Knowledge

Theoretical plate

Source đź“ť

310:
There is a very important distinction between the theoretical plate terminology used in discussing conventional distillation trays and the theoretical plate terminology used in the discussions below of packed bed distillation or absorption or in chromatography or other applications. The theoretical
242:
An example of a very simple tray is a perforated tray. The desired contacting between vapor and liquid occurs as the vapor, flowing upwards through the perforations, comes into contact with the liquid flowing downwards through the perforations. In current modern practice, as shown in the adjacent
230:
The trays or plates used in industrial distillation columns are fabricated of circular steel plates and usually installed inside the column at intervals of about 60 to 75 cm (24 to 30 inches) up the height of the column. That spacing is chosen primarily for ease of installation and ease of
307:, needed in the separating column. The final design choice of the number of trays to be installed in an industrial distillation column is then selected based upon an economic balance between the cost of additional trays and the cost of using a higher reflux rate. 51:. The performance of many separation processes depends on having series of equilibrium stages and is enhanced by providing more such stages. In other words, having more theoretical plates increases the efficiency of the separation process be it either a 349:
arises from the same concept of equilibrium stages as does the theoretical plate and is numerically equal to the absorption bed length divided by the number of theoretical plates in the absorption bed (and in practice is measured in this way).
91:
or laboratory-scale glassware distillation columns constitutes a "plate" or "tray". Since an actual, physical plate can never be a 100% efficient equilibrium stage, the number of actual plates is more than the required theoretical plates.
257:, required in the process should be determined, taking into account a likely range of feedstock composition and the desired degree of separation of the components in the output fractions. In industrial continuous fractionating columns, 311:
plate in conventional distillation trays has no "height". It is simply a hypothetical equilibrium stage. However, the theoretical plate in packed beds, chromatography and other applications is defined as having a height.
222:
So-called bubble-cap or valve-cap trays are examples of the vapor and liquid contact devices used in industrial distillation columns. Another example of vapor and liquid contact devices are the spikes in laboratory
243:
diagram, better contacting is achieved by installing bubble-caps or valve caps at each perforation to promote the formation of vapor bubbles flowing through a thin layer of liquid maintained by a
540: 402: 140: 235: 723:
The concept of the "height equivalent theoretical plate" (H.E.T.P.) was coined in 1922 by William A. Peters, Jr. of the Dupont Corporation of Wilmington, Delaware, USA. See:
268:
for each of the succession of equilibrium stages until the desired end product composition is achieved. The calculation process requires the availability of a great deal of
87:
processes has been discussed in many reference texts. Any physical device that provides good contact between the vapor and liquid phases present in industrial-scale
432: 197: 170: 217: 286:
used. Using more reflux decreases the number of plates required and using less reflux increases the number of plates required. Hence, the calculation of
250:
To design a distillation unit or a similar chemical process, the number of theoretical trays or plates (that is, hypothetical equilibrium stages),
862: 834: 690: 965: 75:
The concept of theoretical plates and trays or equilibrium stages is used in the design of many different types of separation.
631: 264:
is determined by starting at either the top or bottom of the column and calculating material balances, heat balances and
494: 356: 35:
is a hypothetical zone or stage in which two phases, such as the liquid and vapor phases of a substance, establish an
855: 699: 667: 474: 17: 1056: 728: 98: 1152: 1142: 1114: 1018: 848: 269: 36: 927: 272:
data for the components present in the distillation feed, and the calculation procedure is very complex.
1034: 300:
is then divided by the tray efficiency, E, to determine the actual number of trays or physical plates,
942: 910: 558: 470: 1147: 1083: 1078: 1039: 599: 453:. Liquids tend to wet the surface of the packing and the vapors contact the wetted surface, where 1157: 837:
by Ivar J. Halvorsen and Sigurd Skogestad, Norwegian University of Science and Technology, Norway
594: 584: 579: 1102: 992: 488:
The same equation applies in chromatography processes as for the packed bed processes, namely:
331: 315: 56: 1162: 1095: 1090: 1068: 1013: 920: 900: 977: 960: 871: 624:
Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design
546: 410: 318:
known as Van Winkle's Correlation can be used to predict the Murphree plate efficiency for
175: 148: 88: 8: 1073: 1051: 937: 895: 658: 319: 1061: 952: 885: 790: 765: 574: 557:
The concept of theoretical plates or trays applies to other processes as well, such as
450: 202: 32: 485:
provides a definition of the number of theoretical plates in a chromatography column.
1107: 987: 915: 905: 795: 695: 663: 627: 265: 445:
The material in packed beds can either be random dumped packing (1-3" wide) such as
1046: 932: 812: 785: 777: 740: 1008: 589: 1119: 828: 466: 224: 60: 338:
for vapor and liquid contacting have an equivalent concept referred to as the
1136: 972: 454: 799: 446: 84: 52: 549:. In capillary column chromatography HETP is given by the Golay equation. 545:
In packed column chromatography, the HETP may also be calculated with the
744: 982: 562: 335: 282:
required to achieve a given separation also depends upon the amount of
64: 39:
with each other. Such equilibrium stages may also be referred to as an
840: 781: 890: 482: 434:
is the number of theoretical plates (also called the "plate count"),
714:
Chemical Engineering Design, by Gavin Tawler and Ray Sinnott, 2013.
234: 238:
Typical bubble cap trays used in industrial distillation columns
283: 687: 478: 244: 325: 766:"A new form of chromatogram employing two liquid phases" 621: 813:
Definition of the number of plates (in chromatography)
729:"The efficiency and capacity of fractionating columns" 497: 413: 359: 205: 178: 151: 101: 733:
The Journal of Industrial and Engineering Chemistry
465:The theoretical plate concept was also adapted for 172:is the number of actual, physical plates or trays, 535:{\displaystyle N_{t}={\frac {H}{\mathrm {HETP} }}} 534: 426: 397:{\displaystyle N_{t}={\frac {H}{\mathrm {HETP} }}} 396: 211: 191: 164: 134: 442:is the height equivalent to a theoretical plate. 199:is the number of theoretical plates or trays and 1134: 344:height equivalent to a theoretical plate (HETP). 83:The concept of theoretical plates in designing 293:is usually repeated at various reflux rates. 856: 688:Perry, Robert H. & Green, Don W. (1984). 655: 460: 763: 863: 849: 275:In an industrial distillation column, the 231:access for future repair or maintenance. 789: 651: 649: 647: 645: 643: 617: 615: 233: 135:{\displaystyle N_{a}={\frac {N_{t}}{E}}} 870: 683: 681: 679: 622:Gavin Towler & R K Sinnott (2007). 326:Distillation and absorption packed beds 78: 14: 1135: 831:by Ming Tham, Newcastle University, UK 764:Martin, A.J.P.; Synge, R.L.M. (1941). 726: 844: 640: 612: 552: 752:(Martin & Synge, 1941), p. 1359. 691:Perry's Chemical Engineers' Handbook 676: 24: 526: 523: 520: 517: 388: 385: 382: 379: 25: 1174: 822: 219:is the plate or tray efficiency. 266:equilibrium flash vaporizations 70: 806: 757: 717: 708: 13: 1: 829:Distillation, An Introduction 694:(6th ed.). McGraw-Hill. 662:(1st ed.). McGraw-Hill. 605: 225:Vigreux fractionating columns 438:is the total bed height and 7: 568: 334:separation processes using 322:separating binary systems. 10: 1179: 1027: 1001: 951: 943:Thermodynamic equilibrium 878: 727:Peters, W.A. Jr. (1922). 626:. Butterworth-Heinemann. 559:capillary electrophoresis 461:Chromatographic processes 1096:Distribution coefficient 1040:Hammett acidity function 1019:Liquid–liquid extraction 928:Le Chatelier's principle 270:vapor–liquid equilibrium 595:Fractional distillation 585:Extractive distillation 580:Continuous distillation 1057:Coordination complexes 993:Thermodynamic activity 536: 451:structured sheet metal 428: 398: 239: 213: 193: 166: 136: 1069:Dissociation constant 1014:Equilibrium unfolding 901:Equilibrium chemistry 656:Kister, H.Z. (1992). 537: 429: 427:{\displaystyle N_{t}} 399: 237: 214: 194: 192:{\displaystyle N_{t}} 167: 165:{\displaystyle N_{a}} 137: 1153:Chemical engineering 1143:Separation processes 978:Predominance diagram 961:Equilibrium constant 600:McCabe–Thiele method 547:Van Deemter equation 495: 411: 357: 320:distillation columns 203: 176: 149: 99: 89:distillation columns 79:Distillation columns 67:or similar process. 33:separation processes 1052:Binding selectivity 1028:Specific equilibria 938:Reversible reaction 896:Dynamic equilibrium 872:Chemical equilibria 835:Distillation Theory 770:Biochemical Journal 745:10.1021/ie50150a002 659:Distillation Design 1062:Macrocyclic effect 886:Chemical stability 575:Batch distillation 561:and some types of 553:Other applications 532: 424: 394: 330:Distillation and 240: 209: 189: 162: 132: 1130: 1129: 1108:Common-ion effect 1035:Acid dissociation 988:Reaction quotient 906:Equilibrium stage 782:10.1042/bj0351358 776:(12): 1358–1368. 633:978-0-7506-8423-1 530: 392: 316:empirical formula 212:{\displaystyle E} 130: 41:equilibrium stage 29:theoretical plate 18:Equilibrium stage 16:(Redirected from 1170: 1047:Binding constant 933:Phase separation 865: 858: 851: 842: 841: 816: 810: 804: 803: 793: 761: 755: 748: 721: 715: 712: 706: 705: 685: 674: 673: 653: 638: 637: 619: 541: 539: 538: 533: 531: 529: 512: 507: 506: 441: 437: 433: 431: 430: 425: 423: 422: 403: 401: 400: 395: 393: 391: 374: 369: 368: 306: 299: 292: 281: 263: 256: 218: 216: 215: 210: 198: 196: 195: 190: 188: 187: 171: 169: 168: 163: 161: 160: 141: 139: 138: 133: 131: 126: 125: 116: 111: 110: 49:theoretical tray 21: 1178: 1177: 1173: 1172: 1171: 1169: 1168: 1167: 1148:Unit operations 1133: 1132: 1131: 1126: 1079:Self-ionization 1023: 1009:Buffer solution 997: 947: 874: 869: 825: 820: 819: 815:IUPAC Gold Book 811: 807: 762: 758: 722: 718: 713: 709: 702: 686: 677: 670: 654: 641: 634: 620: 613: 608: 590:Fenske equation 571: 555: 516: 511: 502: 498: 496: 493: 492: 467:chromatographic 463: 439: 435: 418: 414: 412: 409: 408: 378: 373: 364: 360: 358: 355: 354: 328: 305: 301: 298: 294: 291: 287: 280: 276: 262: 258: 255: 251: 204: 201: 200: 183: 179: 177: 174: 173: 156: 152: 150: 147: 146: 121: 117: 115: 106: 102: 100: 97: 96: 81: 73: 61:chromatographic 23: 22: 15: 12: 11: 5: 1176: 1166: 1165: 1160: 1158:Chromatography 1155: 1150: 1145: 1128: 1127: 1125: 1124: 1123: 1122: 1112: 1111: 1110: 1100: 1099: 1098: 1088: 1087: 1086: 1076: 1071: 1066: 1065: 1064: 1054: 1049: 1044: 1043: 1042: 1031: 1029: 1025: 1024: 1022: 1021: 1016: 1011: 1005: 1003: 999: 998: 996: 995: 990: 985: 980: 975: 970: 969: 968: 957: 955: 949: 948: 946: 945: 940: 935: 930: 925: 924: 923: 918: 908: 903: 898: 893: 888: 882: 880: 876: 875: 868: 867: 860: 853: 845: 839: 838: 832: 824: 823:External links 821: 818: 817: 805: 756: 754: 753: 750: 739:(6): 476–479. 716: 707: 700: 675: 668: 639: 632: 610: 609: 607: 604: 603: 602: 597: 592: 587: 582: 577: 570: 567: 554: 551: 543: 542: 528: 525: 522: 519: 515: 510: 505: 501: 462: 459: 421: 417: 405: 404: 390: 387: 384: 381: 377: 372: 367: 363: 327: 324: 303: 296: 289: 278: 260: 253: 247:on each tray. 208: 186: 182: 159: 155: 143: 142: 129: 124: 120: 114: 109: 105: 80: 77: 72: 69: 9: 6: 4: 3: 2: 1175: 1164: 1161: 1159: 1156: 1154: 1151: 1149: 1146: 1144: 1141: 1140: 1138: 1121: 1118: 1117: 1116: 1113: 1109: 1106: 1105: 1104: 1101: 1097: 1094: 1093: 1092: 1089: 1085: 1082: 1081: 1080: 1077: 1075: 1072: 1070: 1067: 1063: 1060: 1059: 1058: 1055: 1053: 1050: 1048: 1045: 1041: 1038: 1037: 1036: 1033: 1032: 1030: 1026: 1020: 1017: 1015: 1012: 1010: 1007: 1006: 1004: 1000: 994: 991: 989: 986: 984: 981: 979: 976: 974: 973:Phase diagram 971: 967: 966:determination 964: 963: 962: 959: 958: 956: 954: 950: 944: 941: 939: 936: 934: 931: 929: 926: 922: 919: 917: 914: 913: 912: 909: 907: 904: 902: 899: 897: 894: 892: 889: 887: 884: 883: 881: 877: 873: 866: 861: 859: 854: 852: 847: 846: 843: 836: 833: 830: 827: 826: 814: 809: 801: 797: 792: 787: 783: 779: 775: 771: 767: 760: 751: 746: 742: 738: 734: 730: 725: 724: 720: 711: 703: 701:0-07-049479-7 697: 693: 692: 684: 682: 680: 671: 669:0-07-034909-6 665: 661: 660: 652: 650: 648: 646: 644: 635: 629: 625: 618: 616: 611: 601: 598: 596: 593: 591: 588: 586: 583: 581: 578: 576: 573: 572: 566: 564: 560: 550: 548: 513: 508: 503: 499: 491: 490: 489: 486: 484: 480: 476: 472: 469:processes by 468: 458: 456: 455:mass transfer 452: 448: 447:Raschig rings 443: 419: 415: 375: 370: 365: 361: 353: 352: 351: 348: 345: 341: 337: 333: 323: 321: 317: 312: 308: 285: 273: 271: 267: 248: 246: 236: 232: 228: 226: 220: 206: 184: 180: 157: 153: 127: 122: 118: 112: 107: 103: 95: 94: 93: 90: 86: 76: 68: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 19: 1163:Distillation 1115:Vapor–liquid 1002:Applications 808: 773: 769: 759: 736: 732: 719: 710: 689: 657: 623: 556: 544: 487: 464: 444: 406: 346: 343: 340:plate height 339: 329: 313: 309: 274: 249: 241: 229: 221: 144: 85:distillation 82: 74: 71:Applications 53:distillation 48: 44: 40: 28: 26: 1120:Henry's law 911:Free energy 749:See p. 476. 336:packed beds 45:ideal stage 37:equilibrium 1137:Categories 1103:Solubility 1074:Hydrolysis 983:Phase rule 606:References 563:adsorption 332:absorption 65:adsorption 57:absorption 1091:Partition 921:Helmholtz 891:Chelation 483:Gold Book 1084:of water 879:Concepts 800:16747422 569:See also 457:occurs. 31:in many 791:1265645 342:or the 47:, or a 953:Models 798:  788:  698:  666:  630:  477:. The 471:Martin 407:where 284:reflux 145:where 916:Gibbs 479:IUPAC 475:Synge 796:PMID 696:ISBN 664:ISBN 628:ISBN 473:and 440:HETP 347:HETP 314:The 245:weir 786:PMC 778:doi 741:doi 481:'s 449:or 1139:: 794:. 784:. 774:35 772:. 768:. 737:14 735:. 731:. 678:^ 642:^ 614:^ 565:. 227:. 63:, 59:, 55:, 43:, 27:A 864:e 857:t 850:v 802:. 780:: 747:. 743:: 704:. 672:. 636:. 527:P 524:T 521:E 518:H 514:H 509:= 504:t 500:N 436:H 420:t 416:N 389:P 386:T 383:E 380:H 376:H 371:= 366:t 362:N 304:a 302:N 297:t 295:N 290:t 288:N 279:t 277:N 261:t 259:N 254:t 252:N 207:E 185:t 181:N 158:a 154:N 128:E 123:t 119:N 113:= 108:a 104:N 20:)

Index

Equilibrium stage
separation processes
equilibrium
distillation
absorption
chromatographic
adsorption
distillation
distillation columns
Vigreux fractionating columns

weir
equilibrium flash vaporizations
vapor–liquid equilibrium
reflux
empirical formula
distillation columns
absorption
packed beds
Raschig rings
structured sheet metal
mass transfer
chromatographic
Martin
Synge
IUPAC
Gold Book
Van Deemter equation
capillary electrophoresis
adsorption

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑