Knowledge

Electronic circuit simulation

Source 📝

1203: 252: 72: 1223:
any error of significance to make the nodes terminated is sufficient to accurately simulate the node. For example, the two internal nodes that were eliminated above could alternatively have had a 1e+09 ohm port attached to them, so instead of using Kron reduction to eliminate the nodes, the nodes could be accurately simulated with excessively large resistive ports.
158:
provided by mixed-mode simulators is general-purpose and supports non-digital types of data. For example, elements can use real or integer values to simulate DSP functions or sampled data filters. Because the event-driven algorithm is faster than the standard SPICE matrix solution, simulation time is
1231:
If the input source to the network is an ideal voltage source with no resistance, the example above may be made to work by including a port resistance small enough to not introduce any error of significance. For example, a port with a resistance of 1e-09 in a network that is terminated elsewhere by
1210:
The final validity test for the example is to simulate the Chebyshev filter frequency response through the full useful range, which will be taken to be 100 MHz to 5 GHz for this case. This range should permit viewing of the equi-ripple |S12| of the pass band between 0 and -1 dB, somewhat steep stop
1121:
It may be useful to do some quick validity checks at this point. Since the example Chebyshev filter design requirement is for -1dB attenuation at the cutoff frequency of 1GHz, |S12| at 1 GHz is expected to be -1dB. Furthermore, since all simulation elements are lossless, the well known relation,
1222:
Since S parameters require terminations on all nodes being simulated, simulating the S parameter value for unterminated nodes, such as the internal nodes of a network, are technically unsupported. However, placing a resistive termination on unterminated nodes that is large enough to not introduce
182:
problems where a close inspection of an IC’s I/O characteristics is needed. Boolean logic expressions are delay-less functions that are used to provide efficient logic signal processing in an analog environment. These two modeling techniques use SPICE to solve a problem while the third method,
183:
digital primitives, uses mixed mode capability. Each of these methods has its merits and target applications. In fact, many simulations (particularly those which use A/D technology) call for the combination of all three approaches. No one approach alone is sufficient.
410:
The table above provides a list of ideal elements to model along with a node attachments to simulate. Next, each non-port element must be converted into a 2X2 Y parameter model for each frequency to be simulated. For this example, a frequency of 1GHz is selected.
692:
To simulate the filter at 1GHz, or any frequency, the element Y parameters must be converted to numerical entries using Y parameter models appropriate for the element installed. For ideal inductors and capacitors, the well known Y11 = Y22 = -Y12 = -Y21 =
1349: 90:
display (see Figure 1), allowing designers to rapidly modify a simulated circuit and see what effect the changes have on the output. They also typically contain extensive model and device libraries. These models typically include IC specific
162:
Mixed-mode simulation is handled on three levels: with primitive digital elements that use timing models and the built-in 12 or 16 state digital logic simulator, with subcircuit models that use the actual transistor topology of the
43:
Simulating a circuit’s behavior before actually building it can greatly improve design efficiency by making faulty designs known as such, and providing insight into the behavior of electronic circuit designs. In particular, for
1071: 976:
Since the Chebyshev frequency response is expected to be observable in |S12| as a 1dB equi-ripple response from 0 to 1GHz, the complex S parameter entries need to be converted to their respective magnitudes, using the standard
23:
to replicate the behavior of an actual electronic device or circuit. Simulation software allows for the modeling of circuit operation and is an invaluable analysis tool. Due to its highly accurate modeling capability, many
565:
It should be remembered that while Ideal inductor and capacitor modals consist of very simple 2x2 models where Y11 = Y22 = -Y12 = -Y21, most real world elements cannot be modeled so simply. With
869:. The table below shows the reduced Y parameter matrix of the Chebyshev filter example simulation after nodes 2 and 4 are eliminated. The nodes of the reduced table are renumbered to 1 and 2. 198:
switch changes its state. At this time a new analog model is calculated to be used for the next simulation period. This methodology both enhances simulation speed and stability significantly.
569:
and real world inductor and capacitor models, for example, Y11 != -Y12, and for some more complex passive asymmetric elements Y11 != Y22. For many active linear devices, such as
917:
Since the Chebyshev frequency response is observed from the S parameter matrix, namely |S12|, the next step is to convert the Y parameter matrix to an S parameter matrix, using well known
573:, Y12 != Y21. Therefore, the example in this section uses independent Y11, Y12, Y21, and Y22 to illustrate the simulation processes that applies to more complex real world devices. 1247: 36:
programs. Electronics simulation software engages its users by integrating them into the learning experience. These kinds of interactions actively engage learners to analyze,
1544: 213:
and circuit simulators often do not take these variations into account. These variations can be small, but taken together, they can change the output of a chip significantly.
769: 151:
can be driven from one integrated schematic. All the digital models in mixed-mode simulators provide accurate specification of propagation time and rise/fall time delays.
723: 1633: 228:, or Y matrices. The technique involves modeling the individual linear components as an N port admittance matrix, inserting the component Y matrix into a circuits 1734: 143:
electronics circuit simulators, popular simulators often include both analog and event-driven digital simulation capabilities, and are known as mixed-mode or
980: 576:
Each element Y parameter is inserted into the nodal admittance matrix by summing in them into the nodes they are attached to following the rules below.
60:
relies heavily on simulation. The most well known analog simulator is SPICE. Probably the best known digital simulators are those based on
1409: 414:
Elements connected to node 0, the ground node, do not need their respective Y12 or Y21 calculated, and are shown as "n/a" in the table.
1585: 1869: 1548: 236:, converting the final Y matrix to an S or Z matrix as needed, and extracting desired measurements from the Y, Z, and/or S matrix. 128: 1214:
Since all simulation outputs conform to the expected results, the Chebyshev filter example simulation is confirmed to be correct.
1600: 1404: 1864: 1630: 1211:
band |S12| falling off at 1GHz, and an equi-ripple |S12| at the expected peak values of 20log10(.4535...) = -6.86825 dB.
1694:
Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems. PEDS'99 (Cat. No.99TH8475)
248:
and subsequent impedance and frequency scaling produces the elements shown in the table and Micro-cap schematic below.
918: 1808: 1778: 1744: 1709: 244:
A fifth order, 50 ohm, Chebyshev filter with 1dB of pass band ripple and cutoff frequency of 1GHz designed using the
206: 210: 588:
Y22 is summed into the m x m node in the diagonal, where m is the node that the second pin, pin 2, is attached to.
580:
Y11 is summed into the n x n node in the diagonal, where n is the node that the first pin, pin 1, is attached to.
144: 56:
are impractical, and probing the behavior of internal signals is extremely difficult. Therefore, almost all
216:
Temperature variation can also be modeled to simulate the circuit's performance through temperature ranges.
1824: 1773:. Oxford, London, Edinburgh, New York, Toronto, Paris, Braunschweig: Pergamon Press, Ltd. pp. 45–58. 1344:{\displaystyle {\frac {V_{i}}{V_{j}}}={\frac {S_{ij}}{2}}{\sqrt {\frac {R_{j}}{R_{i}}}},{\text{ }}i\neq j} 925: 1414: 245: 921:
with the port impedance as the characteristic impedance (or characteristic admittance) for each node.
1840: 1803:. 610 Washington Street, Dedham, Massachusetts, US: Artech House, Inc. (published 1985). p. 44. 598:
The table below shows the Chebyshev element 2x2 Y parameters summed in at the appropriate locations.
191: 57: 232:, installing port terminations at nodes that contain ports, eliminating ports without nodes though 728: 1651:"A new algorithm for simulation of power electronic systems using piecewise-linear device models" 1429: 229: 33: 1849: 29: 1240:
Since the example above simulates S parameters, another conversion is necessary to obtain the
696: 1845: 1469: 865:
Since ports are only attached to node 1 and node 4, nodes 2 and 3 need to be removed through
570: 120: 1768: 1369: 1662: 1364: 924:
Simulated S parameters also allow for useful post simulation processing for things such as
40:, organize, and evaluate content and result in learners constructing their own knowledge. 8: 1581: 45: 1666: 1568: 1818: 1798: 1715: 771:
for capacitors are sufficient. The numerical conversion are shown in the table below.
164: 20: 1607: 1804: 1774: 1740: 1719: 1705: 1374: 1241: 566: 560: 225: 195: 187: 175: 159:
greatly reduced for circuits that use event-driven models in place of analog models.
124: 92: 1066:{\displaystyle |S_{ij}|={\sqrt {S_{ij{\text{ real}}}^{2}+S_{ij{\text{ imag}}}^{2}}}} 111:, user defined models (such as controlled current and voltage sources, or models in 1697: 1670: 1494: 179: 83: 1637: 1202: 148: 37: 1514: 866: 233: 1689: 1650: 1858: 1701: 1484: 1394: 168: 140: 1509: 1434: 75: 108: 1800:
Microwave Filters, Impudence-Matching Networks, and Coupling Structures
194:
algorithms. These algorithms use an analog (linear) simulation until a
53: 1674: 1479: 1454: 251: 155: 147:
simulators if they can simulate both simultaneously. An entire mixed
112: 100: 49: 1690:"PLECS-piece-wise linear electrical circuit simulation for Simulink" 1459: 116: 104: 96: 87: 25: 561:
Inserting the 2 port Y parameters into the nodal admittance matrix
1545:"Disadvantages and Advantages of Simulations in Online Education" 1464: 1449: 1439: 1389: 61: 1499: 1444: 1424: 71: 28:
and universities use this type of software for the teaching of
1569:
Mengue and Vignat, Entry in the University of Marne, at Vallee
1232:
50 ohms would model an ideal source with sufficient accuracy.
224:
A common method of simulating linear circuits systems is with
1631:
L. Walken and M. Bruckner, Event-Driven Multimodal Technology
1524: 1519: 1504: 1474: 687: 418:
Table of Chebyshev element Y parameters at 1GHz to simulate
1489: 1384: 65: 1797:
Matthaei, George L.; Young, Leo; Jones, E. M. T. (1984).
174:
Exact representations are used mainly in the analysis of
932:
Table of S parameters with 50 ohm terminations at 1GHz
123:(PCB) design requires specific models as well, such as 912: 1250: 1226: 983: 873:
Table of Kron Reduced numerical Y parameters at 1GHz
731: 699: 584:
If the second node is not 0, that is, not a ground:
219: 1235: 405: 1796: 1343: 1130:| = 1 applies at all frequencies, including 1GHz. 1065: 763: 717: 239: 1648: 1856: 1217: 1688:Allmeling, J.H.; Hammer, W.P. (July 13, 1999). 1687: 1601:"Entry in the Universidade de Aveiro, Portugal" 1077:S parameters with 50 ohm terminations at 1GHz 131:models for driving and receiving electronics. 1649:Pejovic, P.; Maksimovic, D. (May 13, 1995). 1197: 1410:List of free electronics circuit simulators 725:for inductors and Y11 = Y22 = -Y12 = -Y21 = 186:Another type of simulation used mainly for 1841:WCCA Simple Comparing of different Methods 860: 594:Y21 is summed into the m x n node location 591:Y12 is summed into the n x m node location 1598: 971: 688:Nodal admittance matrix numerical entries 95:such as BSIM, generic components such as 1766: 1201: 775:Table of numerical Y parameters at 1GHz 260:Table of Chebyshev elements to simulate 250: 86:, a simulation engine, and an on-screen 82:Some electronics simulators integrate a 70: 1696:. Vol. 1. pp. 355–360 vol.1. 1405:List of electrical engineering software 1244:from S parameters. The conversion is, 255:Chebyshev filter in Micro-cap schematic 1857: 1732: 1655:IEEE Transactions on Power Electronics 1792: 1790: 1582:"Entry in the University of Florida" 1579: 1116: 1770:Basic Matrix Analysis and Synthesis 1206:Chebyshev filter example simulation 913:Converting to an S parameter matrix 13: 1787: 1227:Simulating zero resistance sources 1134:Simulation validity Tests at 1GHz 14: 1881: 1834: 220:Simulation from admittance matrix 1870:Simulation programming languages 1588:from the original on 2000-05-19. 1236:Simulating the transfer function 919:Y matrix to S matrix conversions 406:Modeling the 2 port Y parameters 78:electronics simulation software. 240:Simple Chebyshev filter example 201: 1760: 1726: 1681: 1642: 1624: 1592: 1573: 1562: 1537: 1003: 985: 758: 743: 1: 1846:Electronic circuit simulation 1531: 1218:Simulating unterminated nodes 602:Table of Y parameter entries 17:Electronic circuit simulation 1865:Electronic design automation 764:{\displaystyle -j/(2\pi fC)} 7: 1354: 926:group delay and phase delay 167:, and finally, with inline 10: 1886: 1415:Comparison of EDA software 1188:0.45351050+0.89125104 = 1 1733:Ohnari, Mikihiko (1998). 1198:Full frequency simulation 209:occur when the design is 139:While there are strictly 1823:: CS1 maint: location ( 1722:– via IEEE Xplore. 1702:10.1109/PEDS.1999.794588 1677:– via IEEE Xplore. 718:{\displaystyle j2\pi fL} 246:Chebyshev Cauar topology 134: 1599:Pedro, J; Carvalho, N. 1430:Circuit design language 861:Removing internal nodes 230:nodal admittance matrix 34:electronics engineering 1850:Open Directory Project 1736:Simulation engineering 1345: 1207: 1067: 972:S parameter magnitudes 965:-0.356328 + j0.280539 951:-0.356328 + j0.280539 765: 719: 571:operational amplifiers 256: 79: 30:electronics technician 1767:Zelinger, G. (1966). 1470:NL5 Circuit Simulator 1346: 1205: 1068: 962:0.551322 + j0.700266 954:0.551322 + j0.700266 766: 720: 663:L2_Y22+C2_Y11+L3_Y11 645:L1_Y22+C1_Y11+L2_Y11 254: 121:Printed circuit board 74: 1365:Lumped element model 1248: 1166:(0.89125104) = -1dB 981: 729: 697: 1667:1995ITPE...10..340P 1141:required condition 1135: 1078: 1060: 1034: 933: 874: 776: 603: 426:admittance at 1GHz 419: 261: 226:admittance matrices 127:for the traces and 46:integrated circuits 21:mathematical models 1636:2007-05-05 at the 1370:System isomorphism 1341: 1208: 1133: 1076: 1063: 1038: 1012: 931: 872: 774: 761: 715: 601: 567:transmission lines 417: 259: 257: 207:Process variations 165:integrated circuit 125:transmission lines 80: 1675:10.1109/63.388000 1375:Transistor models 1330: 1322: 1321: 1296: 1273: 1242:transfer function 1195: 1194: 1117:Check the results 1114: 1113: 1061: 1052: 1026: 969: 968: 910: 909: 858: 857: 685: 684: 558: 557: 432:Y12, Y21 at 1GHz 429:Y11, Y22 at 1GHz 403: 402: 276:50 ohms and 1GHz 188:power electronics 176:transmission line 154:The event-driven 93:transistor models 1877: 1829: 1828: 1822: 1814: 1794: 1785: 1784: 1764: 1758: 1757: 1755: 1753: 1730: 1724: 1723: 1685: 1679: 1678: 1646: 1640: 1628: 1622: 1621: 1619: 1618: 1612: 1606:. Archived from 1605: 1596: 1590: 1589: 1577: 1571: 1566: 1560: 1559: 1557: 1556: 1547:. Archived from 1541: 1350: 1348: 1347: 1342: 1331: 1328: 1323: 1320: 1319: 1310: 1309: 1300: 1299: 1297: 1292: 1291: 1279: 1274: 1272: 1271: 1262: 1261: 1252: 1136: 1132: 1079: 1075: 1072: 1070: 1069: 1064: 1062: 1059: 1054: 1053: 1050: 1033: 1028: 1027: 1024: 1011: 1006: 1001: 1000: 988: 934: 930: 875: 871: 777: 773: 770: 768: 767: 762: 742: 724: 722: 721: 716: 604: 600: 420: 416: 262: 258: 196:power electronic 192:piecewise linear 180:signal integrity 84:schematic editor 52:) is expensive, 1885: 1884: 1880: 1879: 1878: 1876: 1875: 1874: 1855: 1854: 1837: 1832: 1816: 1815: 1811: 1795: 1788: 1781: 1765: 1761: 1751: 1749: 1747: 1731: 1727: 1712: 1686: 1682: 1647: 1643: 1638:Wayback Machine 1629: 1625: 1616: 1614: 1610: 1603: 1597: 1593: 1578: 1574: 1567: 1563: 1554: 1552: 1543: 1542: 1538: 1534: 1529: 1357: 1327: 1315: 1311: 1305: 1301: 1298: 1284: 1280: 1278: 1267: 1263: 1257: 1253: 1251: 1249: 1246: 1245: 1238: 1229: 1220: 1200: 1184: 1180: 1165: 1159:(|S12|) = -1dB 1158: 1144:actual results 1129: 1125: 1119: 1055: 1049: 1042: 1029: 1023: 1016: 1010: 1002: 993: 989: 984: 982: 979: 978: 974: 915: 863: 738: 730: 727: 726: 698: 695: 694: 690: 563: 531:-J0.0093682013 528:-J0.0093682013 497:-J0.0066646164 494:-J0.0066646164 463:-J0.0093682013 460:-J0.0093682013 408: 242: 222: 204: 149:signal analysis 137: 48:, the tooling ( 12: 11: 5: 1883: 1873: 1872: 1867: 1853: 1852: 1843: 1836: 1835:External links 1833: 1831: 1830: 1809: 1786: 1779: 1759: 1745: 1725: 1710: 1680: 1661:(3): 340–348. 1641: 1623: 1591: 1572: 1561: 1535: 1533: 1530: 1528: 1527: 1522: 1517: 1512: 1507: 1502: 1497: 1492: 1487: 1482: 1477: 1472: 1467: 1462: 1457: 1452: 1447: 1442: 1437: 1432: 1427: 1418: 1417: 1412: 1407: 1398: 1397: 1392: 1387: 1378: 1377: 1372: 1367: 1358: 1356: 1353: 1340: 1337: 1334: 1326: 1318: 1314: 1308: 1304: 1295: 1290: 1287: 1283: 1277: 1270: 1266: 1260: 1256: 1237: 1234: 1228: 1225: 1219: 1216: 1199: 1196: 1193: 1192: 1189: 1186: 1182: 1178: 1175: 1171: 1170: 1167: 1163: 1160: 1156: 1153: 1149: 1148: 1145: 1142: 1139: 1127: 1123: 1118: 1115: 1112: 1111: 1108: 1105: 1101: 1100: 1097: 1094: 1090: 1089: 1086: 1083: 1058: 1048: 1045: 1041: 1037: 1032: 1022: 1019: 1015: 1009: 1005: 999: 996: 992: 987: 973: 970: 967: 966: 963: 960: 956: 955: 952: 949: 945: 944: 941: 938: 914: 911: 908: 907: 904: 901: 897: 896: 893: 890: 886: 885: 882: 879: 867:Kron reduction 862: 859: 856: 855: 852: 849: 847: 845: 841: 840: 837: 834: 831: 829: 825: 824: 822: 819: 816: 813: 809: 808: 806: 804: 801: 798: 794: 793: 790: 787: 784: 781: 760: 757: 754: 751: 748: 745: 741: 737: 734: 714: 711: 708: 705: 702: 689: 686: 683: 682: 679: 676: 674: 672: 668: 667: 664: 661: 658: 656: 652: 651: 649: 646: 643: 640: 636: 635: 633: 631: 628: 625: 621: 620: 617: 614: 611: 608: 596: 595: 592: 589: 582: 581: 562: 559: 556: 555: 552: 549: 546: 543: 539: 538: 535: 534:J0.0093682013 532: 529: 526: 522: 521: 518: 515: 512: 509: 505: 504: 501: 500:J0.0066646164 498: 495: 492: 488: 487: 484: 481: 478: 475: 471: 470: 467: 466:J0.0093682013 464: 461: 458: 454: 453: 450: 447: 444: 441: 437: 436: 433: 430: 427: 424: 407: 404: 401: 400: 397: 394: 391: 388: 384: 383: 380: 379:1.6988847E-08 377: 374: 371: 367: 366: 363: 362:3.4731024E-12 360: 357: 354: 350: 349: 346: 345:2.3880586E-08 343: 340: 337: 333: 332: 329: 328:3.4731024E-12 326: 323: 320: 316: 315: 312: 311:1.6988847E-08 309: 306: 303: 299: 298: 295: 292: 289: 286: 282: 281: 278: 272: 269: 266: 241: 238: 234:Kron reduction 221: 218: 203: 200: 136: 133: 9: 6: 4: 3: 2: 1882: 1871: 1868: 1866: 1863: 1862: 1860: 1851: 1847: 1844: 1842: 1839: 1838: 1826: 1820: 1812: 1810:0-89006-099-1 1806: 1802: 1801: 1793: 1791: 1782: 1780:9781483199061 1776: 1772: 1771: 1763: 1748: 1746:9784274902178 1742: 1738: 1737: 1729: 1721: 1717: 1713: 1711:0-7803-5769-8 1707: 1703: 1699: 1695: 1691: 1684: 1676: 1672: 1668: 1664: 1660: 1656: 1652: 1645: 1639: 1635: 1632: 1627: 1613:on 2012-02-07 1609: 1602: 1595: 1587: 1583: 1580:Fishwick, P. 1576: 1570: 1565: 1551:on 2010-12-16 1550: 1546: 1540: 1536: 1526: 1523: 1521: 1518: 1516: 1513: 1511: 1508: 1506: 1503: 1501: 1498: 1496: 1493: 1491: 1488: 1486: 1483: 1481: 1478: 1476: 1473: 1471: 1468: 1466: 1463: 1461: 1458: 1456: 1453: 1451: 1448: 1446: 1443: 1441: 1438: 1436: 1433: 1431: 1428: 1426: 1423: 1422: 1421: 1416: 1413: 1411: 1408: 1406: 1403: 1402: 1401: 1396: 1395:SystemVerilog 1393: 1391: 1388: 1386: 1383: 1382: 1381: 1376: 1373: 1371: 1368: 1366: 1363: 1362: 1361: 1352: 1338: 1335: 1332: 1324: 1316: 1312: 1306: 1302: 1293: 1288: 1285: 1281: 1275: 1268: 1264: 1258: 1254: 1243: 1233: 1224: 1215: 1212: 1204: 1190: 1187: 1176: 1173: 1172: 1168: 1161: 1154: 1151: 1150: 1146: 1143: 1140: 1138: 1137: 1131: 1109: 1106: 1103: 1102: 1098: 1095: 1092: 1091: 1087: 1084: 1081: 1080: 1074: 1056: 1046: 1043: 1039: 1035: 1030: 1020: 1017: 1013: 1007: 997: 994: 990: 964: 961: 958: 957: 953: 950: 947: 946: 942: 939: 936: 935: 929: 927: 922: 920: 905: 902: 899: 898: 894: 891: 888: 887: 883: 880: 877: 876: 870: 868: 853: 850: 848: 846: 843: 842: 838: 835: 832: 830: 827: 826: 823: 820: 817: 814: 811: 810: 807: 805: 802: 799: 796: 795: 791: 788: 785: 782: 779: 778: 772: 755: 752: 749: 746: 739: 735: 732: 712: 709: 706: 703: 700: 680: 677: 675: 673: 670: 669: 665: 662: 659: 657: 654: 653: 650: 647: 644: 641: 638: 637: 634: 632: 629: 626: 623: 622: 618: 615: 612: 609: 606: 605: 599: 593: 590: 587: 586: 585: 579: 578: 577: 574: 572: 568: 553: 550: 547: 544: 541: 540: 536: 533: 530: 527: 524: 523: 519: 516: 514:j0.021822146 513: 511:j0.021822146 510: 507: 506: 502: 499: 496: 493: 490: 489: 485: 482: 480:j0.021822146 479: 477:j0.021822146 476: 473: 472: 468: 465: 462: 459: 456: 455: 451: 448: 445: 442: 439: 438: 434: 431: 428: 425: 422: 421: 415: 412: 398: 395: 392: 389: 386: 385: 381: 378: 375: 372: 369: 368: 364: 361: 358: 355: 352: 351: 347: 344: 341: 338: 335: 334: 330: 327: 324: 321: 318: 317: 313: 310: 307: 304: 301: 300: 296: 293: 290: 287: 284: 283: 279: 277: 273: 270: 267: 264: 263: 253: 249: 247: 237: 235: 231: 227: 217: 214: 212: 208: 199: 197: 193: 189: 184: 181: 177: 172: 171:expressions. 170: 169:Boolean logic 166: 160: 157: 152: 150: 146: 142: 132: 130: 126: 122: 118: 114: 110: 106: 102: 98: 94: 89: 85: 77: 73: 69: 67: 63: 59: 55: 51: 47: 41: 39: 35: 31: 27: 22: 18: 1799: 1769: 1762: 1750:. Retrieved 1735: 1728: 1693: 1683: 1658: 1654: 1644: 1626: 1615:. Retrieved 1608:the original 1594: 1575: 1564: 1553:. Retrieved 1549:the original 1539: 1510:TARGET 3001! 1435:CircuitLogix 1419: 1399: 1379: 1359: 1239: 1230: 1221: 1213: 1209: 1120: 975: 923: 916: 903:-j0.0536574 895:-j0.0536574 864: 854:-j0.0093682 836:j0.00578933 833:j0.00666462 821:j0.00666462 818:j0.00578933 800:-j0.0093682 691: 597: 583: 575: 564: 413: 409: 275: 243: 223: 215: 205: 202:Complexities 185: 173: 161: 153: 145:mixed-signal 138: 109:transformers 81: 76:CircuitLogix 42: 16: 15: 1752:October 12, 1110:0.45351050 1107:0.89125104 1099:0.89125104 1096:0.45351050 906:j0.0372422 892:j0.0372422 274:scaled for 54:breadboards 1859:Categories 1739:. Ohmsha. 1617:2007-04-27 1555:2011-03-11 1532:References 1420:Software: 1360:Concepts: 1051: imag 1025: real 851:0.0093682 839:0.0093682 815:0.0093682 803:0.0093682 373:2.1348815 359:capacitor 356:1.0911073 339:3.0009229 325:capacitor 322:1.0911073 305:2.1348815 211:fabricated 190:represent 101:capacitors 50:photomasks 38:synthesize 1819:cite book 1720:111196369 1480:PowerEsim 1455:Micro-Cap 1336:≠ 750:π 733:− 707:π 376:inductor 342:inductor 308:inductor 156:algorithm 113:Verilog-A 105:inductors 97:resistors 58:IC design 1634:Archived 1586:Archived 1460:Multisim 1355:See also 423:element 268:g-value 265:element 117:VHDL-AMS 88:waveform 26:colleges 1848:at the 1663:Bibcode 1465:ngspice 1450:LTspice 1440:EasyEDA 1400:Lists: 1390:Verilog 1147:Status 681:L3_Y22 678:L3_Y21 666:L3_Y12 660:L2_Y21 648:L2_Y12 642:L1_Y21 630:L1_Y12 627:L1_Y11 62:Verilog 1807:  1777:  1743:  1718:  1708:  1500:SapWin 1445:Gnucap 1425:Altium 1329:  1191:Valid 1185:| = 1 1169:Valid 435:nodes 280:nodes 141:analog 1716:S2CID 1611:(PDF) 1604:(PDF) 1525:Zuken 1520:Yenka 1505:SPICE 1495:Saber 1475:PLECS 1380:HDL: 1162:20log 1155:20log 1082:node 937:node 878:node 780:node 607:node 537:3, 4 520:3, 0 503:2, 3 486:2, 0 469:1, 2 393:port 382:3, 4 365:3, 0 348:2, 3 331:2, 0 314:1, 2 291:port 271:Type 135:Types 19:uses 1825:link 1805:ISBN 1775:ISBN 1754:2022 1741:ISBN 1706:ISBN 1515:TINA 1490:Qucs 1485:PSIM 1385:VHDL 1181:|+|S 1126:|+|S 551:n/a 548:n/a 545:n/a 517:n/a 483:n/a 449:n/a 446:n/a 443:n/a 178:and 129:IBIS 119:). 107:and 66:VHDL 64:and 32:and 1698:doi 1671:doi 542:P2 525:L3 508:C2 491:L2 474:C1 457:L1 440:P1 396:50 387:P2 370:L3 353:C2 336:L2 319:C1 302:L1 294:50 285:P1 115:or 1861:: 1821:}} 1817:{{ 1789:^ 1714:. 1704:. 1692:. 1669:. 1659:10 1657:. 1653:. 1584:. 1351:. 1183:12 1179:12 1177:|S 1174:2 1164:10 1157:10 1152:1 1128:12 1124:11 1122:|S 1104:2 1093:1 1088:2 1085:1 1073:. 959:2 948:1 943:2 940:1 928:. 900:2 889:1 884:2 881:1 844:4 828:3 812:2 797:1 792:4 789:3 786:2 783:1 671:5 655:3 639:2 624:1 619:4 616:3 613:2 610:1 554:4 452:1 399:4 390:1 297:1 288:1 103:, 99:, 68:. 1827:) 1813:. 1783:. 1756:. 1700:: 1673:: 1665:: 1620:. 1558:. 1339:j 1333:i 1325:, 1317:i 1313:R 1307:j 1303:R 1294:2 1289:j 1286:i 1282:S 1276:= 1269:j 1265:V 1259:i 1255:V 1057:2 1047:j 1044:i 1040:S 1036:+ 1031:2 1021:j 1018:i 1014:S 1008:= 1004:| 998:j 995:i 991:S 986:| 759:) 756:C 753:f 747:2 744:( 740:/ 736:j 713:L 710:f 704:2 701:j

Index

mathematical models
colleges
electronics technician
electronics engineering
synthesize
integrated circuits
photomasks
breadboards
IC design
Verilog
VHDL

CircuitLogix
schematic editor
waveform
transistor models
resistors
capacitors
inductors
transformers
Verilog-A
VHDL-AMS
Printed circuit board
transmission lines
IBIS
analog
mixed-signal
signal analysis
algorithm
integrated circuit

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.