Knowledge

Gelfand representation

Source 📝

2932: 700: 2149:
from the category of commutative C*-algebras with unit and unit-preserving continuous *-homomorphisms, to the category of compact Hausdorff spaces and continuous maps. This functor is one half of a
78:
One of Gelfand's original applications (and one which historically motivated much of the study of Banach algebras) was to give a much shorter and more conceptual proof of a celebrated lemma of
1820:
In particular, the spectrum of a commutative C*-algebra is a locally compact Hausdorff space: In the unital case, i.e. where the C*-algebra has a multiplicative unit element 1, all characters
1761: 753: 369: 1408: 131: 1325: 848: 2075: 1587: 1210: 1110: 1642: 1476: 1448: 911: 963: 809: 1669: 1357: 1281: 1232: 331: 1259: 1037: 780: 599: 568: 490: 440: 648: 517: 1498:
is a completely regular Hausdorff space, then the representation space of the Banach algebra of bounded continuous functions is the Stone–Čech compactification of
3455: 1516: 1496: 1154: 1134: 1057: 1010: 987: 933: 868: 619: 537: 463: 413: 393: 305: 3557: 2821: 1844:âˆȘ {0}, where 0 is the zero homomorphism, and the removal of a single point from a compact Hausdorff space yields a locally compact Hausdorff space. 3190: 2657: 2484: 3212: 2263:) this is *-isomorphic to an algebra of continuous functions on a locally compact space. This observation leads almost immediately to: 2647: 3195: 2968: 3217: 2774: 2629: 83: 3542: 3205: 2605: 653: 3435: 58:
of an integrable function. In the latter case, the Gelfand–Naimark representation theorem is one avenue in the development of
3288: 3086: 3283: 2497: 1451: 3440: 2586: 2477: 2421: 2395: 2376: 1695: 705: 3258: 2856: 340: 3227: 2501: 3141: 3025: 1362: 96: 1286: 3628: 3450: 2961: 2652: 818: 2223:, which though not quite analogous to the Gelfand representation, does provide a concrete representation of 3618: 3076: 2935: 2708: 2642: 2470: 2032: 1552: 1171: 1066: 1596: 3587: 3507: 3061: 2672: 2212: 1907:
and as such can be given the relative weak-* topology. This is the topology of pointwise convergence. A
1456: 3562: 3460: 3340: 2917: 2871: 2795: 2677: 1420: 571: 1991:
can be regarded as a metric space. So the topology can be characterized via convergence of sequences.
873: 54:
In the former case, one may regard the Gelfand representation as a far-reaching generalization of the
3567: 3430: 3263: 3248: 3056: 3020: 2912: 2728: 2150: 1060: 939: 785: 3623: 3608: 3159: 3149: 3030: 2954: 2764: 2662: 2565: 1772: 1647: 1333: 1264: 1215: 314: 3522: 3497: 3315: 3304: 3015: 2861: 2637: 540: 1689:, not just as sets but as topological spaces. The Gelfand representation is then an isomorphism 3373: 3363: 3358: 2892: 2836: 2800: 1237: 1015: 758: 577: 546: 468: 418: 3118: 2599: 142: 2595: 627: 3613: 3532: 3511: 3425: 3310: 3273: 2875: 2320:
This allows us to apply continuous functions to bounded normal operators on Hilbert space.
2122:. (See the earlier remarks for the general, commutative Banach algebra case.) For any such 2119: 495: 334: 2462: 8: 3335: 3071: 2841: 2779: 2493: 1999: 25: 3465: 3394: 3325: 3169: 3131: 2866: 2733: 2451: 1501: 1481: 1157: 1139: 1119: 1042: 995: 972: 918: 853: 812: 604: 522: 448: 398: 378: 290: 170: 3572: 3547: 3232: 3154: 2846: 2417: 2391: 2372: 2145:
In the case of C*-algebras with unit, the spectrum map gives rise to a contravariant
1908: 1328: 148: 55: 181:
is obtained by considering the pointwise operations of addition and multiplication.
3577: 3278: 3126: 3081: 3005: 2851: 2769: 2738: 2718: 2703: 2698: 2693: 2443: 1411: 1113: 2530: 3552: 3537: 3445: 3408: 3404: 3368: 3330: 3268: 3253: 3222: 3164: 3123: 3110: 3035: 2977: 2946: 2713: 2667: 2615: 2610: 2581: 2413: 2364: 2154: 1980: 1896: 204: 145: 63: 59: 2540: 1875:. For unital C*-algebras, the two notions are connected in the following way: σ( 3502: 3481: 3399: 3389: 3200: 3107: 3040: 3000: 2902: 2754: 2555: 2431: 2405: 2216: 1934: 308: 245: 178: 79: 40: 2107:
The spectrum of a commutative C*-algebra can also be viewed as the set of all
1817:, so that this definition of the term 'character' agrees with the one above.) 1410:, the group algebra of the multiplicative reals, the Gelfand transform is the 3602: 2907: 2831: 2560: 2545: 2535: 2108: 1987:
on bounded subsets. Thus the spectrum of a separable commutative C*-algebra
253: 211:
is the common zero set of a family of continuous complex-valued functions on
67: 29: 3320: 3174: 3115: 2897: 2550: 2520: 2201: 188: 2255:, or equivalently if and only if it generates a commutative C*-algebra C*( 2235:
One of the most significant applications is the existence of a continuous
3517: 3102: 2826: 2816: 2723: 2525: 282: 37: 17: 3010: 2759: 2591: 2455: 2009: 1984: 1828:(1) is the complex number one. This excludes the zero homomorphism. So 47: 2130:
is one-dimensional (by the Gelfand-Mazur theorem), and therefore any
1679:
are of this form; a more precise analysis shows that we may identify Ί
989:. In general, the representation is neither injective nor surjective. 570:
turns out to be locally compact and Hausdorff. (This follows from the
2995: 2981: 1814: 850:
defines a norm-decreasing, unit-preserving algebra homomorphism from
601:
is compact (in the topology just defined) if and only if the algebra
2447: 3582: 3527: 133:
whose translates span dense subspaces in the respective algebras.
2146: 1832:
is closed under weak-* convergence and the spectrum is actually
1212:
is a Banach algebra under the convolution, the group algebra of
2157:
being the functor that assigns to each compact Hausdorff space
1859:
of an algebra with unit 1, that is the set of complex numbers
1136:. Thus the Gelfand representation is injective if and only if 1063:). As a consequence, the kernel of the Gelfand representation 2293:) from the algebra of continuous functions on the spectrum σ( 275:), the algebra of all continuous complex-valued functions on 82:(see the citation below), characterizing the elements of the 1801:
to the complex numbers. Elements of the spectrum are called
2492: 1766: 695:{\displaystyle {\widehat {a}}:\Phi _{A}\to {\mathbb {C} }} 1851:
is an overloaded word. It also refers to the spectrum σ(
1809:. (It can be shown that every algebra homomorphism from 2086:. The Gelfand map Îł is an isometric *-isomorphism from 199:
being locally compact and Hausdorff is that this turns
1012:
has an identity element, there is a bijection between
283:
Gelfand representation of a commutative Banach algebra
2035: 1698: 1650: 1599: 1555: 1504: 1484: 1459: 1423: 1365: 1336: 1289: 1267: 1240: 1218: 1174: 1142: 1122: 1069: 1045: 1018: 998: 975: 942: 921: 876: 856: 821: 788: 761: 708: 656: 630: 607: 580: 549: 525: 498: 471: 451: 421: 401: 381: 343: 317: 293: 99: 2010:
Statement of the commutative Gelfand–Naimark theorem
3558:Spectral theory of ordinary differential equations 2976: 2822:Spectral theory of ordinary differential equations 2172:)). In particular, given compact Hausdorff spaces 2069: 1755: 1663: 1636: 1581: 1510: 1490: 1470: 1442: 1402: 1351: 1319: 1275: 1253: 1226: 1204: 1148: 1128: 1104: 1051: 1031: 1004: 981: 957: 927: 905: 862: 842: 803: 774: 747: 694: 642: 613: 593: 562: 531: 511: 484: 457: 434: 407: 387: 363: 325: 299: 125: 50:, this representation is an isometric isomorphism. 3456:Schröder–Bernstein theorems for operator algebras 2312:It maps the identity function on the spectrum to 3600: 1836:. In the non-unital case, the weak-* closure of 184:The involution is pointwise complex conjugation. 66:, and generalizes the notion of diagonalizing a 2412:. Graduate Texts in Mathematics. Vol. 96. 2336: 1756:{\displaystyle C_{0}(X)\to C_{0}(\Phi _{A}).\ } 748:{\displaystyle {\widehat {a}}(\phi )=\phi (a)} 173:is in a natural way a commutative C*-algebra: 2962: 2478: 2385: 2080:be the Gelfand representation defined above. 1675:, and it can be shown that all characters of 364:{\displaystyle \Phi \colon A\to \mathbb {C} } 2305:It maps 1 to the multiplicative identity of 2259:). By the Gelfand isomorphism applied to C*( 539:; moreover, when equipped with the relative 165:) of continuous complex-valued functions on 2138:gives rise to a complex-valued function on 2969: 2955: 2485: 2471: 2006:), where Îł is the Gelfand representation. 1813:to the complex numbers is automatically a 215:, allowing one to recover the topology of 1526:As motivation, consider the special case 1464: 1403:{\displaystyle A=L^{1}(\mathbb {R} _{+})} 1387: 1310: 1269: 1220: 1195: 687: 357: 319: 207:. In such a space every closed subset of 126:{\displaystyle \ell ^{1}({\mathbf {Z} })} 2775:Group algebra of a locally compact group 1767:The spectrum of a commutative C*-algebra 1320:{\displaystyle f\in L^{1}(\mathbb {R} )} 445:It can be shown that every character on 2363: 2353:A course in commutative Banach algebras 843:{\displaystyle a\mapsto {\widehat {a}}} 465:is automatically continuous, and hence 3601: 2430: 2404: 1521: 3289:Spectral theory of normal C*-algebras 3087:Spectral theory of normal C*-algebras 2950: 2466: 2215:is a result for arbitrary (abstract) 2070:{\displaystyle \gamma :A\to C_{0}(X)} 1582:{\displaystyle \varphi _{x}\in A^{*}} 1205:{\displaystyle A=L^{1}(\mathbb {R} )} 1105:{\displaystyle A\to C_{0}(\Phi _{A})} 337:(a multiplicative linear functional) 73: 3284:Spectral theory of compact operators 2018:be a commutative C*-algebra and let 1637:{\displaystyle \varphi _{x}(f)=f(x)} 519:of continuous linear functionals on 136: 43:as algebras of continuous functions; 2442:(1). Annals of Mathematics: 1–100. 2386:Bonsall, F. F.; Duncan, J. (1973). 2196:) (as a C*-algebra) if and only if 1983:C*-algebra, the weak-* topology is 782:and the topology on it ensure that 13: 3436:Cohen–Hewitt factorization theorem 2273:be a C*-algebra with identity and 2239:for normal elements in C*-algebra 2153:between these two categories (its 1735: 1471:{\displaystyle \beta \mathbb {N} } 1450:, the representation space is the 1435: 1242: 1090: 1020: 891: 763: 673: 582: 551: 473: 423: 344: 14: 3640: 3441:Extensions of symmetric operators 2339:General theory of Banach algebras 2104:See the Arveson reference below. 1443:{\displaystyle A=\ell ^{\infty }} 1039:and the set of maximal ideals in 3259:Positive operator-valued measure 2931: 2930: 2857:Topological quantum field theory 1903:is a subset of the unit ball of 1879:) is the set of complex numbers 906:{\displaystyle C_{0}(\Phi _{A})} 115: 3543:Rayleigh–Faber–Krahn inequality 2410:A Course in Functional Analysis 2230: 1926:of elements of the spectrum of 395:; the set of all characters of 333:of complex numbers. A non-zero 177:The algebra structure over the 2434:(1932). "Tauberian theorems". 2345: 2330: 2281:. Then there is a *-morphism 2064: 2058: 2045: 1945:, the net of complex numbers { 1744: 1731: 1718: 1715: 1709: 1631: 1625: 1616: 1610: 1397: 1382: 1343: 1314: 1306: 1199: 1191: 1099: 1086: 1073: 958:{\displaystyle {\widehat {a}}} 900: 887: 825: 804:{\displaystyle {\widehat {a}}} 742: 736: 727: 721: 682: 353: 120: 110: 46:the fact that for commutative 1: 3451:Limiting absorption principle 2653:Uniform boundedness principle 2390:. New York: Springer-Verlag. 2323: 1891:ranges over Gelfand space of 1283:and the Gelfand transform of 3077:Singular value decomposition 2369:An Invitation to C*-Algebras 2227:as an algebra of operators. 1785:of a commutative C*-algebra 1664:{\displaystyle \varphi _{x}} 1352:{\displaystyle {\tilde {f}}} 1276:{\displaystyle \mathbb {R} } 1227:{\displaystyle \mathbb {R} } 326:{\displaystyle \mathbb {C} } 7: 3508:Hearing the shape of a drum 3191:Decomposition of a spectrum 2341:, van Nostrand, p. 114 1589:be pointwise evaluation at 1452:Stone–Čech compactification 1163: 1112:may be identified with the 913:. This homomorphism is the 650:, one defines the function 32:) is either of two things: 10: 3645: 3096:Special Elements/Operators 2796:Invariant subspace problem 2251:commutes with its adjoint 1770: 915:Gelfand representation of 3568:Superstrong approximation 3490: 3474: 3431:Banach algebra cohomology 3418: 3382: 3351: 3297: 3264:Projection-valued measure 3249:Borel functional calculus 3241: 3183: 3140: 3095: 3049: 3021:Projection-valued measure 2988: 2926: 2885: 2809: 2788: 2747: 2686: 2628: 2574: 2516: 2509: 2247:is normal if and only if 2151:contravariant equivalence 1793:, consists of the set of 1254:{\displaystyle \Phi _{A}} 1032:{\displaystyle \Phi _{A}} 775:{\displaystyle \Phi _{A}} 621:has an identity element. 594:{\displaystyle \Phi _{A}} 563:{\displaystyle \Phi _{A}} 492:is a subset of the space 485:{\displaystyle \Phi _{A}} 435:{\displaystyle \Phi _{A}} 311:, defined over the field 3160:Spectrum of a C*-algebra 3031:Spectrum of a C*-algebra 2765:Spectrum of a C*-algebra 2388:Complete Normed Algebras 2337:Charles Rickart (1974), 1773:Spectrum of a C*-algebra 205:completely regular space 3588:Wiener–Khinchin theorem 3523:Kuznetsov trace formula 3498:Almost Mathieu operator 3316:Banach function algebra 3305:Amenable Banach algebra 3062:Gelfand–Naimark theorem 3016:Noncommutative topology 2862:Noncommutative geometry 2213:Gelfand–Naimark theorem 1897:spectral radius formula 1871:1 is not invertible in 3563:Sturm–Liouville theory 3461:Sherman–Takeda theorem 3341:Tomita–Takesaki theory 3116:Hermitian/Self-adjoint 3067:Gelfand representation 2918:Tomita–Takesaki theory 2893:Approximation property 2837:Calculus of variations 2071: 1757: 1665: 1638: 1583: 1512: 1492: 1478:. More generally, if 1472: 1444: 1404: 1353: 1321: 1277: 1255: 1228: 1206: 1150: 1130: 1106: 1053: 1033: 1006: 983: 959: 929: 907: 864: 844: 805: 776: 749: 696: 644: 643:{\displaystyle a\in A} 615: 595: 572:Banach–Alaoglu theorem 564: 533: 513: 486: 459: 436: 409: 389: 365: 327: 301: 127: 36:a way of representing 22:Gelfand representation 3057:Gelfand–Mazur theorem 2913:Banach–Mazur distance 2876:Generalized functions 2126:the quotient algebra 2072: 1824:must be unital, i.e. 1797:*-homomorphisms from 1758: 1666: 1639: 1584: 1513: 1493: 1473: 1445: 1405: 1354: 1322: 1278: 1256: 1229: 1207: 1158:(Jacobson) semisimple 1151: 1131: 1107: 1061:Gelfand–Mazur theorem 1054: 1034: 1007: 984: 960: 930: 908: 865: 845: 806: 777: 750: 697: 645: 616: 596: 565: 534: 514: 512:{\displaystyle A^{*}} 487: 460: 437: 410: 390: 366: 328: 302: 128: 3629:Von Neumann algebras 3533:Proto-value function 3512:Dirichlet eigenvalue 3426:Abstract index group 3311:Approximate identity 3274:Rigged Hilbert space 3150:Krein–Rutman theorem 2996:Involution/*-algebra 2658:Kakutani fixed-point 2643:Riesz representation 2277:a normal element of 2120:hull-kernel topology 2033: 1895:. Together with the 1696: 1648: 1597: 1553: 1502: 1482: 1457: 1421: 1363: 1334: 1287: 1265: 1238: 1216: 1172: 1140: 1120: 1067: 1059:(this relies on the 1043: 1016: 996: 973: 940: 919: 874: 854: 819: 813:vanishes at infinity 786: 759: 755:. The definition of 706: 654: 628: 605: 578: 547: 523: 496: 469: 449: 419: 399: 379: 341: 335:algebra homomorphism 315: 291: 97: 3619:Functional analysis 3336:Von Neumann algebra 3072:Polar decomposition 2842:Functional calculus 2801:Mahler's conjecture 2780:Von Neumann algebra 2494:Functional analysis 2371:. Springer-Verlag. 2237:functional calculus 2188:) is isomorphic to 2022:be the spectrum of 1522:The C*-algebra case 1359:. Similarly, with 1261:is homeomorphic to 815:, and that the map 26:functional analysis 3466:Unbounded operator 3395:Essential spectrum 3374:Schur–Horn theorem 3364:Bauer–Fike theorem 3359:Alon–Boppana bound 3352:Finite-Dimensional 3326:Nuclear C*-algebra 3170:Spectral asymmetry 2867:Riemann hypothesis 2566:Topological vector 2067: 1899:, this shows that 1753: 1671:is a character on 1661: 1634: 1579: 1508: 1488: 1468: 1440: 1400: 1349: 1317: 1273: 1251: 1224: 1202: 1146: 1126: 1102: 1049: 1029: 1002: 992:In the case where 979: 955: 925: 903: 860: 840: 811:is continuous and 801: 772: 745: 692: 640: 611: 591: 560: 529: 509: 482: 455: 432: 405: 385: 361: 323: 297: 195:The importance of 171:vanish at infinity 123: 74:Historical remarks 3596: 3595: 3573:Transfer operator 3548:Spectral geometry 3233:Spectral abscissa 3213:Approximate point 3155:Normal eigenvalue 2944: 2943: 2847:Integral operator 2624: 2623: 1752: 1511:{\displaystyle X} 1491:{\displaystyle X} 1346: 1329:Fourier transform 1168:The Banach space 1149:{\displaystyle A} 1129:{\displaystyle A} 1052:{\displaystyle A} 1005:{\displaystyle A} 982:{\displaystyle a} 967:Gelfand transform 952: 928:{\displaystyle A} 863:{\displaystyle A} 837: 798: 718: 666: 614:{\displaystyle A} 532:{\displaystyle A} 458:{\displaystyle A} 408:{\displaystyle A} 388:{\displaystyle A} 307:be a commutative 300:{\displaystyle A} 256:, in which case 149:topological space 137:The model algebra 56:Fourier transform 3636: 3578:Transform theory 3298:Special algebras 3279:Spectral theorem 3242:Spectral Theorem 3082:Spectral theorem 2971: 2964: 2957: 2948: 2947: 2934: 2933: 2852:Jones polynomial 2770:Operator algebra 2514: 2513: 2487: 2480: 2473: 2464: 2463: 2459: 2427: 2401: 2382: 2356: 2349: 2343: 2342: 2334: 2076: 2074: 2073: 2068: 2057: 2056: 1994:Equivalently, σ( 1855:) of an element 1762: 1760: 1759: 1754: 1750: 1743: 1742: 1730: 1729: 1708: 1707: 1670: 1668: 1667: 1662: 1660: 1659: 1643: 1641: 1640: 1635: 1609: 1608: 1588: 1586: 1585: 1580: 1578: 1577: 1565: 1564: 1517: 1515: 1514: 1509: 1497: 1495: 1494: 1489: 1477: 1475: 1474: 1469: 1467: 1449: 1447: 1446: 1441: 1439: 1438: 1412:Mellin transform 1409: 1407: 1406: 1401: 1396: 1395: 1390: 1381: 1380: 1358: 1356: 1355: 1350: 1348: 1347: 1339: 1326: 1324: 1323: 1318: 1313: 1305: 1304: 1282: 1280: 1279: 1274: 1272: 1260: 1258: 1257: 1252: 1250: 1249: 1233: 1231: 1230: 1225: 1223: 1211: 1209: 1208: 1203: 1198: 1190: 1189: 1155: 1153: 1152: 1147: 1135: 1133: 1132: 1127: 1114:Jacobson radical 1111: 1109: 1108: 1103: 1098: 1097: 1085: 1084: 1058: 1056: 1055: 1050: 1038: 1036: 1035: 1030: 1028: 1027: 1011: 1009: 1008: 1003: 988: 986: 985: 980: 964: 962: 961: 956: 954: 953: 945: 934: 932: 931: 926: 912: 910: 909: 904: 899: 898: 886: 885: 869: 867: 866: 861: 849: 847: 846: 841: 839: 838: 830: 810: 808: 807: 802: 800: 799: 791: 781: 779: 778: 773: 771: 770: 754: 752: 751: 746: 720: 719: 711: 701: 699: 698: 693: 691: 690: 681: 680: 668: 667: 659: 649: 647: 646: 641: 620: 618: 617: 612: 600: 598: 597: 592: 590: 589: 569: 567: 566: 561: 559: 558: 538: 536: 535: 530: 518: 516: 515: 510: 508: 507: 491: 489: 488: 483: 481: 480: 464: 462: 461: 456: 441: 439: 438: 433: 431: 430: 414: 412: 411: 406: 394: 392: 391: 386: 370: 368: 367: 362: 360: 332: 330: 329: 324: 322: 306: 304: 303: 298: 187:The norm is the 132: 130: 129: 124: 119: 118: 109: 108: 64:normal operators 3644: 3643: 3639: 3638: 3637: 3635: 3634: 3633: 3624:Operator theory 3609:Banach algebras 3599: 3598: 3597: 3592: 3553:Spectral method 3538:Ramanujan graph 3486: 3470: 3446:Fredholm theory 3414: 3409:Shilov boundary 3405:Structure space 3383:Generalizations 3378: 3369:Numerical range 3347: 3331:Uniform algebra 3293: 3269:Riesz projector 3254:Min-max theorem 3237: 3223:Direct integral 3179: 3165:Spectral radius 3136: 3091: 3045: 3036:Spectral radius 2984: 2978:Spectral theory 2975: 2945: 2940: 2922: 2886:Advanced topics 2881: 2805: 2784: 2743: 2709:Hilbert–Schmidt 2682: 2673:Gelfand–Naimark 2620: 2570: 2505: 2491: 2448:10.2307/1968102 2424: 2414:Springer Verlag 2398: 2379: 2360: 2359: 2351:Kainuth (2009) 2350: 2346: 2335: 2331: 2326: 2233: 2167: 2161:the C*-algebra 2096: 2052: 2048: 2034: 2031: 2030: 2012: 1963: 1953: 1925: 1919: 1775: 1769: 1738: 1734: 1725: 1721: 1703: 1699: 1697: 1694: 1693: 1684: 1655: 1651: 1649: 1646: 1645: 1604: 1600: 1598: 1595: 1594: 1573: 1569: 1560: 1556: 1554: 1551: 1550: 1536: 1524: 1503: 1500: 1499: 1483: 1480: 1479: 1463: 1458: 1455: 1454: 1434: 1430: 1422: 1419: 1418: 1391: 1386: 1385: 1376: 1372: 1364: 1361: 1360: 1338: 1337: 1335: 1332: 1331: 1309: 1300: 1296: 1288: 1285: 1284: 1268: 1266: 1263: 1262: 1245: 1241: 1239: 1236: 1235: 1219: 1217: 1214: 1213: 1194: 1185: 1181: 1173: 1170: 1169: 1166: 1141: 1138: 1137: 1121: 1118: 1117: 1093: 1089: 1080: 1076: 1068: 1065: 1064: 1044: 1041: 1040: 1023: 1019: 1017: 1014: 1013: 997: 994: 993: 974: 971: 970: 969:of the element 944: 943: 941: 938: 937: 920: 917: 916: 894: 890: 881: 877: 875: 872: 871: 855: 852: 851: 829: 828: 820: 817: 816: 790: 789: 787: 784: 783: 766: 762: 760: 757: 756: 710: 709: 707: 704: 703: 686: 685: 676: 672: 658: 657: 655: 652: 651: 629: 626: 625: 606: 603: 602: 585: 581: 579: 576: 575: 554: 550: 548: 545: 544: 541:weak-* topology 524: 521: 520: 503: 499: 497: 494: 493: 476: 472: 470: 467: 466: 450: 447: 446: 426: 422: 420: 417: 416: 400: 397: 396: 380: 377: 376: 356: 342: 339: 338: 318: 316: 313: 312: 292: 289: 288: 285: 262: 248:if and only if 239: 225: 179:complex numbers 160: 143:locally compact 139: 114: 113: 104: 100: 98: 95: 94: 76: 60:spectral theory 41:Banach algebras 12: 11: 5: 3642: 3632: 3631: 3626: 3621: 3616: 3611: 3594: 3593: 3591: 3590: 3585: 3580: 3575: 3570: 3565: 3560: 3555: 3550: 3545: 3540: 3535: 3530: 3525: 3520: 3515: 3505: 3503:Corona theorem 3500: 3494: 3492: 3488: 3487: 3485: 3484: 3482:Wiener algebra 3478: 3476: 3472: 3471: 3469: 3468: 3463: 3458: 3453: 3448: 3443: 3438: 3433: 3428: 3422: 3420: 3416: 3415: 3413: 3412: 3402: 3400:Pseudospectrum 3397: 3392: 3390:Dirac spectrum 3386: 3384: 3380: 3379: 3377: 3376: 3371: 3366: 3361: 3355: 3353: 3349: 3348: 3346: 3345: 3344: 3343: 3333: 3328: 3323: 3318: 3313: 3307: 3301: 3299: 3295: 3294: 3292: 3291: 3286: 3281: 3276: 3271: 3266: 3261: 3256: 3251: 3245: 3243: 3239: 3238: 3236: 3235: 3230: 3225: 3220: 3215: 3210: 3209: 3208: 3203: 3198: 3187: 3185: 3181: 3180: 3178: 3177: 3172: 3167: 3162: 3157: 3152: 3146: 3144: 3138: 3137: 3135: 3134: 3129: 3121: 3113: 3105: 3099: 3097: 3093: 3092: 3090: 3089: 3084: 3079: 3074: 3069: 3064: 3059: 3053: 3051: 3047: 3046: 3044: 3043: 3041:Operator space 3038: 3033: 3028: 3023: 3018: 3013: 3008: 3003: 3001:Banach algebra 2998: 2992: 2990: 2989:Basic concepts 2986: 2985: 2974: 2973: 2966: 2959: 2951: 2942: 2941: 2939: 2938: 2927: 2924: 2923: 2921: 2920: 2915: 2910: 2905: 2903:Choquet theory 2900: 2895: 2889: 2887: 2883: 2882: 2880: 2879: 2869: 2864: 2859: 2854: 2849: 2844: 2839: 2834: 2829: 2824: 2819: 2813: 2811: 2807: 2806: 2804: 2803: 2798: 2792: 2790: 2786: 2785: 2783: 2782: 2777: 2772: 2767: 2762: 2757: 2755:Banach algebra 2751: 2749: 2745: 2744: 2742: 2741: 2736: 2731: 2726: 2721: 2716: 2711: 2706: 2701: 2696: 2690: 2688: 2684: 2683: 2681: 2680: 2678:Banach–Alaoglu 2675: 2670: 2665: 2660: 2655: 2650: 2645: 2640: 2634: 2632: 2626: 2625: 2622: 2621: 2619: 2618: 2613: 2608: 2606:Locally convex 2603: 2589: 2584: 2578: 2576: 2572: 2571: 2569: 2568: 2563: 2558: 2553: 2548: 2543: 2538: 2533: 2528: 2523: 2517: 2511: 2507: 2506: 2490: 2489: 2482: 2475: 2467: 2461: 2460: 2428: 2422: 2402: 2396: 2383: 2377: 2358: 2357: 2344: 2328: 2327: 2325: 2322: 2318: 2317: 2310: 2232: 2229: 2217:noncommutative 2165: 2109:maximal ideals 2094: 2078: 2077: 2066: 2063: 2060: 2055: 2051: 2047: 2044: 2041: 2038: 2011: 2008: 1959: 1949: 1935:if and only if 1921: 1915: 1815:*-homomorphism 1768: 1765: 1764: 1763: 1749: 1746: 1741: 1737: 1733: 1728: 1724: 1720: 1717: 1714: 1711: 1706: 1702: 1680: 1658: 1654: 1633: 1630: 1627: 1624: 1621: 1618: 1615: 1612: 1607: 1603: 1576: 1572: 1568: 1563: 1559: 1534: 1523: 1520: 1507: 1487: 1466: 1462: 1437: 1433: 1429: 1426: 1399: 1394: 1389: 1384: 1379: 1375: 1371: 1368: 1345: 1342: 1316: 1312: 1308: 1303: 1299: 1295: 1292: 1271: 1248: 1244: 1222: 1201: 1197: 1193: 1188: 1184: 1180: 1177: 1165: 1162: 1145: 1125: 1101: 1096: 1092: 1088: 1083: 1079: 1075: 1072: 1048: 1026: 1022: 1001: 978: 951: 948: 924: 902: 897: 893: 889: 884: 880: 859: 836: 833: 827: 824: 797: 794: 769: 765: 744: 741: 738: 735: 732: 729: 726: 723: 717: 714: 689: 684: 679: 675: 671: 665: 662: 639: 636: 633: 610: 588: 584: 557: 553: 528: 506: 502: 479: 475: 454: 429: 425: 415:is denoted by 404: 384: 359: 355: 352: 349: 346: 321: 309:Banach algebra 296: 284: 281: 267:) is equal to 260: 237: 223: 193: 192: 185: 182: 158: 138: 135: 122: 117: 112: 107: 103: 84:group algebras 80:Norbert Wiener 75: 72: 52: 51: 44: 9: 6: 4: 3: 2: 3641: 3630: 3627: 3625: 3622: 3620: 3617: 3615: 3612: 3610: 3607: 3606: 3604: 3589: 3586: 3584: 3581: 3579: 3576: 3574: 3571: 3569: 3566: 3564: 3561: 3559: 3556: 3554: 3551: 3549: 3546: 3544: 3541: 3539: 3536: 3534: 3531: 3529: 3526: 3524: 3521: 3519: 3516: 3513: 3509: 3506: 3504: 3501: 3499: 3496: 3495: 3493: 3489: 3483: 3480: 3479: 3477: 3473: 3467: 3464: 3462: 3459: 3457: 3454: 3452: 3449: 3447: 3444: 3442: 3439: 3437: 3434: 3432: 3429: 3427: 3424: 3423: 3421: 3419:Miscellaneous 3417: 3410: 3406: 3403: 3401: 3398: 3396: 3393: 3391: 3388: 3387: 3385: 3381: 3375: 3372: 3370: 3367: 3365: 3362: 3360: 3357: 3356: 3354: 3350: 3342: 3339: 3338: 3337: 3334: 3332: 3329: 3327: 3324: 3322: 3319: 3317: 3314: 3312: 3308: 3306: 3303: 3302: 3300: 3296: 3290: 3287: 3285: 3282: 3280: 3277: 3275: 3272: 3270: 3267: 3265: 3262: 3260: 3257: 3255: 3252: 3250: 3247: 3246: 3244: 3240: 3234: 3231: 3229: 3226: 3224: 3221: 3219: 3216: 3214: 3211: 3207: 3204: 3202: 3199: 3197: 3194: 3193: 3192: 3189: 3188: 3186: 3184:Decomposition 3182: 3176: 3173: 3171: 3168: 3166: 3163: 3161: 3158: 3156: 3153: 3151: 3148: 3147: 3145: 3143: 3139: 3133: 3130: 3128: 3125: 3122: 3120: 3117: 3114: 3112: 3109: 3106: 3104: 3101: 3100: 3098: 3094: 3088: 3085: 3083: 3080: 3078: 3075: 3073: 3070: 3068: 3065: 3063: 3060: 3058: 3055: 3054: 3052: 3048: 3042: 3039: 3037: 3034: 3032: 3029: 3027: 3024: 3022: 3019: 3017: 3014: 3012: 3009: 3007: 3004: 3002: 2999: 2997: 2994: 2993: 2991: 2987: 2983: 2979: 2972: 2967: 2965: 2960: 2958: 2953: 2952: 2949: 2937: 2929: 2928: 2925: 2919: 2916: 2914: 2911: 2909: 2908:Weak topology 2906: 2904: 2901: 2899: 2896: 2894: 2891: 2890: 2888: 2884: 2877: 2873: 2870: 2868: 2865: 2863: 2860: 2858: 2855: 2853: 2850: 2848: 2845: 2843: 2840: 2838: 2835: 2833: 2832:Index theorem 2830: 2828: 2825: 2823: 2820: 2818: 2815: 2814: 2812: 2808: 2802: 2799: 2797: 2794: 2793: 2791: 2789:Open problems 2787: 2781: 2778: 2776: 2773: 2771: 2768: 2766: 2763: 2761: 2758: 2756: 2753: 2752: 2750: 2746: 2740: 2737: 2735: 2732: 2730: 2727: 2725: 2722: 2720: 2717: 2715: 2712: 2710: 2707: 2705: 2702: 2700: 2697: 2695: 2692: 2691: 2689: 2685: 2679: 2676: 2674: 2671: 2669: 2666: 2664: 2661: 2659: 2656: 2654: 2651: 2649: 2646: 2644: 2641: 2639: 2636: 2635: 2633: 2631: 2627: 2617: 2614: 2612: 2609: 2607: 2604: 2601: 2597: 2593: 2590: 2588: 2585: 2583: 2580: 2579: 2577: 2573: 2567: 2564: 2562: 2559: 2557: 2554: 2552: 2549: 2547: 2544: 2542: 2539: 2537: 2534: 2532: 2529: 2527: 2524: 2522: 2519: 2518: 2515: 2512: 2508: 2503: 2499: 2495: 2488: 2483: 2481: 2476: 2474: 2469: 2468: 2465: 2457: 2453: 2449: 2445: 2441: 2437: 2433: 2429: 2425: 2423:0-387-97245-5 2419: 2415: 2411: 2407: 2406:Conway, J. B. 2403: 2399: 2397:0-387-06386-2 2393: 2389: 2384: 2380: 2378:0-387-90176-0 2374: 2370: 2366: 2362: 2361: 2354: 2348: 2340: 2333: 2329: 2321: 2315: 2311: 2308: 2304: 2303: 2302: 2300: 2296: 2292: 2288: 2284: 2280: 2276: 2272: 2268: 2264: 2262: 2258: 2254: 2250: 2246: 2243:: An element 2242: 2238: 2228: 2226: 2222: 2218: 2214: 2209: 2207: 2203: 2199: 2195: 2191: 2187: 2183: 2179: 2175: 2171: 2164: 2160: 2156: 2152: 2148: 2143: 2141: 2137: 2133: 2129: 2125: 2121: 2117: 2113: 2110: 2105: 2102: 2100: 2093: 2089: 2085: 2081: 2061: 2053: 2049: 2042: 2039: 2036: 2029: 2028: 2027: 2025: 2021: 2017: 2007: 2005: 2001: 1997: 1992: 1990: 1986: 1982: 1978: 1973: 1971: 1967: 1964:converges to 1962: 1957: 1952: 1948: 1944: 1940: 1936: 1933: 1930:converges to 1929: 1924: 1918: 1914: 1910: 1906: 1902: 1898: 1894: 1890: 1886: 1882: 1878: 1874: 1870: 1867: âˆ’  1866: 1862: 1858: 1854: 1850: 1845: 1843: 1839: 1835: 1831: 1827: 1823: 1818: 1816: 1812: 1808: 1804: 1800: 1796: 1792: 1788: 1784: 1783:Gelfand space 1780: 1774: 1747: 1739: 1726: 1722: 1712: 1704: 1700: 1692: 1691: 1690: 1688: 1683: 1678: 1674: 1656: 1652: 1628: 1622: 1619: 1613: 1605: 1601: 1592: 1574: 1570: 1566: 1561: 1557: 1548: 1544: 1540: 1533: 1529: 1519: 1505: 1485: 1460: 1453: 1431: 1427: 1424: 1415: 1413: 1392: 1377: 1373: 1369: 1366: 1340: 1330: 1301: 1297: 1293: 1290: 1246: 1186: 1182: 1178: 1175: 1161: 1159: 1143: 1123: 1115: 1094: 1081: 1077: 1070: 1062: 1046: 1024: 999: 990: 976: 968: 949: 946: 935: 922: 895: 882: 878: 857: 834: 831: 822: 814: 795: 792: 767: 739: 733: 730: 724: 715: 712: 677: 669: 663: 660: 637: 634: 631: 622: 608: 586: 574:.) The space 573: 555: 542: 526: 504: 500: 477: 452: 443: 427: 402: 382: 374: 350: 347: 336: 310: 294: 280: 278: 274: 270: 266: 259: 255: 251: 247: 243: 236: 231: 229: 222: 218: 214: 210: 206: 202: 198: 191:on functions. 190: 186: 183: 180: 176: 175: 174: 172: 168: 164: 157: 153: 150: 147: 144: 134: 105: 101: 92: 88: 85: 81: 71: 69: 68:normal matrix 65: 61: 57: 49: 45: 42: 39: 35: 34: 33: 31: 30:I. M. Gelfand 28:(named after 27: 23: 19: 3491:Applications 3321:Disk algebra 3175:Spectral gap 3066: 3050:Main results 2898:Balanced set 2872:Distribution 2810:Applications 2663:Krein–Milman 2648:Closed graph 2439: 2436:Ann. of Math 2435: 2409: 2387: 2368: 2352: 2347: 2338: 2332: 2319: 2313: 2306: 2298: 2294: 2290: 2286: 2282: 2278: 2274: 2270: 2266: 2265: 2260: 2256: 2252: 2248: 2244: 2240: 2236: 2234: 2231:Applications 2224: 2220: 2219:C*-algebras 2210: 2205: 2202:homeomorphic 2197: 2193: 2189: 2185: 2181: 2177: 2173: 2169: 2162: 2158: 2144: 2139: 2135: 2131: 2127: 2123: 2115: 2111: 2106: 2103: 2098: 2091: 2087: 2083: 2082: 2079: 2023: 2019: 2015: 2013: 2003: 1995: 1993: 1988: 1976: 1974: 1969: 1965: 1960: 1955: 1950: 1946: 1942: 1938: 1931: 1927: 1922: 1916: 1912: 1904: 1900: 1892: 1888: 1884: 1880: 1876: 1872: 1868: 1864: 1860: 1856: 1852: 1848: 1846: 1841: 1837: 1833: 1829: 1825: 1821: 1819: 1810: 1806: 1802: 1798: 1794: 1790: 1786: 1782: 1778: 1776: 1686: 1681: 1676: 1672: 1590: 1546: 1542: 1538: 1531: 1527: 1525: 1416: 1167: 991: 966: 914: 623: 444: 372: 371:is called a 286: 276: 272: 268: 264: 257: 249: 241: 234: 232: 227: 220: 216: 212: 208: 200: 196: 194: 189:uniform norm 166: 162: 155: 154:, the space 151: 140: 90: 86: 77: 53: 21: 15: 3614:C*-algebras 3518:Heat kernel 3218:Compression 3103:Isospectral 2827:Heat kernel 2817:Hardy space 2724:Trace class 2638:Hahn–Banach 2600:Topological 2365:Arveson, W. 2211:The 'full' 2118:, with the 233:Note that 48:C*-algebras 38:commutative 18:mathematics 3603:Categories 3196:Continuous 3011:C*-algebra 3006:B*-algebra 2760:C*-algebra 2575:Properties 2432:Wiener, N. 2324:References 2301:such that 1985:metrizable 1863:for which 1847:Note that 1803:characters 1789:, denoted 1771:See also: 2982:-algebras 2734:Unbounded 2729:Transpose 2687:Operators 2616:Separable 2611:Reflexive 2596:Algebraic 2582:Barrelled 2046:→ 2037:γ 1998:) is the 1981:separable 1937:for each 1736:Φ 1719:→ 1653:φ 1602:φ 1575:∗ 1567:∈ 1558:φ 1541:). Given 1461:β 1436:∞ 1432:ℓ 1344:~ 1294:∈ 1243:Φ 1091:Φ 1074:→ 1021:Φ 950:^ 892:Φ 835:^ 826:↦ 796:^ 764:Φ 734:ϕ 725:ϕ 716:^ 683:→ 674:Φ 664:^ 635:∈ 583:Φ 552:Φ 505:∗ 474:Φ 424:Φ 373:character 354:→ 348:: 345:Φ 146:Hausdorff 102:ℓ 3583:Weyl law 3528:Lax pair 3475:Examples 3309:With an 3228:Discrete 3206:Residual 3142:Spectrum 3127:operator 3119:operator 3111:operator 3026:Spectrum 2936:Category 2748:Algebras 2630:Theorems 2587:Complete 2556:Schwartz 2502:glossary 2408:(1990). 2367:(1981). 1887:) where 1849:spectrum 1795:non-zero 1779:spectrum 1234:. Then 1164:Examples 141:For any 3124:Unitary 2739:Unitary 2719:Nuclear 2704:Compact 2699:Bounded 2694:Adjoint 2668:Min–max 2561:Sobolev 2546:Nuclear 2536:Hilbert 2531:FrĂ©chet 2496: ( 2456:1968102 2297:) into 2269:. Let 2267:Theorem 2180:, then 2155:adjoint 2147:functor 2084:Theorem 2026:. Let 1834:compact 1644:. Then 1593:, i.e. 1327:is the 965:is the 254:compact 203:into a 3108:Normal 2714:Normal 2551:Orlicz 2541:Hölder 2521:Banach 2510:Spaces 2498:topics 2454:  2438:. II. 2420:  2394:  2375:  2355:, p 72 1751:  1549:, let 936:, and 624:Given 246:unital 244:) is 169:which 93:) and 20:, the 3201:Point 2526:Besov 2452:JSTOR 2090:onto 2002:of Îł( 2000:range 1979:is a 1685:with 219:from 3132:Unit 2980:and 2874:(or 2592:Dual 2418:ISBN 2392:ISBN 2373:ISBN 2176:and 2014:Let 1777:The 1417:For 287:Let 62:for 2444:doi 2204:to 2200:is 2134:in 2128:A/m 2114:of 2101:). 1975:If 1972:). 1941:in 1909:net 1840:is 1805:on 1781:or 1545:in 1156:is 1116:of 870:to 702:by 375:of 252:is 230:). 24:in 16:In 3605:: 2500:– 2450:. 2440:33 2416:. 2285:→ 2253:x* 2208:. 2142:. 1958:)} 1905:A* 1530:= 1518:. 1414:. 1160:. 543:, 442:. 279:. 70:. 3514:) 3510:( 3411:) 3407:( 2970:e 2963:t 2956:v 2878:) 2602:) 2598:/ 2594:( 2504:) 2486:e 2479:t 2472:v 2458:. 2446:: 2426:. 2400:. 2381:. 2316:. 2314:x 2309:; 2307:A 2299:A 2295:x 2291:x 2289:( 2287:f 2283:f 2279:A 2275:x 2271:A 2261:x 2257:x 2249:x 2245:x 2241:A 2225:A 2221:A 2206:Y 2198:X 2194:Y 2192:( 2190:C 2186:X 2184:( 2182:C 2178:Y 2174:X 2170:X 2168:( 2166:0 2163:C 2159:X 2140:Y 2136:A 2132:a 2124:m 2116:A 2112:m 2099:X 2097:( 2095:0 2092:C 2088:A 2065:) 2062:X 2059:( 2054:0 2050:C 2043:A 2040:: 2024:A 2020:X 2016:A 2004:x 1996:x 1989:A 1977:A 1970:x 1968:( 1966:f 1961:k 1956:x 1954:( 1951:k 1947:f 1943:A 1939:x 1932:f 1928:A 1923:k 1920:} 1917:k 1913:f 1911:{ 1901: 1893:A 1889:f 1885:x 1883:( 1881:f 1877:x 1873:A 1869:r 1865:x 1861:r 1857:x 1853:x 1842: 1838: 1830: 1826:f 1822:f 1811:A 1807:A 1799:A 1791: 1787:A 1748:. 1745:) 1740:A 1732:( 1727:0 1723:C 1716:) 1713:X 1710:( 1705:0 1701:C 1687:X 1682:A 1677:A 1673:A 1657:x 1632:) 1629:x 1626:( 1623:f 1620:= 1617:) 1614:f 1611:( 1606:x 1591:x 1571:A 1562:x 1547:X 1543:x 1539:X 1537:( 1535:0 1532:C 1528:A 1506:X 1486:X 1465:N 1428:= 1425:A 1398:) 1393:+ 1388:R 1383:( 1378:1 1374:L 1370:= 1367:A 1341:f 1315:) 1311:R 1307:( 1302:1 1298:L 1291:f 1270:R 1247:A 1221:R 1200:) 1196:R 1192:( 1187:1 1183:L 1179:= 1176:A 1144:A 1124:A 1100:) 1095:A 1087:( 1082:0 1078:C 1071:A 1047:A 1025:A 1000:A 977:a 947:a 923:A 901:) 896:A 888:( 883:0 879:C 858:A 832:a 823:a 793:a 768:A 743:) 740:a 737:( 731:= 728:) 722:( 713:a 688:C 678:A 670:: 661:a 638:A 632:a 609:A 587:A 556:A 527:A 501:A 478:A 453:A 428:A 403:A 383:A 358:C 351:A 320:C 295:A 277:X 273:X 271:( 269:C 265:X 263:( 261:0 258:C 250:X 242:X 240:( 238:0 235:C 228:X 226:( 224:0 221:C 217:X 213:X 209:X 201:X 197:X 167:X 163:X 161:( 159:0 156:C 152:X 121:) 116:Z 111:( 106:1 91:R 89:( 87:L

Index

mathematics
functional analysis
I. M. Gelfand
commutative
Banach algebras
C*-algebras
Fourier transform
spectral theory
normal operators
normal matrix
Norbert Wiener
group algebras
locally compact
Hausdorff
topological space
vanish at infinity
complex numbers
uniform norm
completely regular space
unital
compact
Banach algebra
algebra homomorphism
weak-* topology
Banach–Alaoglu theorem
vanishes at infinity
Gelfand–Mazur theorem
Jacobson radical
(Jacobson) semisimple
Fourier transform

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑