Knowledge

Exponential stability

Source 📝

808: 954:
A step input in this case requires supporting the marble away from the bottom of the ladle, so that it cannot roll back. It will stay in the same position and will not, as would be the case if the system were only marginally stable or entirely unstable, continue to move away from the bottom of the
958:
It is important to note that in this example the system is not stable for all inputs. Give the marble a big enough push, and it will fall out of the ladle and fall, stopping only when it reaches the floor. For some systems, therefore, it is proper to state that a system is exponentially stable
951:. The marble will roll back and forth but eventually resettle in the bottom of the ladle. Drawing the horizontal position of the marble over time would give a gradually diminishing sinusoid rather like the blue curve in the image above. 794:
as input, then induced oscillations will die away and the system will return to its previous value. If oscillations do not die away, or the system does not return to its original output when an impulse is applied, the system is instead
777:
An exponentially stable LTI system is one that will not "blow up" (i.e., give an unbounded output) when given a finite input or non-zero initial condition. Moreover, if the system is given a fixed, finite input (i.e., a
946:
Imagine putting a marble in a ladle. It will settle itself into the lowest point of the ladle and, unless disturbed, will stay there. Now imagine giving the ball a push, which is an approximation to a Dirac
936: 869: 1046: 1441: 1446: 708: 1309: 449: 1436: 1039: 1096: 192: 1209: 323: 1032: 1253: 364: 1147: 254: 1431: 701: 272: 156: 17: 1341: 1356: 1137: 575: 229: 1018: 753:
centered on the origin of the complex plane. Systems that are not LTI are exponentially stable if their convergence is
1142: 1106: 874: 250: 202: 1204: 1116: 318: 237: 212: 1172: 694: 1487: 1086: 629: 182: 1243: 822: 354: 1258: 1101: 1091: 369: 197: 187: 1111: 1081: 644: 495: 398: 285: 207: 1346: 1216: 1177: 330: 245: 1553: 535: 403: 1182: 745:). A discrete-time input-to-output LTI system is exponentially stable if and only if the poles of its 1558: 1467: 1386: 506: 484: 1522: 1492: 649: 1381: 500: 408: 1391: 1361: 1351: 1248: 779: 738: 580: 570: 562: 518: 359: 982: 393: 1507: 1502: 1396: 1320: 1167: 1162: 1157: 1152: 1076: 1055: 741:
of input-to-output systems) with strictly negative real parts (i.e., in the left half of the
639: 624: 513: 456: 277: 33: 819:
of two similar systems. The green curve is the response of the system with impulse response
1401: 1325: 1294: 948: 938:. Although one response is oscillatory, both return to the original value of 0 over time. 791: 762: 525: 461: 434: 8: 1411: 1304: 1198: 557: 542: 443: 307: 146: 113: 104: 1532: 1371: 1366: 1289: 1121: 972: 796: 783: 552: 547: 430: 766: 758: 746: 726: 609: 388: 123: 664: 1517: 1497: 816: 807: 754: 674: 659: 1477: 1406: 614: 530: 57: 1482: 669: 1472: 1279: 977: 722: 634: 619: 425: 413: 132: 1547: 742: 1527: 1462: 1376: 654: 604: 490: 118: 1284: 1024: 750: 62: 1512: 734: 679: 1274: 790:
to a new final, steady-state value. If the system is instead given a
787: 420: 141: 84: 74: 1019:
Parameter estimation and asymptotic stability instochastic filtering
1314: 782:), then any resulting oscillations in the output will decay at an 1003:
Global Attractors Of Non-autonomous Dissipative Dynamical Systems
95: 90: 79: 802: 27:
Continuous-time linear system with only negative real parts
811:
The impulse responses of two exponentially stable systems
955:
ladle under this constant force equal to its weight.
877: 825: 930: 863: 1442:List of nonlinear ordinary differential equations 1545: 1447:List of nonlinear partial differential equations 931:{\displaystyle y(t)=e^{-{\frac {t}{5}}}\sin(t)} 1437:List of linear ordinary differential equations 1040: 702: 1021:, Anastasia Papavasiliou∗September 28, 2004 1054: 1047: 1033: 709: 695: 772: 864:{\displaystyle y(t)=e^{-{\frac {t}{5}}}} 806: 803:Example exponentially stable LTI systems 871:, while the blue represents the system 14: 1546: 1028: 941: 761:. Exponential stability is a form of 1432:List of named differential equations 157:List of named differential equations 1357:Method of undetermined coefficients 1138:Dependent and independent variables 230:Dependent and independent variables 24: 25: 1570: 1012: 815:The graph on the right shows the 1254:CarathĂ©odory's existence theorem 365:CarathĂ©odory's existence theorem 995: 961:over a certain range of inputs 925: 919: 887: 881: 835: 829: 733:if and only if the system has 452: / Integral solutions 13: 1: 988: 1082:Notation for differentiation 727:linear time-invariant system 496:Exponential response formula 242:Coupled / Decoupled 7: 1178:Exact differential equation 966: 786:, and the output will tend 10: 1575: 1488:JĂłzef Maria Hoene-WroƄski 1468:Gottfried Wilhelm Leibniz 1455: 1424: 1334: 1267: 1259:Cauchy–Kowalevski theorem 1236: 1229: 1191: 1130: 1069: 1062: 765:, valid for more general 630:JĂłzef Maria Hoene-WroƄski 576:Undetermined coefficients 485:Method of characteristics 370:Cauchy–Kowalevski theorem 1382:Finite difference method 1001:David N. Cheban (2004), 749:lie strictly within the 355:Picard–Lindelöf theorem 349:Existence and uniqueness 1362:Variation of parameters 1352:Separation of variables 1249:Peano existence theorem 1244:Picard–Lindelöf theorem 1131:Attributes of variables 581:Variation of parameters 571:Separation of variables 360:Peano existence theorem 1523:Carl David TolmĂ© Runge 1097:Differential-algebraic 1056:Differential equations 983:State space (controls) 932: 865: 812: 773:Practical consequences 650:Carl David TolmĂ© Runge 193:Differential-algebraic 34:Differential equations 1508:Augustin-Louis Cauchy 1503:Joseph-Louis Lagrange 1397:Finite element method 1387:Crank–Nicolson method 1321:Numerical integration 1300:Exponential stability 1192:Relation to processes 1077:Differential operator 933: 866: 810: 640:Augustin-Louis Cauchy 625:Joseph-Louis Lagrange 457:Numerical integration 439:Exponential stability 302:Relation to processes 1402:Finite volume method 1326:Dirac delta function 1295:Asymptotic stability 1237:Existence/uniqueness 1102:Integro-differential 875: 823: 763:asymptotic stability 731:exponentially stable 462:Dirac delta function 198:Integro-differential 18:Exponentially stable 1412:Perturbation theory 1392:Runge–Kutta methods 1372:Integral transforms 1305:Rate of convergence 1201:(discrete analogue) 792:Dirac delta impulse 558:Perturbation theory 553:Integral transforms 444:Rate of convergence 310:(discrete analogue) 147:Population dynamics 114:Continuum mechanics 105:Applied mathematics 1533:Sofya Kovalevskaya 1367:Integrating factor 1290:Lyapunov stability 1210:Stochastic partial 973:Marginal stability 942:Real-world example 928: 861: 813: 548:Integrating factor 389:Initial conditions 324:Stochastic partial 1554:Dynamical systems 1541: 1540: 1420: 1419: 1225: 1224: 909: 857: 797:marginally stable 767:dynamical systems 759:exponential decay 747:transfer function 719: 718: 610:Gottfried Leibniz 501:Finite difference 293: 292: 154: 153: 124:Dynamical systems 16:(Redirected from 1566: 1559:Stability theory 1518:Phyllis Nicolson 1498:Rudolf Lipschitz 1335:Solution methods 1310:Series solutions 1234: 1233: 1067: 1066: 1049: 1042: 1035: 1026: 1025: 1006: 999: 937: 935: 934: 929: 912: 911: 910: 902: 870: 868: 867: 862: 860: 859: 858: 850: 817:impulse response 784:exponential rate 711: 704: 697: 675:Phyllis Nicolson 660:Rudolf Lipschitz 543:Green's function 519:Infinite element 510: 475:Solution methods 453: 311: 222:By variable type 176: 175: 58:Natural sciences 51: 50: 30: 29: 21: 1574: 1573: 1569: 1568: 1567: 1565: 1564: 1563: 1544: 1543: 1542: 1537: 1478:Jacob Bernoulli 1451: 1416: 1407:Galerkin method 1330: 1268:Solution topics 1263: 1221: 1187: 1126: 1058: 1053: 1015: 1010: 1009: 1000: 996: 991: 969: 944: 901: 897: 893: 876: 873: 872: 849: 845: 841: 824: 821: 820: 805: 775: 725:, a continuous 715: 686: 685: 684: 615:Jacob Bernoulli 599: 586: 585: 567: 536:Petrov–Galerkin 504: 489: 476: 468: 467: 466: 448: 394:Boundary values 383: 375: 374: 350: 337: 336: 335: 309: 303: 295: 294: 282: 259: 217: 173: 160: 159: 155: 133:Social sciences 89: 67: 48: 28: 23: 22: 15: 12: 11: 5: 1572: 1562: 1561: 1556: 1539: 1538: 1536: 1535: 1530: 1525: 1520: 1515: 1510: 1505: 1500: 1495: 1493:Ernst Lindelöf 1490: 1485: 1480: 1475: 1473:Leonhard Euler 1470: 1465: 1459: 1457: 1456:Mathematicians 1453: 1452: 1450: 1449: 1444: 1439: 1434: 1428: 1426: 1422: 1421: 1418: 1417: 1415: 1414: 1409: 1404: 1399: 1394: 1389: 1384: 1379: 1374: 1369: 1364: 1359: 1354: 1349: 1344: 1338: 1336: 1332: 1331: 1329: 1328: 1323: 1318: 1312: 1307: 1302: 1297: 1292: 1287: 1282: 1280:Phase portrait 1277: 1271: 1269: 1265: 1264: 1262: 1261: 1256: 1251: 1246: 1240: 1238: 1231: 1227: 1226: 1223: 1222: 1220: 1219: 1214: 1213: 1212: 1202: 1195: 1193: 1189: 1188: 1186: 1185: 1183:On jet bundles 1180: 1175: 1170: 1165: 1160: 1155: 1150: 1148:Nonhomogeneous 1145: 1140: 1134: 1132: 1128: 1127: 1125: 1124: 1119: 1114: 1109: 1104: 1099: 1094: 1089: 1084: 1079: 1073: 1071: 1064: 1063:Classification 1060: 1059: 1052: 1051: 1044: 1037: 1029: 1023: 1022: 1014: 1013:External links 1011: 1008: 1007: 993: 992: 990: 987: 986: 985: 980: 978:Control theory 975: 968: 965: 943: 940: 927: 924: 921: 918: 915: 908: 905: 900: 896: 892: 889: 886: 883: 880: 856: 853: 848: 844: 840: 837: 834: 831: 828: 804: 801: 788:asymptotically 774: 771: 723:control theory 717: 716: 714: 713: 706: 699: 691: 688: 687: 683: 682: 677: 672: 667: 665:Ernst Lindelöf 662: 657: 652: 647: 642: 637: 635:Joseph Fourier 632: 627: 622: 620:Leonhard Euler 617: 612: 607: 601: 600: 597: 596: 593: 592: 588: 587: 584: 583: 578: 573: 566: 565: 560: 555: 550: 545: 540: 539: 538: 528: 523: 522: 521: 514:Finite element 511: 507:Crank–Nicolson 498: 493: 487: 482: 478: 477: 474: 473: 470: 469: 465: 464: 459: 454: 446: 441: 428: 426:Phase portrait 423: 418: 417: 416: 414:Cauchy problem 411: 406: 401: 391: 385: 384: 382:General topics 381: 380: 377: 376: 373: 372: 367: 362: 357: 351: 348: 347: 344: 343: 339: 338: 334: 333: 328: 327: 326: 315: 314: 313: 304: 301: 300: 297: 296: 291: 290: 289: 288: 281: 280: 275: 269: 266: 265: 261: 260: 258: 257: 255:Nonhomogeneous 248: 243: 240: 234: 233: 232: 224: 223: 219: 218: 216: 215: 210: 205: 200: 195: 190: 185: 179: 174: 171: 170: 167: 166: 165:Classification 162: 161: 152: 151: 150: 149: 144: 136: 135: 129: 128: 127: 126: 121: 116: 108: 107: 101: 100: 99: 98: 93: 87: 82: 77: 69: 68: 66: 65: 60: 54: 49: 46: 45: 42: 41: 37: 36: 26: 9: 6: 4: 3: 2: 1571: 1560: 1557: 1555: 1552: 1551: 1549: 1534: 1531: 1529: 1526: 1524: 1521: 1519: 1516: 1514: 1511: 1509: 1506: 1504: 1501: 1499: 1496: 1494: 1491: 1489: 1486: 1484: 1481: 1479: 1476: 1474: 1471: 1469: 1466: 1464: 1461: 1460: 1458: 1454: 1448: 1445: 1443: 1440: 1438: 1435: 1433: 1430: 1429: 1427: 1423: 1413: 1410: 1408: 1405: 1403: 1400: 1398: 1395: 1393: 1390: 1388: 1385: 1383: 1380: 1378: 1375: 1373: 1370: 1368: 1365: 1363: 1360: 1358: 1355: 1353: 1350: 1348: 1345: 1343: 1340: 1339: 1337: 1333: 1327: 1324: 1322: 1319: 1316: 1313: 1311: 1308: 1306: 1303: 1301: 1298: 1296: 1293: 1291: 1288: 1286: 1283: 1281: 1278: 1276: 1273: 1272: 1270: 1266: 1260: 1257: 1255: 1252: 1250: 1247: 1245: 1242: 1241: 1239: 1235: 1232: 1228: 1218: 1215: 1211: 1208: 1207: 1206: 1203: 1200: 1197: 1196: 1194: 1190: 1184: 1181: 1179: 1176: 1174: 1171: 1169: 1166: 1164: 1161: 1159: 1156: 1154: 1151: 1149: 1146: 1144: 1141: 1139: 1136: 1135: 1133: 1129: 1123: 1120: 1118: 1115: 1113: 1110: 1108: 1105: 1103: 1100: 1098: 1095: 1093: 1090: 1088: 1085: 1083: 1080: 1078: 1075: 1074: 1072: 1068: 1065: 1061: 1057: 1050: 1045: 1043: 1038: 1036: 1031: 1030: 1027: 1020: 1017: 1016: 1004: 998: 994: 984: 981: 979: 976: 974: 971: 970: 964: 962: 956: 952: 950: 949:delta impulse 939: 922: 916: 913: 906: 903: 898: 894: 890: 884: 878: 854: 851: 846: 842: 838: 832: 826: 818: 809: 800: 798: 793: 789: 785: 781: 770: 768: 764: 760: 756: 752: 748: 744: 743:complex plane 740: 736: 732: 728: 724: 712: 707: 705: 700: 698: 693: 692: 690: 689: 681: 678: 676: 673: 671: 668: 666: 663: 661: 658: 656: 653: 651: 648: 646: 643: 641: 638: 636: 633: 631: 628: 626: 623: 621: 618: 616: 613: 611: 608: 606: 603: 602: 595: 594: 590: 589: 582: 579: 577: 574: 572: 569: 568: 564: 561: 559: 556: 554: 551: 549: 546: 544: 541: 537: 534: 533: 532: 529: 527: 526:Finite volume 524: 520: 517: 516: 515: 512: 508: 502: 499: 497: 494: 492: 488: 486: 483: 480: 479: 472: 471: 463: 460: 458: 455: 451: 447: 445: 442: 440: 436: 432: 429: 427: 424: 422: 419: 415: 412: 410: 407: 405: 402: 400: 397: 396: 395: 392: 390: 387: 386: 379: 378: 371: 368: 366: 363: 361: 358: 356: 353: 352: 346: 345: 341: 340: 332: 329: 325: 322: 321: 320: 317: 316: 312: 306: 305: 299: 298: 287: 284: 283: 279: 276: 274: 271: 270: 268: 267: 263: 262: 256: 252: 249: 247: 244: 241: 239: 236: 235: 231: 228: 227: 226: 225: 221: 220: 214: 211: 209: 206: 204: 201: 199: 196: 194: 191: 189: 186: 184: 181: 180: 178: 177: 169: 168: 164: 163: 158: 148: 145: 143: 140: 139: 138: 137: 134: 131: 130: 125: 122: 120: 117: 115: 112: 111: 110: 109: 106: 103: 102: 97: 94: 92: 88: 86: 83: 81: 78: 76: 73: 72: 71: 70: 64: 61: 59: 56: 55: 53: 52: 44: 43: 39: 38: 35: 32: 31: 19: 1528:Martin Kutta 1483:Émile Picard 1463:Isaac Newton 1377:Euler method 1347:Substitution 1299: 1005:. p. 47 1002: 997: 960: 957: 953: 945: 814: 776: 730: 720: 670:Émile Picard 655:Martin Kutta 645:George Green 605:Isaac Newton 438: 437: / 433: / 253: / 119:Chaos theory 1285:Phase space 1143:Homogeneous 751:unit circle 737:(i.e., the 735:eigenvalues 563:Runge–Kutta 308:Difference 251:Homogeneous 63:Engineering 1548:Categories 1513:John Crank 1342:Inspection 1205:Stochastic 1199:Difference 1173:Autonomous 1117:Non-linear 1107:Fractional 1070:Operations 989:References 680:John Crank 481:Inspection 435:Asymptotic 319:Stochastic 238:Autonomous 213:Non-linear 203:Fractional 1317:solutions 1275:Wronskian 1230:Solutions 1158:Decoupled 1122:Holonomic 917:⁡ 899:− 847:− 729:(LTI) is 421:Wronskian 399:Dirichlet 142:Economics 85:Chemistry 75:Astronomy 1425:Examples 1315:Integral 1087:Ordinary 967:See also 531:Galerkin 431:Lyapunov 342:Solution 286:Notation 278:Operator 264:Features 183:Ordinary 1153:Coupled 1092:Partial 755:bounded 404:Neumann 188:Partial 96:Geology 91:Biology 80:Physics 1168:Degree 1112:Linear 591:People 503:  450:Series 208:Linear 47:Fields 1217:Delay 1163:Order 739:poles 491:Euler 409:Robin 331:Delay 273:Order 246:Exact 172:Types 40:Scope 780:step 598:List 914:sin 757:by 721:In 1550:: 963:. 799:. 769:. 1048:e 1041:t 1034:v 926:) 923:t 920:( 907:5 904:t 895:e 891:= 888:) 885:t 882:( 879:y 855:5 852:t 843:e 839:= 836:) 833:t 830:( 827:y 710:e 703:t 696:v 509:) 505:( 20:)

Index

Exponentially stable
Differential equations
Natural sciences
Engineering
Astronomy
Physics
Chemistry
Biology
Geology
Applied mathematics
Continuum mechanics
Chaos theory
Dynamical systems
Social sciences
Economics
Population dynamics
List of named differential equations
Ordinary
Partial
Differential-algebraic
Integro-differential
Fractional
Linear
Non-linear
Dependent and independent variables
Autonomous
Exact
Homogeneous
Nonhomogeneous
Order

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑