Knowledge

Free ideal ring

Source đź“ť

387: 428: 299: 269: 239: 137:, it follows that a local, right hereditary ring is a right fir, and a local, right semihereditary ring is a right semifir. 421: 361: 452: 193: 164: 414: 326: 321: 353: 231: 316: 57: 117:
Since all right ideals of a right fir are free, they are projective. So, any right fir is a right
155:
Another important and motivating example of a free ideal ring are the free associative (unital)
175: 134: 100: 85: 41: 447: 309: 279: 249: 205: 77: 371: 8: 402: 122: 33: 346: 106:
is a right fir, since every nonzero principal right ideal of a domain is isomorphic to
357: 295: 265: 235: 126: 394: 367: 260:, London Mathematical Society Monographs, vol. 19 (2nd ed.), Boston, MA: 179: 81: 111: 89: 305: 291: 275: 245: 201: 149: 141: 118: 68:≥ 0.) The semifir property is left-right symmetric, but the fir property is not. 60:
right ideals are free modules of unique rank. (Thus, a ring is semifir if it is
398: 261: 92:. These last facts are not generally true for noncommutative rings, however ( 441: 352:, Encyclopedia of Mathematics and Its Applications, vol. 57, Cambridge: 140:
Unlike a principal right ideal domain, a right fir is not necessarily right
37: 21: 17: 130: 209: 341: 223: 386: 152:
since it is a hereditary domain, and so is necessarily Noetherian.
53: 290:, Springer Undergraduate Mathematics Series, Berlin, New York: 198:
Actes du Congrès International des Mathématiciens (Nice, 1970)
48:
generators are free and have unique rank is called an
200:, vol. 1, Gauthier-Villars, pp. 273–278, 345: 228:Free ideal rings and localization in general rings 44:. A ring such that all right ideals with at most 439: 422: 348:Skew fields. Theory of general division rings 194:"Free ideal rings and free products of rings" 88:, while a commutative semifir is precisely a 230:, New Mathematical Monographs, vol. 3, 76:It turns out that a left and right fir is a 429: 415: 121:, and likewise a right semifir is a right 71: 133:are free, and because local rings have 440: 381: 340: 285: 255: 222: 191: 168: 93: 144:, however in the commutative case, 13: 334: 14: 464: 385: 165:non-commutative polynomial rings 258:Free rings and their relations 1: 185: 159:-algebras for division rings 20:, especially in the field of 401:. You can help Knowledge by 110:. In the same way, a right 101:principal right ideal domain 7: 322:Encyclopedia of Mathematics 288:Introduction to ring theory 10: 469: 380: 354:Cambridge University Press 232:Cambridge University Press 32:, is a ring in which all 178:and every semifir is a 72:Properties and examples 56:is a ring in which all 453:Abstract algebra stubs 397:-related article is a 176:invariant basis number 135:invariant basis number 86:principal ideal domain 286:Cohn, P. M. (2000), 256:Cohn, P. M. (1985), 192:Cohn, P. M. (1971), 123:semihereditary ring 84:fir is precisely a 127:projective modules 80:. Furthermore, a 58:finitely generated 410: 409: 317:"Free ideal ring" 301:978-1-85233-206-8 271:978-0-12-179152-0 241:978-0-521-85337-8 460: 431: 424: 417: 395:abstract algebra 389: 382: 374: 351: 330: 312: 282: 252: 219: 218: 217: 208:, archived from 180:Sylvester domain 468: 467: 463: 462: 461: 459: 458: 457: 438: 437: 436: 435: 378: 364: 337: 335:Further reading 315: 302: 292:Springer-Verlag 272: 242: 215: 213: 188: 150:Dedekind domain 119:hereditary ring 74: 26:free ideal ring 12: 11: 5: 466: 456: 455: 450: 434: 433: 426: 419: 411: 408: 407: 390: 376: 375: 362: 336: 333: 332: 331: 313: 300: 283: 270: 262:Academic Press 253: 240: 220: 187: 184: 174:Semifirs have 163:, also called 114:is a semifir. 73: 70: 9: 6: 4: 3: 2: 465: 454: 451: 449: 446: 445: 443: 432: 427: 425: 420: 418: 413: 412: 406: 404: 400: 396: 391: 388: 384: 383: 379: 373: 369: 365: 363:0-521-43217-0 359: 355: 350: 349: 343: 339: 338: 328: 324: 323: 318: 314: 311: 307: 303: 297: 293: 289: 284: 281: 277: 273: 267: 263: 259: 254: 251: 247: 243: 237: 233: 229: 225: 221: 212:on 2017-11-25 211: 207: 203: 199: 195: 190: 189: 183: 181: 177: 172: 170: 166: 162: 158: 153: 151: 147: 143: 138: 136: 132: 128: 124: 120: 115: 113: 112:BĂ©zout domain 109: 105: 102: 97: 95: 91: 90:BĂ©zout domain 87: 83: 79: 69: 67: 64:-fir for all 63: 59: 55: 51: 47: 43: 39: 35: 31: 27: 23: 19: 403:expanding it 392: 377: 347: 320: 287: 257: 227: 214:, retrieved 210:the original 197: 173: 160: 156: 154: 145: 139: 116: 107: 103: 98: 75: 65: 61: 49: 45: 40:with unique 38:free modules 34:right ideals 29: 25: 24:, a (right) 15: 448:Ring theory 224:Cohn, P. M. 131:local rings 125:. Because 82:commutative 22:ring theory 18:mathematics 442:Categories 372:0840.16001 342:Cohn, P.M. 216:2010-11-26 186:References 142:Noetherian 327:EMS Press 171:, §5.4). 169:Cohn 2000 94:Cohn 1971 344:(1995), 226:(2006), 329:, 2001 310:1732101 280:0800091 250:2246388 206:0506389 54:semifir 370:  360:  308:  298:  278:  268:  248:  238:  204:  99:Every 78:domain 393:This 148:is a 129:over 50:n-fir 28:, or 399:stub 358:ISBN 296:ISBN 266:ISBN 236:ISBN 52:. A 42:rank 36:are 368:Zbl 96:). 30:fir 16:In 444:: 366:, 356:, 325:, 319:, 306:MR 304:, 294:, 276:MR 274:, 264:, 246:MR 244:, 234:, 202:MR 196:, 182:. 430:e 423:t 416:v 405:. 167:( 161:k 157:k 146:R 108:R 104:R 66:n 62:n 46:n

Index

mathematics
ring theory
right ideals
free modules
rank
semifir
finitely generated
domain
commutative
principal ideal domain
BĂ©zout domain
Cohn 1971
principal right ideal domain
BĂ©zout domain
hereditary ring
semihereditary ring
projective modules
local rings
invariant basis number
Noetherian
Dedekind domain
non-commutative polynomial rings
Cohn 2000
invariant basis number
Sylvester domain
"Free ideal rings and free products of rings"
MR
0506389
the original
Cohn, P. M.

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑