Knowledge

Electron microprobe

Source đź“ť

311:
This vacancy is unstable and must be filled by an electron from either a higher energy bound shell in the atom (producing another vacancy which is in turn filled by electrons from yet higher energy bound shells) or by unbound electrons of low energy. The difference in binding energy between the electron shell in which the vacancy was produced and the shell from which the electron comes to fill the vacancy is emitted as a photon. The energy of the photon is in the X-ray region of the
1859: 315:. As the electron structure of each element is unique, the series X-ray line energies produced by vacancies in the innermost shells is characteristic of that element, although lines from different elements may overlap. As the innermost shells are involved, the X-ray line energies are generally not affected by chemical effects produced by bonding between elements in compounds except in low atomic number (Z) elements ( B, C, N, O and F for K 442: 409: 1871: 1185: 22: 287:(keV). The anode plate has central aperture and electrons that pass through it are collimated and focused by a series of magnetic lenses and apertures. The resulting electron beam (approximately 5 nm to 10 ÎĽm diameter) may be rastered across the sample or used in spot mode to produce excitation of various effects in the sample. Among these effects are: 310:
When the beam electrons (and scattered electrons from the sample) interact with bound electrons in the innermost electron shells of the atoms of the various elements in the sample, they can scatter the bound electrons from the electron shell producing a vacancy in that shell (ionization of the atom).
457:
The technique is commonly used for analyzing the chemical composition of metals, alloys, ceramics, and glasses. It is particularly useful for assessing the composition of individual particles or grains and chemical changes on the scale of a few micrometres to millimeters. The electron microprobe is
156:
The 1950s was a decade of great interest in electron beam X-ray microanalysis, following Castaing's presentations at the First European Microscopy Conference in Delft in 1949 and then at the National Bureau of Standards conference on Electron Physics in Washington, DC, in 1951, as well as at other
143:. This microprobe produced an electron beam diameter of 1-3 ÎĽm with a beam current of ~10 nanoamperes (nA) and used a Geiger counter to detect the X-rays produced from the sample. However, the Geiger counter could not distinguish X-rays produced from specific elements and in 1950, Castaing added a 205:
went out of business. In addition, many researchers build electron microprobes in their labs. Significant subsequent improvements and modifications to microprobes included scanning the electron beam to make X-ray maps (1960), the addition of solid state EDS detectors (1968) and the development of
493:
The change in elemental composition from the center (also known as core) to the edge (or rim) of a mineral can yield information about the history of the crystal's formation, including the temperature, pressure, and chemistry of the surrounding medium. Quartz crystals, for example, incorporate a
182:
on a train in Europe in 1952, where he learned of Castaing's new instrument and the suggestion that Caltech build a similar instrument. David Wittry was hired to build such an instrument as his PhD thesis, which he completed in 1957. It became the prototype for the ARL EMX electron microprobe.
374:
Despite the improved spectral resolution of elemental peaks, some peaks exhibit significant overlap that causes analytical challenges (e.g., VKα and TiKβ). WDS analyses are unable to distinguish the valence states of elements (e.g. Fe vs. Fe) which must be obtained by other techniques such as
342:
to accumulate X-rays of all wavelengths produced from the sample. While EDS yields more information and typically requires a much shorter counting time, WDS is generally more precise with lower limits of detection due to its superior X-ray peak resolution and greater peak to background ratio.
152:
and David Wittry, in which he laid the foundations of the theory and application of quantitative analysis by electron microprobe, establishing the theoretical framework for the matrix corrections of absorption and fluorescence effects. Castaing (1921-1999) is considered the father of electron
519:, which were interpreted as either legs or extensions of the gut. Elemental mapping showed that their composition was similar to the gut, favoring that interpretation. Because of the thinness of carbon films, only low voltages (5-15 kV) can be used on them. 119:
is very good for light element analysis and they obtained spectra of C-Kα, N-Kα and O-Kα radiation. In 1947, Hiller patented the concept of using an electron beam to produce analytical X-rays, but never constructed a working model. His design proposed using
147:
crystal between the sample and the detector to permit wavelength discrimination. He also added an optical microscope to view the point of beam impact. The resulting microprobe was described in Castaing's 1951 PhD Thesis, translated into English by
994:
Llovet, Xavier, Aurélien Moy, Philippe T. Pinard, and John H. Fournelle. "Electron probe microanalysis: a review of recent developments and applications in materials science and engineering." Progress in Materials Science (2020): 100673.
494:
small, but measurable amount of titanium into their structure as a function of temperature, pressure, and the amount of titanium available in their environment. Changes in these parameters are recorded by titanium as the crystal grows.
470:. Most rocks are aggregates of small mineral grains. These grains may preserve chemical information acquired during their formation and subsequent alteration. This information may illuminate geologic processes such as crystallization, 359:) to yield quantitative chemical compositions. The resulting chemical data is gathered in textural context. Variations in chemical composition within a material (zoning), such as a mineral grain or metal, can be readily determined. 157:
conferences in the early to mid-1950s. Many researchers, mainly material scientists, developed their own experimental electron microprobes, sometimes starting from scratch, but many times using surplus electron microscopes.
258:
at a characteristic frequency; the X-rays can then be detected by the electron microprobe. The size and current density of the electron beam determines the trade-off between resolution and scan time and/or analysis time.
786:
Application des sondes électroniques à une méthode d'analyse ponctuelle chimique et cristallographique: publication ONERA (Office national d'études et de recherches aéronautiques/ Institute for Aeronautical Research) N.
346:
Chemical composition is determined by comparing the intensities of characteristic X-rays from the sample with intensities from standards of known composition. Counts from the sample must be corrected for
513:, soft parts of organisms may be preserved. Since these fossils are often compressed into a planar film, it can be difficult to distinguish the features: a famous example is the triangular extensions in 186:
During the late 1950s and early 1960s there were over a dozen other laboratories in North America, the United Kingdom, Europe, Japan and the USSR developing electron beam X-ray microanalyzers.
60:, emitting x-rays at wavelengths characteristic to the elements being analyzed. This enables the abundances of elements present within small sample volumes (typically 10-30 cubic 92:— identification of the photons scattered from the electron beam impact, with the energy/wavelength of the photons characteristic of the atoms excited by the incident electrons. 784: 140: 527:
The chemical composition of meteorites can be analyzed quite accurately using EPMA. This can reveal much about the conditions that existed in the early Solar System.
172:
combined all three technologies and developed a scanning electron X-ray microanalyzer for his PhD thesis (1957), which was commercialized as the Cambridge MicroScan.
115:. In the early 1940s, they built an electron microprobe, combining an electron microscope and an energy loss spectrometer. A patent application was filed in 1944. 1503: 338:
from crystals to select X-ray wavelengths of interest and direct them to gas-flow or sealed proportional detectors. In contrast, EDS uses a solid state
178:, a Belgian material scientist who fled the Nazis and settled at the California Institute of Technology and collaborated with Jesse DuMond, encountered 52:(EMPA), is an analytical tool used to non-destructively determine the chemical composition of small volumes of solid materials. It works similarly to a 1486: 1481: 695:
Fukushima, S.; Kimura, T.; Ogiwara, T.; Tsukamoto, K.; Tazawa, T.; Tanuma, S. (2008). "New model ultra-soft X-ray spectrometer for microanalysis".
76:(ppm), material dependent, although with care, levels below 10 ppm are possible. The ability to quantify lithium by EPMA became a reality in 2008. 104:
was involved in the discovery of the direct relationship between the wavelength of X-rays and the identity of the atom from which it originated.
371:
WDS cannot determine elements below number 3 (lithium). This restricts WDS when analyzing geologically important elements such as H, Li, and Be.
1630: 1333: 323:) where line energies may be shifted as a result of the involvement of the electron shell from which vacancies are filled in chemical bonding. 164:
at the Cavendish Laboratory at Cambridge University, a center of research on electron microscopy, as well as scanning electron microscopy with
1620: 1223: 1523: 1496: 1087: 1431: 1052:
Orr, P. J.; Kearns, S. L.; Briggs, D. E. G. (2009). "Elemental mapping of exceptionally preserved 'carbonaceous compression' fossils".
1491: 1006: 326:
The characteristic X-rays are used for chemical analysis. Specific X-ray wavelengths or energies are selected and counted, either by
1635: 503: 327: 193:(France) in 1956.. It was soon followed in the early-mid 1960s by microprobes from other companies; however, all companies except 26: 1195: 1451: 352: 1575: 1441: 1388: 1189: 64:
or less) to be determined, when a conventional accelerating voltage of 15-20 kV is used. The concentrations of elements from
1875: 1830: 1558: 1543: 1469: 331: 870:
Eklund, Robert L. "Bausch & Lomb-ARL: Where We Come From, Who We are." Applied Spectroscopy 35, no. 2 (1981): 226-235.
543: 589:
Cosslett, V. E., and P. Duncumb. "Micro-analysis by a flying-spot X-ray method." Nature 177, no. 4521 (1956): 1172-1173.
1580: 1413: 1266: 1216: 380: 116: 1568: 1563: 1461: 1436: 1403: 490:), and provides chemical data which is vital to understanding the evolution of the planets, asteroids, and comets. 1640: 1625: 1605: 816: 907: 1912: 1835: 1408: 1343: 1251: 34: 1825: 362:
Volume from which chemical information is gathered (volume of X-rays generated) is 0.3 – 3 cubic micrometers.
1907: 1585: 1548: 1393: 1863: 1423: 1209: 53: 124:
from a flat crystal to select specific X-ray wavelengths and a photographic plate as a detector. However,
800: 537: 1610: 1528: 430: 970: 376: 1789: 1615: 446: 416: 312: 107:
There have been at several historical threads to electron beam microanalysis. One was developed by
1538: 1474: 1348: 1307: 1091: 1030: 1728: 1113: 339: 730: 1733: 1553: 566: 254:
A beam of electrons is fired at a sample. The beam causes each element in the sample to emit
161: 1902: 1738: 1297: 1061: 757: 661: 549: 272: 202: 8: 1703: 1688: 1595: 1590: 1533: 1312: 1302: 1246: 1232: 561: 292: 132: 85: 1065: 761: 665: 630: 613: 206:
synthetic multilayer diffracting crystals for analysis of light elements (1984). Later,
84:
The electron microprobe (electron probe microanalyzer) developed from two technologies:
1774: 1353: 1317: 955:
K.F.J. Heinrich, and D.E. Newbury eds., Electron probe quantitation, Plenum Press, 1991
712: 677: 599: 450: 434: 89: 845: 1718: 1713: 1026: 423: 391: 335: 121: 73: 1805: 804: 716: 681: 1668: 1600: 1069: 1022: 928:
Duncumb P. and Reed S.J.B., NBS Spec. Publ. 298, Heinrich K.F.J. ed., 1968, p. 133
765: 704: 669: 625: 881: 745: 646: 179: 136: 1897: 1723: 1073: 483: 413: 211: 1138: 1678: 1292: 859: 304: 296: 284: 276: 165: 708: 139:, built the first electron “microsonde électronique” (electron microprobe) at 1891: 1754: 1698: 1358: 510: 471: 348: 239: 235: 169: 108: 101: 88:— using a focused high energy electron beam to impact a target material, and 57: 30: 937:
Bishop H.E., 4th Int. Congr. X-Ray Opt., Orsay, Hermann, Paris, 1966, p. 153
1815: 1779: 1673: 1663: 1338: 1287: 946:
S.J.B. Reed, Electron microprobe analysis, Cambridge University Press, 1993
905: 571: 475: 356: 160:
One of the organizers of the Delft 1949 Electron Microscopy conference was
1759: 1693: 1683: 673: 614:"Uncertainty and capability of quantitative EPMA at low voltage–A review" 467: 427: 223: 93: 61: 1169:
Electron microprobe analysis and scanning electron microscopy in geology
1840: 1820: 1261: 1256: 502:
For more information about element abundance in the Burgess shale, see
487: 486:. This technique is also used for the study of extraterrestrial rocks ( 231: 219: 1201: 801:
http://www.microbeamanalysis.org/history/Castaing-Thesis-clearscan.pdf
769: 1708: 1363: 243: 189:
The first commercial electron microprobe, the "MS85" was produced by
175: 149: 131:
A second thread developed in France in the late 1940s. In 1948–1950,
97: 69: 218:
instruments in recent decades expanded the range of applications on
1810: 1276: 647:"Improved electron probe microanalysis of trace elements in quartz" 515: 441: 420: 390:
cannot be determined by WDS, but are most commonly obtained with a
387: 268: 858:
Long, J. V. P. "Microanalysis." Micron 24, no. 2 (1993): 143-148.
408: 1764: 1446: 479: 458:
widely used for research, quality control, and failure analysis.
300: 227: 65: 1784: 1184: 846:"Circular of the Bureau of Standards no. 527: Electron physics" 694: 288: 255: 215: 207: 194: 190: 144: 100:
are associated with the prototype electron microscope in 1931.
445:
For comparison, a similar section of the same microcontroller
29:"Microscan" electron probe microanalyzer based on a design by 280: 906:
John Goodge, University of Minnesota-Duluth (23 July 2012).
1769: 210:
pioneered manufacturing a shielded electron microprobe for
198: 466:
This technique is most commonly used by mineralogists and
419:
by an electron microprobe. The small bright cylinders are
1196:
Electron Probe Laboratory, Hebrew University of Jerusalem
598:
Wittry, David B. (1958). "Electron Probe Microanalyzer",
509:
In exceptionally preserved fossils, such as those of the
295:(visible light fluorescence), continuum X-ray radiation ( 125: 112: 618:
IOP Conference Series: Materials Science and Engineering
504:
Burgess Shale type preservation § Elemental mapping
299:), characteristic X-ray radiation, secondary electrons ( 1004: 279:
electron source and accelerated by a positively biased
21: 882:"Elemental mapping of minerals by electron microprobe" 437:
can be used to determine the composition of the vias.
403: 303:
production), backscattered electron production, and
16:
Instrument for the micro-chemical analysis of solids
128:had no interest in commercializing this invention. 1007:"The nature and significance of the appendages of 602:, Washington, DC: U.S. Patent and Trademark Office 1054:Palaeogeography, Palaeoclimatology, Palaeoecology 805:https://the-mas.org/castaings-famous-1951-thesis/ 644: 1889: 1198:- web page of a lab describing their modern EPMA 1051: 998: 879: 1631:Serial block-face scanning electron microscopy 1334:Detectors for transmission electron microscopy 848:. National Bureau of Standards. 17 March 1954. 1217: 168:as well as X-ray microscopy with Bill Nixon. 860:https://doi.org/10.1016/0968-4328(93)90065-9 743: 688: 611: 592: 461: 1224: 1210: 971:"Wavelength-dispersive spectroscopy (WDS)" 873: 645:Donovan, J.; Lowers, H.; Rusk, B. (2011). 638: 629: 605: 267:Low-energy electrons are produced from a 975:Geochemical Instrumentation and Analysis 899: 782: 440: 407: 328:wavelength dispersive X-ray spectroscopy 72:may be measured at levels as low as 100 20: 1231: 1045: 1011:from the Middle Cambrian Burgess Shale" 965: 963: 961: 262: 27:Cambridge Scientific Instrument Company 1890: 1205: 995:doi.org/10.1016/j.pmatsci.2020.100673 746:"Microanalysis by Means of Electrons" 744:Hillier, James; Baker, R. F. (1944). 522: 1870: 1166: 1139:"Lecture Notes and PowerPoint Files" 958: 542:John Fournelle's class notes at the 351:(depth of production of the X-rays, 332:energy dispersive X-ray spectroscopy 530: 13: 1159: 1005:Zhang, X.; Briggs, D.E.G. (2007). 880:Jansen, W.; Slaughter, M. (1982). 817:"Proceedings of the EM Conference" 790:(PhD Thesis). University of Paris. 548:John Donovan's class notes at the 214:applications. Several advances in 56:: the sample is bombarded with an 14: 1924: 1267:Timeline of microscope technology 1177: 404:Materials science and engineering 381:electron energy loss spectroscopy 117:Electron energy loss spectroscopy 1869: 1858: 1857: 1183: 1027:10.1111/j.1502-3931.2007.00013.x 482:events (mountain building), and 1626:Precession electron diffraction 1131: 1106: 1080: 988: 949: 940: 931: 922: 864: 852: 838: 809: 612:Merlet, C.; Llovet, X. (2012). 544:University of Wisconsin–Madison 497: 398: 1114:"Geoscience 777 Lecture Notes" 1088:"Electron Microprobe Homepage" 794: 776: 737: 723: 583: 365: 35:Cambridge Museum of Technology 33:. This model is housed at the 1: 1171:. Cambridge university press. 631:10.1088/1757-899X/32/1/012016 577: 50:electron micro probe analyzer 1074:10.1016/j.palaeo.2009.02.009 731:"ChemTeam: Moseley Articles" 536:Jim Wittke's class notes at 249: 54:scanning electron microscope 46:electron probe microanalyzer 7: 783:Castaing, Raimond (1952) . 555: 538:Northern Arizona University 10: 1929: 1611:Immune electron microscopy 1529:Annular dark-field imaging 1344:Everhart–Thornley detector 750:Journal of Applied Physics 501: 412:A section of the 1886VE10 283:plate to 3 to 30 thousand 79: 1853: 1798: 1765:Hitachi High-Technologies 1747: 1656: 1649: 1516: 1460: 1422: 1379: 1372: 1326: 1275: 1239: 709:10.1007/s00604-007-0889-6 1790:Thermo Fisher Scientific 1616:Geometric phase analysis 1504:Aberration-Corrected TEM 462:Mineralogy and petrology 313:electromagnetic spectrum 44:(EMP), also known as an 1539:Charge contrast imaging 1349:Field electron emission 1729:Thomas Eugene Everhart 1167:Reed, Stephen (2005). 454: 438: 377:Mössbauer spectroscopy 340:semiconductor detector 37: 1913:Scientific techniques 1734:Vernon Ellis Cosslett 1554:Dark-field microscopy 889:American Mineralogist 654:American Mineralogist 567:Electron spectroscopy 444: 411: 275:crystal cathode or a 162:Vernon Ellis Cosslett 153:microprobe analysis. 111:and Richard Baker at 24: 1908:Analytical chemistry 1739:Vladimir K. Zworykin 1389:Correlative light EM 1298:Electron diffraction 1192:at Wikimedia Commons 1190:Electron microprobes 1118:www.geology.wisc.edu 674:10.2138/am.2011.3631 600:US Patent No 2916621 550:University of Oregon 334:(EDS). WDS utilizes 273:lanthanum hexaboride 263:Detailed description 203:Shimadzu Corporation 1704:Manfred von Ardenne 1689:Gerasimos Danilatos 1596:Electron tomography 1591:Electron holography 1534:Cathodoluminescence 1313:Secondary electrons 1303:Electron scattering 1247:Electron microscopy 1233:Electron microscopy 1066:2009PPP...277....1O 910:. Serc.carleton.edu 762:1944JAP....15..663H 666:2011AmMin..96..274D 562:Electron microscope 293:cathodoluminescence 291:excitation (heat), 86:electron microscopy 42:electron microprobe 1826:Digital Micrograph 1432:Environmental SEM 1354:Field emission gun 1318:X-ray fluorescence 1033:on 8 December 2012 523:Meteorite analysis 455: 451:optical microscope 439: 435:X-ray spectroscopy 319:and Al to Cl for K 90:X-ray spectroscopy 38: 1885: 1884: 1849: 1848: 1719:Nestor J. Zaluzec 1714:Maximilian Haider 1512: 1511: 1188:Media related to 1143:pages.uoregon.edu 908:"Element mapping" 803:is equivalent to 770:10.1063/1.1707491 392:mass spectrometer 336:Bragg diffraction 122:Bragg diffraction 74:parts per million 1920: 1873: 1872: 1861: 1860: 1669:Bodo von Borries 1654: 1653: 1414:Photoemission EM 1377: 1376: 1226: 1219: 1212: 1203: 1202: 1187: 1172: 1154: 1153: 1151: 1149: 1135: 1129: 1128: 1126: 1124: 1110: 1104: 1103: 1101: 1099: 1094:on 22 March 2017 1090:. Archived from 1084: 1078: 1077: 1049: 1043: 1042: 1040: 1038: 1029:. Archived from 1002: 996: 992: 986: 985: 983: 981: 967: 956: 953: 947: 944: 938: 935: 929: 926: 920: 919: 917: 915: 903: 897: 896: 886: 877: 871: 868: 862: 856: 850: 849: 842: 836: 835: 833: 831: 824:geology.wisc.edu 821: 813: 807: 798: 792: 791: 780: 774: 773: 741: 735: 734: 727: 721: 720: 703:(3–4): 399–404. 692: 686: 685: 660:(2–3): 274–282. 651: 642: 636: 635: 633: 609: 603: 596: 590: 587: 531:Online tutorials 135:, supervised by 133:Raimond Castaing 1928: 1927: 1923: 1922: 1921: 1919: 1918: 1917: 1888: 1887: 1886: 1881: 1845: 1794: 1743: 1724:Ondrej Krivanek 1645: 1508: 1456: 1418: 1404:Liquid-Phase EM 1368: 1327:Instrumentation 1322: 1280: 1271: 1235: 1230: 1180: 1175: 1162: 1160:Further reading 1157: 1147: 1145: 1137: 1136: 1132: 1122: 1120: 1112: 1111: 1107: 1097: 1095: 1086: 1085: 1081: 1050: 1046: 1036: 1034: 1003: 999: 993: 989: 979: 977: 969: 968: 959: 954: 950: 945: 941: 936: 932: 927: 923: 913: 911: 904: 900: 895:(5–6): 521–533. 884: 878: 874: 869: 865: 857: 853: 844: 843: 839: 829: 827: 819: 815: 814: 810: 799: 795: 781: 777: 742: 738: 729: 728: 724: 693: 689: 649: 643: 639: 610: 606: 597: 593: 588: 584: 580: 558: 533: 525: 507: 500: 484:plate tectonics 464: 426:left over from 414:microcontroller 406: 401: 368: 322: 318: 265: 252: 82: 17: 12: 11: 5: 1926: 1916: 1915: 1910: 1905: 1900: 1883: 1882: 1880: 1879: 1867: 1854: 1851: 1850: 1847: 1846: 1844: 1843: 1838: 1833: 1831:Direct methods 1828: 1823: 1818: 1813: 1808: 1802: 1800: 1796: 1795: 1793: 1792: 1787: 1782: 1777: 1772: 1767: 1762: 1757: 1751: 1749: 1745: 1744: 1742: 1741: 1736: 1731: 1726: 1721: 1716: 1711: 1706: 1701: 1696: 1691: 1686: 1681: 1679:Ernst G. Bauer 1676: 1671: 1666: 1660: 1658: 1651: 1647: 1646: 1644: 1643: 1638: 1633: 1628: 1623: 1618: 1613: 1608: 1603: 1598: 1593: 1588: 1583: 1578: 1573: 1572: 1571: 1561: 1556: 1551: 1546: 1541: 1536: 1531: 1526: 1520: 1518: 1514: 1513: 1510: 1509: 1507: 1506: 1501: 1500: 1499: 1489: 1484: 1479: 1478: 1477: 1466: 1464: 1458: 1457: 1455: 1454: 1449: 1444: 1439: 1434: 1428: 1426: 1420: 1419: 1417: 1416: 1411: 1406: 1401: 1396: 1391: 1385: 1383: 1374: 1370: 1369: 1367: 1366: 1361: 1356: 1351: 1346: 1341: 1336: 1330: 1328: 1324: 1323: 1321: 1320: 1315: 1310: 1305: 1300: 1295: 1293:Bremsstrahlung 1290: 1284: 1282: 1273: 1272: 1270: 1269: 1264: 1259: 1254: 1249: 1243: 1241: 1237: 1236: 1229: 1228: 1221: 1214: 1206: 1200: 1199: 1193: 1179: 1178:External links 1176: 1174: 1173: 1163: 1161: 1158: 1156: 1155: 1130: 1105: 1079: 1044: 1021:(2): 161–173. 997: 987: 957: 948: 939: 930: 921: 898: 872: 863: 851: 837: 808: 793: 775: 756:(9): 663–675. 736: 722: 697:Microchim Acta 687: 637: 604: 591: 581: 579: 576: 575: 574: 569: 564: 557: 554: 553: 552: 546: 540: 532: 529: 524: 521: 499: 496: 463: 460: 405: 402: 400: 397: 396: 395: 384: 372: 367: 364: 355:and secondary 349:matrix effects 320: 316: 305:Auger electron 297:bremsstrahlung 285:electron volts 277:field emission 264: 261: 251: 248: 240:trace elements 236:nuclear plants 166:Charles Oatley 81: 78: 15: 9: 6: 4: 3: 2: 1925: 1914: 1911: 1909: 1906: 1904: 1901: 1899: 1896: 1895: 1893: 1878: 1877: 1868: 1866: 1865: 1856: 1855: 1852: 1842: 1839: 1837: 1834: 1832: 1829: 1827: 1824: 1822: 1819: 1817: 1814: 1812: 1809: 1807: 1804: 1803: 1801: 1797: 1791: 1788: 1786: 1783: 1781: 1778: 1776: 1773: 1771: 1768: 1766: 1763: 1761: 1758: 1756: 1755:Carl Zeiss AG 1753: 1752: 1750: 1748:Manufacturers 1746: 1740: 1737: 1735: 1732: 1730: 1727: 1725: 1722: 1720: 1717: 1715: 1712: 1710: 1707: 1705: 1702: 1700: 1699:James Hillier 1697: 1695: 1692: 1690: 1687: 1685: 1682: 1680: 1677: 1675: 1672: 1670: 1667: 1665: 1662: 1661: 1659: 1655: 1652: 1648: 1642: 1639: 1637: 1634: 1632: 1629: 1627: 1624: 1622: 1619: 1617: 1614: 1612: 1609: 1607: 1604: 1602: 1599: 1597: 1594: 1592: 1589: 1587: 1584: 1582: 1579: 1577: 1574: 1570: 1567: 1566: 1565: 1562: 1560: 1557: 1555: 1552: 1550: 1547: 1545: 1542: 1540: 1537: 1535: 1532: 1530: 1527: 1525: 1522: 1521: 1519: 1515: 1505: 1502: 1498: 1495: 1494: 1493: 1490: 1488: 1485: 1483: 1480: 1476: 1473: 1472: 1471: 1468: 1467: 1465: 1463: 1459: 1453: 1452:Ultrafast SEM 1450: 1448: 1445: 1443: 1440: 1438: 1435: 1433: 1430: 1429: 1427: 1425: 1421: 1415: 1412: 1410: 1409:Low-energy EM 1407: 1405: 1402: 1400: 1397: 1395: 1392: 1390: 1387: 1386: 1384: 1382: 1378: 1375: 1371: 1365: 1362: 1360: 1359:Magnetic lens 1357: 1355: 1352: 1350: 1347: 1345: 1342: 1340: 1337: 1335: 1332: 1331: 1329: 1325: 1319: 1316: 1314: 1311: 1309: 1308:Kikuchi lines 1306: 1304: 1301: 1299: 1296: 1294: 1291: 1289: 1286: 1285: 1283: 1278: 1274: 1268: 1265: 1263: 1260: 1258: 1255: 1253: 1250: 1248: 1245: 1244: 1242: 1238: 1234: 1227: 1222: 1220: 1215: 1213: 1208: 1207: 1204: 1197: 1194: 1191: 1186: 1182: 1181: 1170: 1165: 1164: 1144: 1140: 1134: 1119: 1115: 1109: 1093: 1089: 1083: 1075: 1071: 1067: 1063: 1059: 1055: 1048: 1032: 1028: 1024: 1020: 1016: 1012: 1010: 1001: 991: 976: 972: 966: 964: 962: 952: 943: 934: 925: 909: 902: 894: 890: 883: 876: 867: 861: 855: 847: 841: 825: 818: 812: 806: 802: 797: 789: 788: 779: 771: 767: 763: 759: 755: 751: 747: 740: 732: 726: 718: 714: 710: 706: 702: 698: 691: 683: 679: 675: 671: 667: 663: 659: 655: 648: 641: 632: 627: 624:(2): 012016. 623: 619: 615: 608: 601: 595: 586: 582: 573: 570: 568: 565: 563: 560: 559: 551: 547: 545: 541: 539: 535: 534: 528: 520: 518: 517: 512: 511:Burgess shale 505: 495: 491: 489: 485: 481: 477: 474:, volcanism, 473: 472:lithification 469: 459: 452: 448: 443: 436: 432: 429: 425: 422: 418: 415: 410: 393: 389: 385: 382: 378: 373: 370: 369: 363: 360: 358: 354: 350: 344: 341: 337: 333: 329: 324: 314: 308: 306: 302: 298: 294: 290: 286: 282: 278: 274: 270: 260: 257: 247: 245: 241: 237: 233: 229: 225: 221: 217: 213: 209: 204: 200: 196: 192: 187: 184: 181: 180:AndrĂ© Guinier 177: 173: 171: 170:Peter Duncumb 167: 163: 158: 154: 151: 146: 142: 138: 137:AndrĂ© Guinier 134: 129: 127: 123: 118: 114: 110: 109:James Hillier 105: 103: 102:Henry Moseley 99: 95: 91: 87: 77: 75: 71: 67: 63: 59: 58:electron beam 55: 51: 47: 43: 36: 32: 31:Peter Duncumb 28: 23: 19: 1874: 1862: 1816:EM Data Bank 1780:Nion Company 1674:Dennis Gabor 1664:Albert Crewe 1442:Confocal SEM 1398: 1380: 1339:Electron gun 1288:Auger effect 1168: 1146:. Retrieved 1142: 1133: 1121:. Retrieved 1117: 1108: 1096:. Retrieved 1092:the original 1082: 1060:(1–2): 1–8. 1057: 1053: 1047: 1035:. Retrieved 1031:the original 1018: 1014: 1008: 1000: 990: 978:. Retrieved 974: 951: 942: 933: 924: 912:. Retrieved 901: 892: 888: 875: 866: 854: 840: 828:. Retrieved 823: 811: 796: 785: 778: 753: 749: 739: 725: 700: 696: 690: 657: 653: 640: 621: 617: 607: 594: 585: 572:Thin section 526: 514: 508: 498:Paleontology 492: 476:metamorphism 468:petrologists 465: 456: 428:metalization 399:Applications 361: 357:fluorescence 345: 325: 309: 307:production. 271:filament, a 266: 253: 188: 185: 174: 159: 155: 130: 106: 83: 49: 45: 41: 39: 18: 1903:Microscopes 1760:FEI Company 1694:Harald Rose 1684:Ernst Ruska 1373:Microscopes 1281:with matter 1279:interaction 914:23 December 826:. July 1949 366:Limitations 224:electronics 94:Ernst Ruska 62:micrometers 1892:Categories 1841:Multislice 1657:Developers 1517:Techniques 1262:Microscope 1257:Micrograph 578:References 488:meteorites 353:absorption 232:mineralogy 220:metallurgy 48:(EPMA) or 1709:Max Knoll 1364:Stigmator 1037:20 August 330:(WDS) or 250:Operation 244:dentistry 176:Pol Duwez 150:Pol Duwez 98:Max Knoll 70:plutonium 1864:Category 1811:CrysTBox 1799:Software 1470:Cryo-TEM 1277:Electron 1009:Opabinia 717:94191823 682:15082304 556:See also 516:Opabinia 480:orogenic 421:tungsten 388:isotopes 386:Element 269:tungsten 1876:Commons 1524:4D STEM 1497:4D STEM 1475:Cryo-ET 1447:SEM-XRF 1437:CryoSEM 1394:Cryo-EM 1252:History 1148:24 June 1123:24 June 1062:Bibcode 1015:Lethaia 830:24 June 758:Bibcode 662:Bibcode 431:etching 301:plasmon 228:geology 212:nuclear 80:History 66:lithium 1898:X-rays 1821:EMsoft 1806:CASINO 1785:TESCAN 1650:Others 1549:cryoEM 1240:Basics 1098:4 July 980:13 May 715:  680:  449:by an 289:phonon 256:X-rays 242:, and 216:CAMECA 208:CAMECA 195:CAMECA 191:CAMECA 145:quartz 1775:Leica 1621:PINEM 1487:HRTEM 1482:EFTEM 885:(PDF) 820:(PDF) 713:S2CID 678:S2CID 650:(PDF) 317:alpha 281:anode 141:ONERA 1836:IUCr 1770:JEOL 1641:WBDF 1636:WDXS 1586:EBIC 1581:EELS 1576:ECCI 1564:EBSD 1544:CBED 1492:STEM 1150:2023 1125:2023 1100:2020 1039:2008 982:2016 916:2015 832:2023 424:vias 321:beta 201:and 199:JEOL 96:and 1606:FEM 1601:FIB 1569:TKD 1559:EDS 1462:TEM 1424:SEM 1399:EMP 1070:doi 1058:277 1023:doi 766:doi 705:doi 701:161 670:doi 626:doi 447:die 417:die 379:or 126:RCA 113:RCA 68:to 40:An 1894:: 1381:EM 1141:. 1116:. 1068:. 1056:. 1019:40 1017:. 1013:. 973:. 960:^ 893:67 891:. 887:. 822:. 787:55 764:. 754:15 752:. 748:. 711:. 699:. 676:. 668:. 658:96 656:. 652:. 622:32 620:. 616:. 478:, 433:. 246:. 238:, 234:, 230:, 226:, 222:, 197:, 25:A 1225:e 1218:t 1211:v 1152:. 1127:. 1102:. 1076:. 1072:: 1064:: 1041:. 1025:: 984:. 918:. 834:. 772:. 768:: 760:: 733:. 719:. 707:: 684:. 672:: 664:: 634:. 628:: 506:. 453:. 394:. 383:.

Index


Cambridge Scientific Instrument Company
Peter Duncumb
Cambridge Museum of Technology
scanning electron microscope
electron beam
micrometers
lithium
plutonium
parts per million
electron microscopy
X-ray spectroscopy
Ernst Ruska
Max Knoll
Henry Moseley
James Hillier
RCA
Electron energy loss spectroscopy
Bragg diffraction
RCA
Raimond Castaing
André Guinier
ONERA
quartz
Pol Duwez
Vernon Ellis Cosslett
Charles Oatley
Peter Duncumb
Pol Duwez
André Guinier

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑