Knowledge

Electron-withdrawing group

Source 📝

71: 91: 104: 289: 31:
or atom that has the ability to draw electron density toward itself and away from other adjacent atoms. This electron density transfer is often achieved by resonance or inductive effects. Electron-withdrawing groups have significant impacts on fundamental chemical processes such as
298:
is famously affected by EWGs. The effect is transmitted by inductive and resonance effects. Benzene with an EWG typically undergoes electrophilic substitution at meta positions. Overall the rates are diminished. thus EWGs are called deactivating.
432: 159: 216: 194: 238: 478: 417: 115: 581: 295: 303: 70: 90: 407: 62: 562: 361:
Electron-withdrawing groups are the opposite effect of electron-donating groups (EDGs). Both describe
586: 526:
Connelly, Neil G.; Geiger, William E. (1996). "Chemical Redox Agents for Organometallic Chemistry".
103: 378: 241: 277: 265: 257: 253: 201: 170: 311: 223: 78: 8: 331: 33: 335: 98:
The impact of the EWG group on pKa decreases with distances from the carboxylic group.
543: 474: 413: 327: 269: 82: 535: 508: 466: 366: 362: 54: 28: 61:. The strength of the electron-withdrawing group is inversely proportional to the 346: 273: 37: 369:
away from a molecule, whereas EDGs push electron density onto a substituent.
575: 512: 339: 315: 58: 260:. For example, fluorine is a stronger electron-withdrawing substituent than 547: 459:"Non-conventional Lewis Acids and Bases in Frustrated Lewis Pair Chemistry" 458: 470: 403: 307: 563:"Chapter 12: Reactions of Arenes. Electrophilic Aromatic Substitution" 539: 350: 314:
is far more susceptible to reactions displacing chloride compared to
109:
For benzoic acids, the effect is quantified by the Hammett equation:
288: 409:
Advanced Organic Chemistry: Reactions, Mechanisms, and Structure
261: 499:
J. F. Bunnett, R. M. Conner (1960). "2,4-Dinitroiodobenzene".
283: 401: 498: 356: 345:
Oxidants with EWGs are stronger than the parent compound.
465:, Cham: Springer International Publishing, pp. 1–29, 334:
tendency of the attached species. For example,  
226: 204: 173: 118: 457:
Caputo, Christopher B.; Stephan, Douglas W. (2015),
154:{\displaystyle \log {\frac {K}{K_{0}}}=\sigma \rho } 338:serves as an oxidant due to its attachment to four 276:. Electron-withdrawing groups also tend to reduce 232: 210: 188: 153: 573: 306:, electron-withdrawing groups are more prone to 525: 412:(6th ed.), New York: Wiley-Interscience, 48: 456: 321: 365:, however, electron-withdrawing groups pull 284:Effect on a aromatic substitution reactions 247: 102: 89: 69: 342:, which are electron-withdrawing groups. 357:Comparison with electron-donating groups 287: 43: 574: 433:"20.4: Substituent Effects on Acidity" 53:Electron-withdrawing groups exert an " 560: 397: 395: 393: 256:, making compounds more reactive as 77:The inductive effect is cumulative: 304:nucleophilic substitution reactions 296:Electrophilic aromatic substitution 13: 57:" or "electron-pulling" effect on 14: 598: 554: 425: 390: 519: 492: 450: 349:is 300 mV more oxidizing than 40:, and substitution reactions. 16:Class of chemical substituents 1: 384: 264:, resulting in an increased 7: 372: 330:, these groups enhance the 49:Effects on Bronsted acidity 10: 603: 582:Physical organic chemistry 322:Effects on redox potential 21:electron-withdrawing group 308:nucleophilic substitution 561:Hunt, Ian (2023-10-22). 513:10.15227/orgsyn.040.0034 65:of the carboxylic acid. 379:Electron-donating group 248:Effect on Lewis acidity 211:{\displaystyle \sigma } 189:{\displaystyle {K}_{0}} 81:is 1000x stronger than 292: 242:Reaction rate constant 234: 218:= Substituent constant 212: 190: 155: 463:The Chemical Bond III 291: 235: 233:{\displaystyle \rho } 213: 191: 156: 471:10.1007/430_2015_177 437:Chemistry LibreTexts 312:chlorodinitrobenzene 224: 202: 196:= Reference constant 171: 116: 79:trichloroacetic acid 44:Consequences of EWGs 402:Smith, Michael B.; 34:acid-base reactions 340:cyano substituents 336:Tetracyanoethylene 326:In the context of 293: 230: 208: 186: 151: 540:10.1021/cr940053x 501:Organic Syntheses 480:978-3-319-35145-2 419:978-0-471-72091-1 363:functional groups 347:Acetylferrocenium 328:electron transfer 302:When it comes to 270:boron trifluoride 252:EWGs enhance the 140: 83:chloroacetic acid 594: 587:Chemical bonding 567: 566: 558: 552: 551: 528:Chemical Reviews 523: 517: 516: 496: 490: 489: 488: 487: 454: 448: 447: 445: 444: 429: 423: 422: 399: 367:electron density 239: 237: 236: 231: 217: 215: 214: 209: 195: 193: 192: 187: 185: 184: 179: 160: 158: 157: 152: 141: 139: 138: 126: 106: 93: 73: 38:redox potentials 602: 601: 597: 596: 595: 593: 592: 591: 572: 571: 570: 559: 555: 524: 520: 497: 493: 485: 483: 481: 455: 451: 442: 440: 431: 430: 426: 420: 400: 391: 387: 375: 359: 332:oxidizing power 324: 310:. For example, 286: 274:trimethylborane 250: 225: 222: 221: 203: 200: 199: 180: 175: 174: 172: 169: 168: 134: 130: 125: 117: 114: 113: 51: 46: 17: 12: 11: 5: 600: 590: 589: 584: 569: 568: 553: 534:(2): 877–910. 518: 491: 479: 449: 424: 418: 388: 386: 383: 382: 381: 374: 371: 358: 355: 323: 320: 285: 282: 278:Lewis basicity 249: 246: 245: 244: 229: 219: 207: 197: 183: 178: 162: 161: 150: 147: 144: 137: 133: 129: 124: 121: 100: 99: 95: 94: 75: 74: 59:covalent bonds 50: 47: 45: 42: 15: 9: 6: 4: 3: 2: 599: 588: 585: 583: 580: 579: 577: 564: 557: 549: 545: 541: 537: 533: 529: 522: 514: 510: 506: 502: 495: 482: 476: 472: 468: 464: 460: 453: 438: 434: 428: 421: 415: 411: 410: 405: 398: 396: 394: 389: 380: 377: 376: 370: 368: 364: 354: 352: 348: 343: 341: 337: 333: 329: 319: 317: 316:chlorobenzene 313: 309: 305: 300: 297: 290: 281: 279: 275: 271: 267: 266:Lewis acidity 263: 259: 255: 254:Lewis acidity 243: 227: 220: 205: 198: 181: 176: 167: 166: 165: 148: 145: 142: 135: 131: 127: 122: 119: 112: 111: 110: 107: 105: 97: 96: 92: 88: 87: 86: 84: 80: 72: 68: 67: 66: 64: 60: 56: 41: 39: 35: 30: 26: 22: 556: 531: 527: 521: 504: 500: 494: 484:, retrieved 462: 452: 441:. Retrieved 439:. 2015-09-01 436: 427: 408: 404:March, Jerry 360: 344: 325: 301: 294: 272:relative to 251: 163: 108: 101: 76: 52: 24: 20: 18: 258:Lewis acids 576:Categories 486:2023-11-05 443:2023-12-07 385:References 351:ferrocene 228:ρ 206:σ 149:ρ 146:σ 123:⁡ 55:inductive 548:11848774 406:(2007), 373:See also 27:) is a 546:  507:: 34. 477:  416:  262:methyl 164:where 29:group 544:PMID 475:ISBN 414:ISBN 536:doi 509:doi 467:doi 268:of 120:log 63:pKa 25:EWG 19:An 578:: 542:. 532:96 530:. 505:40 503:. 473:, 461:, 435:. 392:^ 353:. 318:. 280:. 240:= 85:. 36:, 565:. 550:. 538:: 515:. 511:: 469:: 446:. 182:0 177:K 143:= 136:0 132:K 128:K 23:(

Index

group
acid-base reactions
redox potentials
inductive
covalent bonds
pKa

trichloroacetic acid
chloroacetic acid


Reaction rate constant
Lewis acidity
Lewis acids
methyl
Lewis acidity
boron trifluoride
trimethylborane
Lewis basicity

Electrophilic aromatic substitution
nucleophilic substitution reactions
nucleophilic substitution
chlorodinitrobenzene
chlorobenzene
electron transfer
oxidizing power
Tetracyanoethylene
cyano substituents
Acetylferrocenium

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.