Knowledge

Generating set of a module

Source 📝

618: 326: 517: 242: 659: 256: 17: 446: 652: 172: 683: 645: 543: 536: 555: 678: 380: 93: 73: 633: 394:
is generated as a principal ideal by 1, but it is also generated by, say, a minimal generating set
542:
A more refined information is obtained if one considers the relations between the generators; see
565: 376: 344:-th component of the direct sum. (Coincidentally, since a generating set always exists, e.g. 586:"ac.commutative algebra – Existence of a minimal generating set of a module – MathOverflow" 528: 39: 8: 436: 372: 100: 46: 625: 349: 104: 629: 672: 425: 418: 364: 76:
of all submodules containing the set). The set Γ is then said to generate
560: 524: 387: 353: 31: 414: 248: 89: 321:{\displaystyle \bigoplus _{g\in \Gamma }R\to M,\,r_{g}\mapsto r_{g}g,} 107:
is an ideal that has a generating set consisting of a single element.
61: 617: 390:
of a minimal generating set need not be an invariant of the module;
585: 403: 103:, which are the submodules of the ring itself. In particular, a 53: 122:-linear combination of some elements of Γ; i.e., for each 72:
itself (the smallest submodule containing a subset is the
375:, then a minimal generating set is the same thing as a 512:{\displaystyle \dim _{k}M/mM=\dim _{k}M\otimes _{R}k} 449: 259: 175: 511: 443:has a minimal generating set whose cardinality is 320: 236: 110:Explicitly, if Γ is a generating set of a module 84:is generated by the identity element 1 as a left 670: 406:of the numbers of the generators of the module. 237:{\displaystyle x=r_{1}g_{1}+\cdots +r_{m}g_{m}.} 653: 383:, there may exist no minimal generating set. 92:generating set, then a module is said to be 359:A generating set of a module is said to be 660: 646: 288: 402:uniquely determined by a module is the 14: 671: 527:, then this minimal generating set is 348:itself, this shows that a module is a 612: 367:of the set generates the module. If 88:-module over itself. If there is a 24: 271: 25: 695: 616: 435:finitely generated module. Then 601:Dummit, David; Foote, Richard. 247:Put in another way, there is a 578: 299: 279: 13: 1: 571: 544:Free presentation of a module 632:. You can help Knowledge by 7: 549: 10: 700: 611: 556:Countably generated module 18:Generating set of an ideal 114:, then every element of 80:. For example, the ring 379:. Unless the module is 60:such that the smallest 684:Abstract algebra stubs 628:-related article is a 566:Invariant basis number 513: 340:for an element in the 322: 238: 27:Concept in mathematics 514: 323: 239: 535:is free). See also: 529:linearly independent 447: 257: 173: 537:Minimal resolution 509: 381:finitely generated 356:, a useful fact.) 318: 275: 234: 94:finitely generated 641: 640: 260: 16:(Redirected from 691: 679:Abstract algebra 662: 655: 648: 626:abstract algebra 620: 613: 603:Abstract Algebra 594: 593: 590:mathoverflow.net 582: 518: 516: 515: 510: 505: 504: 489: 488: 470: 459: 458: 437:Nakayama's lemma 397: 327: 325: 324: 319: 311: 310: 298: 297: 274: 243: 241: 240: 235: 230: 229: 220: 219: 201: 200: 191: 190: 99:This applies to 68:containing Γ is 21: 699: 698: 694: 693: 692: 690: 689: 688: 669: 668: 667: 666: 609: 598: 597: 584: 583: 579: 574: 552: 500: 496: 484: 480: 466: 454: 450: 448: 445: 444: 395: 339: 331:where we wrote 306: 302: 293: 289: 264: 258: 255: 254: 225: 221: 215: 211: 196: 192: 186: 182: 174: 171: 170: 166:in Γ such that 165: 156: 145: 136: 105:principal ideal 28: 23: 22: 15: 12: 11: 5: 697: 687: 686: 681: 665: 664: 657: 650: 642: 639: 638: 621: 607: 606: 596: 595: 576: 575: 573: 570: 569: 568: 563: 558: 551: 548: 508: 503: 499: 495: 492: 487: 483: 479: 476: 473: 469: 465: 462: 457: 453: 335: 329: 328: 317: 314: 309: 305: 301: 296: 292: 287: 284: 281: 278: 273: 270: 267: 263: 245: 244: 233: 228: 224: 218: 214: 210: 207: 204: 199: 195: 189: 185: 181: 178: 161: 154: 141: 134: 118:is a (finite) 36:generating set 26: 9: 6: 4: 3: 2: 696: 685: 682: 680: 677: 676: 674: 663: 658: 656: 651: 649: 644: 643: 637: 635: 631: 627: 622: 619: 615: 614: 610: 604: 600: 599: 591: 587: 581: 577: 567: 564: 562: 559: 557: 554: 553: 547: 545: 540: 538: 534: 530: 526: 522: 506: 501: 497: 493: 490: 485: 481: 477: 474: 471: 467: 463: 460: 455: 451: 442: 438: 434: 430: 427: 426:residue field 423: 420: 419:maximal ideal 416: 412: 407: 405: 401: 393: 389: 384: 382: 378: 374: 370: 366: 365:proper subset 362: 357: 355: 351: 347: 343: 338: 334: 315: 312: 307: 303: 294: 290: 285: 282: 276: 268: 265: 261: 253: 252: 251: 250: 231: 226: 222: 216: 212: 208: 205: 202: 197: 193: 187: 183: 179: 176: 169: 168: 167: 164: 160: 153: 149: 144: 140: 133: 129: 125: 121: 117: 113: 108: 106: 102: 97: 95: 91: 87: 83: 79: 75: 71: 67: 63: 59: 55: 51: 48: 44: 41: 37: 33: 19: 634:expanding it 623: 608: 602: 589: 580: 541: 532: 520: 440: 432: 428: 421: 410: 408: 399: 391: 385: 368: 360: 358: 345: 341: 336: 332: 330: 246: 162: 158: 151: 147: 142: 138: 131: 130:, there are 127: 123: 119: 115: 111: 109: 98: 85: 81: 77: 74:intersection 69: 65: 57: 49: 42: 35: 29: 561:Flat module 388:cardinality 354:free module 32:mathematics 673:Categories 572:References 439:says that 415:local ring 249:surjection 498:⊗ 491:⁡ 461:⁡ 300:↦ 280:→ 272:Γ 269:∈ 262:⨁ 206:⋯ 62:submodule 550:See also 398:}. What 350:quotient 404:infimum 361:minimal 157:, ..., 137:, ..., 45:over a 38:Γ of a 363:if no 101:ideals 90:finite 54:subset 40:module 624:This 519:. If 417:with 413:be a 396:{2, 3 377:basis 373:field 371:is a 352:of a 52:is a 630:stub 531:(so 525:flat 431:and 424:and 409:Let 386:The 150:and 47:ring 34:, a 523:is 482:dim 452:dim 146:in 126:in 64:of 56:of 30:In 675:: 588:. 546:. 539:. 400:is 96:. 661:e 654:t 647:v 636:. 605:. 592:. 533:M 521:M 507:k 502:R 494:M 486:k 478:= 475:M 472:m 468:/ 464:M 456:k 441:M 433:M 429:k 422:m 411:R 392:Z 369:R 346:M 342:g 337:g 333:r 316:, 313:g 308:g 304:r 295:g 291:r 286:, 283:M 277:R 266:g 232:. 227:m 223:g 217:m 213:r 209:+ 203:+ 198:1 194:g 188:1 184:r 180:= 177:x 163:m 159:g 155:1 152:g 148:R 143:m 139:r 135:1 132:r 128:M 124:x 120:R 116:M 112:M 86:R 82:R 78:M 70:M 66:M 58:M 50:R 43:M 20:)

Index

Generating set of an ideal
mathematics
module
ring
subset
submodule
intersection
finite
finitely generated
ideals
principal ideal
surjection
quotient
free module
proper subset
field
basis
finitely generated
cardinality
infimum
local ring
maximal ideal
residue field
Nakayama's lemma
flat
linearly independent
Minimal resolution
Free presentation of a module
Countably generated module
Flat module

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.