Knowledge

Francis turbine

Source 📝

118: 140: 20: 1048: 321: 305: 293: 281: 110: 1590: 31: 129: 1480:, where a reservoir is filled by the turbine (acting as a pump) driven by the generator acting as a large electrical motor during periods of low power demand, and then reversed and used to generate power during peak demand. These pump storage reservoirs act as large energy storage sources to store "excess" electrical energy in the form of water in elevated reservoirs. This is one of a few methods that allow temporary excess electrical capacity to be stored for later utilization. 1810: 247: 1056:
stator blades of the turbines and the volute casing as it has a varying cross-sectional area. For example, if the degree of reaction is given as 50%, that means that half of the total energy change of the fluid is taking place in the rotor blades and the other half is occurring in the stator blades. If the degree of reaction is zero it means that the energy changes due to the rotor blades is zero, leading to a different turbine design called the
987: 1446: 195:, improved on these designs to create more efficient turbines. He applied scientific principles and testing methods to produce a very efficient turbine design. More importantly, his mathematical and graphical calculation methods improved turbine design and engineering. His analytical methods allowed the design of high-efficiency turbines to precisely match a site's water flow and pressure ( 238:: The draft tube is a conduit that connects the runner exit to the tail race where the water is discharged from the turbine. Its primary function is to reduce the velocity of discharged water to minimize the loss of kinetic energy at the outlet. This permits the turbine to be set above the tail water without appreciable drop of available head. 230:: Runner blades are the heart of any turbine. These are the centers where the fluid strikes and the tangential force of the impact produces torque causing the shaft of the turbine to rotate. Close attention to design of blade angles at inlet and outlet is necessary, as these are major parameters affecting power production. 971: 261:
The Francis turbine is a type of reaction turbine, a category of turbine in which the working fluid comes to the turbine under immense pressure and the energy is extracted by the turbine blades from the working fluid. A part of the energy is given up by the fluid because of pressure changes occurring
1453:
Francis turbines may be designed for a wide range of heads and flows. This versatility, along with their high efficiency, has made them the most widely used turbine in the world. Francis type units cover a head range from 40 to 600 m (130 to 2,000 ft), and their connected generator output
217:
or scroll case. Throughout its length, it has numerous openings at regular intervals to allow the working fluid to impinge on the blades of the runner. These openings convert the pressure energy of the fluid into kinetic energy just before the fluid impinges on the blades. This maintains a constant
1055:
Degree of reaction can be defined as the ratio of pressure energy change in the blades to total energy change of the fluid. This means that it is a ratio indicating the fraction of total change in fluid pressure energy occurring in the blades of the turbine. The rest of the changes occur in the
100:
rotating runner controls the rate of water flow through the turbine for different power production rates. Francis turbines are usually mounted with a vertical shaft, to isolate water from the generator. This also facilitates installation and maintenance.
745: 1196: 1435: 638: 266:, while the remaining part of the energy is extracted by the volute casing of the turbine. At the exit, water acts on the spinning cup-shaped runner features, leaving at low velocity and low swirl with very little 1289: 531: 1465:, the Francis turbine operates at its best completely filled with water at all times. The turbine and the outlet channel may be placed lower than the lake or sea level outside, reducing the tendency for 734: 65:
The process of arriving at the modern Francis runner design took from 1848 to approximately 1920. It became known as the Francis turbine around 1920, being named after British-American engineer
224:: The primary function of the guide and stay vanes is to convert the pressure energy of the fluid into kinetic energy. It also serves to direct the flow at design angles to the runner blades. 218:
velocity despite the fact that numerous openings have been provided for the fluid to enter the blades, as the cross-sectional area of this casing decreases uniformly along the circumference.
438: 966:{\displaystyle \eta _{b}={\frac {2V_{f1}^{2}(\cot \alpha _{1}(\cot \alpha _{1}+\cot \beta _{1}))}{V_{f2}^{2}+2V_{f1}^{2}(\cot \alpha _{1}(\cot \alpha _{1}+\cot \beta _{1}))}}\,.} 153:
of different types have been used for more than 1,000 years to power mills of all types, but they were relatively inefficient. Nineteenth-century efficiency improvements of
1335: 34:
Side-view cutaway of a vertical Francis turbine. Here water enters horizontally in a spiral-shaped pipe (spiral case) wrapped around the outside of the turbine's rotating
172:
developed a high-efficiency (80%) outward-flow water turbine. Water was directed tangentially through the turbine runner, causing it to spin. Another French engineer,
1646: 1066: 1454:
power varies from just a few kilowatts up to 1000 MW. Large Francis turbines are individually designed for each site to operate with the given water flow and
1343: 1774: 542: 292: 1495: 304: 176:, designed an inward-flow turbine in about 1820 that used the same principles. S. B. Howd obtained a US patent in 1838 for a similar design. 280: 324:
Ideal velocity diagram, illustrating that in ideal cases the whirl component of outlet velocity is zero and the flow is completely axial
1201:
The second equality above holds, since discharge is radial in a Francis turbine. Now, putting in the value of 'e' from above and using
1204: 449: 165:
were developed in the late 1800s, turbines were a natural source of generator power where potential hydropower sources existed.
88:
diameters are between 1 and 10 m (3.3 and 32.8 ft). The speeds of different turbine units range from 70 to 1000 
144: 117: 1743: 659: 1657: 1799: 1034: 1016: 1008: 381: 1779: 1477: 328:
Usually the flow velocity (velocity perpendicular to the tangential direction) remains constant throughout, i.e.
184: 62:
concepts. Francis turbines are the most common water turbine in use today, and can achieve over 95% efficiency.
1012: 1893: 1888: 1706:. NLA Monograph Series. Stony Brook, NY: Research Foundation of the State University of New York, 1992. 1704:
From Rule of Thumb to Scientific Engineering: James B. Francis and the Invention of the Francis Turbine
274:
left. The turbine's exit tube is shaped to help decelerate the water flow and recover the pressure.
1736: 1294: 997: 93: 375:
is the energy transfer to the rotor per unit mass of the fluid. From the inlet velocity triangle,
1883: 1051:
Actual velocity diagram, illustrating that the whirl component of the outlet velocity is non-zero
1001: 19: 1842: 1608: 1653: 1047: 192: 139: 1564: 320: 1621: 1560: 173: 1594: 1589: 1523:, a device used to study the impact of fish travelling through Francis and Kaplan turbines 1191:{\displaystyle R=1-{\frac {V_{1}^{2}-V_{2}^{2}}{2e}}=1-{\frac {V_{1}^{2}-V_{f2}^{2}}{2e}}} 8: 1729: 121: 1593: This article incorporates text from this source, which is available under the 1573: 1548: 1857: 1549:"Major historical developments in the design of water wheels and Francis hydroturbines" 344:
and is equal to that at the inlet to the draft tube. Using the Euler turbine equation,
263: 162: 73: 72:
Francis turbines are primarily used for producing electricity. The power output of the
59: 1707: 1578: 169: 1818: 1760: 1568: 1473: 1455: 1430:{\displaystyle R=1-{\frac {\cot \alpha _{1}}{2(\cot \alpha _{1}+\cot \beta _{1})}}} 271: 250: 196: 180: 133: 66: 51: 24: 109: 1832: 1510: 1505: 1462: 633:{\displaystyle e=V_{f1}^{2}\cot \alpha _{1}(\cot \alpha _{1}+\cot \beta _{1}).} 267: 81: 55: 30: 1877: 1852: 1837: 1582: 254: 214: 157:
allowed them to replace nearly all water wheel applications and compete with
154: 128: 97: 47: 1847: 1809: 1711: 1515: 1057: 158: 1862: 1789: 1784: 1520: 150: 1794: 1752: 1500: 1490: 1466: 234: 77: 1678:(Revised ninth ed.). India: Laxmi publications. pp. 880–883. 246: 213:: The spiral casing around the runner of the turbine is known as the 986: 85: 1445: 80:
installations may be lower. The best performance is seen when the
1458:
at the highest possible efficiency, typically over 90% (to 99%).
298:
Cut-away view, with wicket gates (yellow) at minimum flow setting
188: 76:
generally ranges from just a few kilowatts up to 1000 MW, though
1284:{\displaystyle V_{1}^{2}-V_{f2}^{2}=V_{f1}^{2}\cot \alpha _{2}} 653:. Therefore, neglecting friction, the blade efficiency becomes 526:{\displaystyle U_{1}=V_{f1}(\cot \alpha _{1}+\cot \beta _{1}),} 310:
Cut-away view, with wicket gates (yellow) at full flow setting
262:
on the blades of the turbine, quantified by the expression of
1721: 38:
and exits vertically down through the center of the turbine.
1688:
L. Suo, ... H. Xie, in Comprehensive Renewable Energy, 2012
124:
in Lowell, Massachusetts; site of the first Francis turbine
643:
The loss of kinetic energy per unit mass at the outlet is
1769: 89: 207:
A Francis turbine consists of the following main parts:
286:
Francis turbine (exterior view) attached to a generator
1553:
IOP Conference Series: Earth and Environmental Science
1346: 1297: 1207: 1069: 748: 729:{\displaystyle \eta _{b}={e \over (e+V_{f2}^{2}/2)},} 662: 545: 452: 384: 1676:
A textbook of fluid mechanics and hydraulic machines
1547:
Lewis, B J; Cimbala, J M; Wouden, A M (2014-03-01).
84:
height is between 100–300 metres (330–980 ft).
1546: 1429: 1329: 1283: 1190: 965: 728: 632: 525: 432: 1775:List of conventional hydroelectric power stations 1875: 1496:Evolution from Francis turbine to Kaplan turbine 1737: 433:{\displaystyle V_{w1}=V_{f1}\cot \alpha _{1}} 1015:. Unsourced material may be challenged and 1744: 1730: 161:wherever water power was available. After 69:who in 1848 created a new turbine design. 1572: 1035:Learn how and when to remove this message 959: 1444: 1046: 319: 245: 183:, while working as head engineer of the 138: 127: 116: 108: 29: 18: 1717:S. M. Yahya, page number 13, fig. 1.14. 1695: 1876: 241: 1725: 976: 145:Raccoon Mountain Pumped-Storage Plant 1542: 1540: 1538: 1013:adding citations to reliable sources 980: 315: 13: 14: 1905: 1800:Run-of-the-river hydroelectricity 1647:"Lowell Notes – James B. Francis" 1639: 1535: 1808: 1588: 1449:Small Swiss-made Francis turbine 985: 303: 291: 279: 1780:Pumped-storage hydroelectricity 253:Francis turbine runner, on the 1751: 1682: 1667: 1614: 1601: 1440: 1421: 1383: 953: 950: 912: 893: 846: 843: 805: 786: 717: 682: 624: 586: 517: 479: 104: 1: 1609:Power Generation Technologies 1574:10.1088/1755-1315/22/1/012020 1330:{\displaystyle V_{f2}=V_{f1}} 202: 1528: 1476:, they may also be used for 168:In 1826 the French engineer 23:Francis inlet scroll at the 7: 1673: 1483: 187:in the water wheel-powered 10: 1910: 96:around the outside of the 1817: 1806: 1759: 185:Locks and Canals company 1565:2014E&ES...22a2020L 50:. It is an inward-flow 1843:Gorlov helical turbine 1450: 1431: 1331: 1285: 1192: 1052: 967: 730: 634: 527: 434: 325: 258: 147: 136: 125: 114: 39: 27: 1654:National Park Service 1611:(Third Edition), 2019 1474:electrical production 1448: 1432: 1332: 1286: 1193: 1050: 968: 731: 635: 528: 435: 323: 249: 193:Lowell, Massachusetts 143:A Francis turbine at 142: 131: 120: 113:Francis turbine parts 112: 33: 22: 16:Type of water turbine 1696:General bibliography 1344: 1295: 1205: 1067: 1009:improve this section 746: 660: 543: 450: 382: 222:Guide and stay vanes 174:Jean-Victor Poncelet 1894:American inventions 1674:Bansal, RK (2010). 1461:In contrast to the 1264: 1243: 1222: 1176: 1155: 1117: 1099: 892: 868: 785: 708: 569: 242:Theory of operation 163:electric generators 122:Pawtucket Gatehouse 74:electric generators 1889:English inventions 1858:Cross-flow turbine 1451: 1427: 1327: 1281: 1247: 1226: 1208: 1188: 1159: 1141: 1103: 1085: 1053: 977:Degree of reaction 963: 875: 851: 768: 726: 691: 630: 552: 523: 430: 326: 264:degree of reaction 259: 148: 137: 126: 115: 40: 28: 1871: 1870: 1702:Layton, Edwin T. 1622:"Design Overview" 1425: 1186: 1127: 1045: 1044: 1037: 957: 721: 170:Benoit Fourneyron 1901: 1819:Hydroelectricity 1812: 1761:Hydroelectricity 1746: 1739: 1732: 1723: 1722: 1689: 1686: 1680: 1679: 1671: 1665: 1664: 1662: 1656:. Archived from 1651: 1643: 1637: 1636: 1634: 1633: 1618: 1612: 1605: 1599: 1592: 1586: 1576: 1544: 1436: 1434: 1433: 1428: 1426: 1424: 1420: 1419: 1401: 1400: 1378: 1377: 1376: 1360: 1336: 1334: 1333: 1328: 1326: 1325: 1310: 1309: 1290: 1288: 1287: 1282: 1280: 1279: 1263: 1258: 1242: 1237: 1221: 1216: 1197: 1195: 1194: 1189: 1187: 1185: 1177: 1175: 1170: 1154: 1149: 1139: 1128: 1126: 1118: 1116: 1111: 1098: 1093: 1083: 1040: 1033: 1029: 1026: 1020: 989: 981: 972: 970: 969: 964: 958: 956: 949: 948: 930: 929: 911: 910: 891: 886: 867: 862: 849: 842: 841: 823: 822: 804: 803: 784: 779: 763: 758: 757: 735: 733: 732: 727: 722: 720: 713: 707: 702: 677: 672: 671: 652: 639: 637: 636: 631: 623: 622: 604: 603: 585: 584: 568: 563: 532: 530: 529: 524: 516: 515: 497: 496: 478: 477: 462: 461: 439: 437: 436: 431: 429: 428: 413: 412: 397: 396: 370: 343: 316:Blade efficiency 307: 295: 283: 272:potential energy 251:Three Gorges Dam 191:factory city of 181:James B. Francis 134:Grand Coulee Dam 132:Francis Runner, 67:James B. Francis 52:reaction turbine 25:Grand Coulee Dam 1909: 1908: 1904: 1903: 1902: 1900: 1899: 1898: 1874: 1873: 1872: 1867: 1828:Francis turbine 1813: 1804: 1755: 1750: 1720: 1698: 1693: 1692: 1687: 1683: 1672: 1668: 1660: 1649: 1645: 1644: 1640: 1631: 1629: 1620: 1619: 1615: 1606: 1602: 1545: 1536: 1531: 1526: 1486: 1472:In addition to 1443: 1415: 1411: 1396: 1392: 1379: 1372: 1368: 1361: 1359: 1345: 1342: 1341: 1318: 1314: 1302: 1298: 1296: 1293: 1292: 1275: 1271: 1259: 1251: 1238: 1230: 1217: 1212: 1206: 1203: 1202: 1178: 1171: 1163: 1150: 1145: 1140: 1138: 1119: 1112: 1107: 1094: 1089: 1084: 1082: 1068: 1065: 1064: 1041: 1030: 1024: 1021: 1006: 990: 979: 944: 940: 925: 921: 906: 902: 887: 879: 863: 855: 850: 837: 833: 818: 814: 799: 795: 780: 772: 764: 762: 753: 749: 747: 744: 743: 709: 703: 695: 681: 676: 667: 663: 661: 658: 657: 650: 644: 618: 614: 599: 595: 580: 576: 564: 556: 544: 541: 540: 511: 507: 492: 488: 470: 466: 457: 453: 451: 448: 447: 424: 420: 405: 401: 389: 385: 383: 380: 379: 369: 363: 345: 342: 335: 329: 318: 311: 308: 299: 296: 287: 284: 244: 205: 107: 44:Francis turbine 17: 12: 11: 5: 1907: 1897: 1896: 1891: 1886: 1884:Water turbines 1869: 1868: 1866: 1865: 1860: 1855: 1850: 1845: 1840: 1835: 1833:Kaplan turbine 1830: 1824: 1822: 1815: 1814: 1807: 1805: 1803: 1802: 1797: 1792: 1787: 1782: 1777: 1772: 1766: 1764: 1757: 1756: 1749: 1748: 1741: 1734: 1726: 1719: 1718: 1715: 1699: 1697: 1694: 1691: 1690: 1681: 1666: 1663:on 2016-03-10. 1638: 1613: 1600: 1533: 1532: 1530: 1527: 1525: 1524: 1518: 1513: 1511:Kaplan turbine 1508: 1506:Jonval turbine 1503: 1498: 1493: 1487: 1485: 1482: 1478:pumped storage 1463:Pelton turbine 1442: 1439: 1438: 1437: 1423: 1418: 1414: 1410: 1407: 1404: 1399: 1395: 1391: 1388: 1385: 1382: 1375: 1371: 1367: 1364: 1358: 1355: 1352: 1349: 1324: 1321: 1317: 1313: 1308: 1305: 1301: 1278: 1274: 1270: 1267: 1262: 1257: 1254: 1250: 1246: 1241: 1236: 1233: 1229: 1225: 1220: 1215: 1211: 1199: 1198: 1184: 1181: 1174: 1169: 1166: 1162: 1158: 1153: 1148: 1144: 1137: 1134: 1131: 1125: 1122: 1115: 1110: 1106: 1102: 1097: 1092: 1088: 1081: 1078: 1075: 1072: 1058:Pelton Turbine 1043: 1042: 993: 991: 984: 978: 975: 974: 973: 962: 955: 952: 947: 943: 939: 936: 933: 928: 924: 920: 917: 914: 909: 905: 901: 898: 895: 890: 885: 882: 878: 874: 871: 866: 861: 858: 854: 848: 845: 840: 836: 832: 829: 826: 821: 817: 813: 810: 807: 802: 798: 794: 791: 788: 783: 778: 775: 771: 767: 761: 756: 752: 737: 736: 725: 719: 716: 712: 706: 701: 698: 694: 690: 687: 684: 680: 675: 670: 666: 648: 641: 640: 629: 626: 621: 617: 613: 610: 607: 602: 598: 594: 591: 588: 583: 579: 575: 572: 567: 562: 559: 555: 551: 548: 534: 533: 522: 519: 514: 510: 506: 503: 500: 495: 491: 487: 484: 481: 476: 473: 469: 465: 460: 456: 441: 440: 427: 423: 419: 416: 411: 408: 404: 400: 395: 392: 388: 367: 361: 340: 333: 317: 314: 313: 312: 309: 302: 300: 297: 290: 288: 285: 278: 243: 240: 204: 201: 155:water turbines 106: 103: 54:that combines 15: 9: 6: 4: 3: 2: 1906: 1895: 1892: 1890: 1887: 1885: 1882: 1881: 1879: 1864: 1861: 1859: 1856: 1854: 1853:Turgo turbine 1851: 1849: 1846: 1844: 1841: 1839: 1838:Tyson turbine 1836: 1834: 1831: 1829: 1826: 1825: 1823: 1820: 1816: 1811: 1801: 1798: 1796: 1793: 1791: 1788: 1786: 1783: 1781: 1778: 1776: 1773: 1771: 1768: 1767: 1765: 1762: 1758: 1754: 1747: 1742: 1740: 1735: 1733: 1728: 1727: 1724: 1716: 1713: 1709: 1705: 1701: 1700: 1685: 1677: 1670: 1659: 1655: 1648: 1642: 1627: 1623: 1617: 1610: 1607:Paul Breeze, 1604: 1598: 1596: 1591: 1584: 1580: 1575: 1570: 1566: 1562: 1559:(1): 012020. 1558: 1554: 1550: 1543: 1541: 1539: 1534: 1522: 1519: 1517: 1514: 1512: 1509: 1507: 1504: 1502: 1499: 1497: 1494: 1492: 1489: 1488: 1481: 1479: 1475: 1470: 1468: 1464: 1459: 1457: 1447: 1416: 1412: 1408: 1405: 1402: 1397: 1393: 1389: 1386: 1380: 1373: 1369: 1365: 1362: 1356: 1353: 1350: 1347: 1340: 1339: 1338: 1322: 1319: 1315: 1311: 1306: 1303: 1299: 1276: 1272: 1268: 1265: 1260: 1255: 1252: 1248: 1244: 1239: 1234: 1231: 1227: 1223: 1218: 1213: 1209: 1182: 1179: 1172: 1167: 1164: 1160: 1156: 1151: 1146: 1142: 1135: 1132: 1129: 1123: 1120: 1113: 1108: 1104: 1100: 1095: 1090: 1086: 1079: 1076: 1073: 1070: 1063: 1062: 1061: 1059: 1049: 1039: 1036: 1028: 1018: 1014: 1010: 1004: 1003: 999: 994:This section 992: 988: 983: 982: 960: 945: 941: 937: 934: 931: 926: 922: 918: 915: 907: 903: 899: 896: 888: 883: 880: 876: 872: 869: 864: 859: 856: 852: 838: 834: 830: 827: 824: 819: 815: 811: 808: 800: 796: 792: 789: 781: 776: 773: 769: 765: 759: 754: 750: 742: 741: 740: 723: 714: 710: 704: 699: 696: 692: 688: 685: 678: 673: 668: 664: 656: 655: 654: 647: 627: 619: 615: 611: 608: 605: 600: 596: 592: 589: 581: 577: 573: 570: 565: 560: 557: 553: 549: 546: 539: 538: 537: 520: 512: 508: 504: 501: 498: 493: 489: 485: 482: 474: 471: 467: 463: 458: 454: 446: 445: 444: 425: 421: 417: 414: 409: 406: 402: 398: 393: 390: 386: 378: 377: 376: 374: 366: 360: 356: 352: 348: 339: 332: 322: 306: 301: 294: 289: 282: 277: 276: 275: 273: 269: 265: 256: 255:Yangtze River 252: 248: 239: 237: 236: 231: 229: 228:Runner blades 225: 223: 219: 216: 215:volute casing 212: 211:Spiral casing 208: 200: 198: 194: 190: 186: 182: 177: 175: 171: 166: 164: 160: 159:steam engines 156: 152: 146: 141: 135: 130: 123: 119: 111: 102: 99: 95: 91: 87: 83: 79: 75: 70: 68: 63: 61: 57: 53: 49: 48:water turbine 46:is a type of 45: 37: 32: 26: 21: 1848:Pelton wheel 1827: 1703: 1684: 1675: 1669: 1658:the original 1641: 1630:. Retrieved 1628:. 2015-11-13 1626:Harlaw Hydro 1625: 1616: 1603: 1587: 1556: 1552: 1516:Pelton wheel 1471: 1460: 1452: 1200: 1054: 1031: 1022: 1007:Please help 995: 738: 645: 642: 535: 442: 372: 364: 358: 354: 350: 346: 337: 330: 327: 260: 233: 232: 227: 226: 221: 220: 210: 209: 206: 178: 167: 151:Water wheels 149: 71: 64: 43: 41: 35: 1863:Water wheel 1790:Micro hydro 1785:Small hydro 1521:Sensor fish 1441:Application 105:Development 94:wicket gate 1878:Categories 1795:Pico hydro 1763:generation 1753:Hydropower 1712:1073565482 1632:2024-07-02 1501:Hydropower 1491:Draft tube 1467:cavitation 1456:water head 1025:March 2018 536:Therefore 235:Draft tube 203:Components 197:water head 78:mini-hydro 60:axial flow 1821:equipment 1595:CC BY 3.0 1583:1755-1315 1529:Citations 1413:β 1409:⁡ 1394:α 1390:⁡ 1370:α 1366:⁡ 1357:− 1273:α 1269:⁡ 1224:− 1157:− 1136:− 1101:− 1080:− 996:does not 942:β 938:⁡ 923:α 919:⁡ 904:α 900:⁡ 835:β 831:⁡ 816:α 812:⁡ 797:α 793:⁡ 751:η 665:η 616:β 612:⁡ 597:α 593:⁡ 578:α 574:⁡ 509:β 505:⁡ 490:α 486:⁡ 422:α 418:⁡ 98:turbine's 1597:license. 1484:See also 371:, where 179:In 1848 86:Penstock 1561:Bibcode 1017:removed 1002:sources 268:kinetic 257:, China 189:textile 1710:  1581:  56:radial 36:runner 1661:(PDF) 1650:(PDF) 739:i.e. 443:and 1708:OCLC 1579:ISSN 1291:(as 1000:any 998:cite 92:. A 82:head 58:and 42:The 1770:Dam 1569:doi 1406:cot 1387:cot 1363:cot 1266:cot 1011:by 935:cot 916:cot 897:cot 828:cot 809:cot 790:cot 609:cot 590:cot 571:cot 502:cot 483:cot 415:cot 270:or 199:). 90:rpm 1880:: 1652:. 1624:. 1577:. 1567:. 1557:22 1555:. 1551:. 1537:^ 1469:. 1337:) 1060:. 651:/2 649:f2 362:w1 341:f2 334:f1 1745:e 1738:t 1731:v 1714:. 1635:. 1585:. 1571:: 1563:: 1422:) 1417:1 1403:+ 1398:1 1384:( 1381:2 1374:1 1354:1 1351:= 1348:R 1323:1 1320:f 1316:V 1312:= 1307:2 1304:f 1300:V 1277:2 1261:2 1256:1 1253:f 1249:V 1245:= 1240:2 1235:2 1232:f 1228:V 1219:2 1214:1 1210:V 1183:e 1180:2 1173:2 1168:2 1165:f 1161:V 1152:2 1147:1 1143:V 1133:1 1130:= 1124:e 1121:2 1114:2 1109:2 1105:V 1096:2 1091:1 1087:V 1077:1 1074:= 1071:R 1038:) 1032:( 1027:) 1023:( 1019:. 1005:. 961:. 954:) 951:) 946:1 932:+ 927:1 913:( 908:1 894:( 889:2 884:1 881:f 877:V 873:2 870:+ 865:2 860:2 857:f 853:V 847:) 844:) 839:1 825:+ 820:1 806:( 801:1 787:( 782:2 777:1 774:f 770:V 766:2 760:= 755:b 724:, 718:) 715:2 711:/ 705:2 700:2 697:f 693:V 689:+ 686:e 683:( 679:e 674:= 669:b 646:V 628:. 625:) 620:1 606:+ 601:1 587:( 582:1 566:2 561:1 558:f 554:V 550:= 547:e 521:, 518:) 513:1 499:+ 494:1 480:( 475:1 472:f 468:V 464:= 459:1 455:U 426:1 410:1 407:f 403:V 399:= 394:1 391:w 387:V 373:e 368:1 365:U 359:V 357:= 355:e 353:= 351:m 349:/ 347:E 338:V 336:= 331:V

Index


Grand Coulee Dam

water turbine
reaction turbine
radial
axial flow
James B. Francis
electric generators
mini-hydro
head
Penstock
rpm
wicket gate
turbine's


Pawtucket Gatehouse

Grand Coulee Dam

Raccoon Mountain Pumped-Storage Plant
Water wheels
water turbines
steam engines
electric generators
Benoit Fourneyron
Jean-Victor Poncelet
James B. Francis
Locks and Canals company

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.