:. 155:10 1194:. 1190:: 1184:6 1167:. 1163:: 1139:. 1127:: 1104:. 1100:: 1077:. 1073:: 1050:. 1046:: 1020:. 993:: 966:. 962:: 938:. 924:: 894:. 890:: 864:. 860:: 771:H 765:+ 762:P 756:= 749:0 745:k 741:k 709:H 706:B 703:+ 700:P 697:A 694:= 687:0 683:k 679:k 658:n 637:0 632:2 628:H 623:R 617:N 613:R 598:P 575:H 572:b 569:+ 566:P 563:a 560:= 555:n 551:E 534:N 526:n 524:E 521:n 500:+ 495:0 491:E 487:= 482:n 478:E 444:e 440:2 437:+ 432:2 428:X 415:X 411:2 400:0 396:n 394:E 389:3 385:a 381:a 361:+ 356:a 352:K 348:p 345:= 342:H 326:2 322:0 304:H 298:+ 293:n 289:E 282:= 275:0 271:k 267:k 226:s 222:n 218:0 215:k 211:k 194:n 191:s 188:= 184:) 177:0 173:k 169:k 164:( 134:N 130:b 113:C 110:+ 105:b 101:K 97:p 92:n 84:= 79:B 75:k

Index

nucleophilic reactivity
basicity
polarizability
Brønsted–Lowry acid-base theory
electron density
nucleophilicity
methyl bromide
Hammett equation
molar refractivity
alpha effect
hard-soft acid-base theory
Free-energy relationship
Brønsted catalysis equation
Bell–Evans–Polanyi principle



doi
10.1021/ja01635a021


doi
10.1021/ja01590a012


Nucleophilicity
7–8
doi
10.1021/ba-1987-0215
ISBN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑