Knowledge

Genetic purging

Source đź“ť

686: 774:
inbreeding, the harshness of the environment or of the competitive conditions, etc. The effects of purging were first noted by Darwin in plants, and have been detected in laboratory experiments and in vertebrate populations undergoing inbreeding in zoos or in the wild, as well as in humans. The detection of purging is often obscured by many factors, but there is consistent evidence that, in agreement with the predictions explained above, slow inbreeding results in more efficient purging, so that a given inbreeding F leads to less threat to population viability if it has been produced more slowly.
81:
fitness mean fitness declines less than would be expected just from inbreeding and, after some initial decline, it can even rebound up to almost its value before inbreeding. Another consequence is the reduction of the so-called inbreeding load. This means that, after purging, further inbreeding is expected to be less harmful. The efficiency of purging is reduced by genetic drift and, therefore, in the long term, purging is less efficient in smaller populations. Purging can be increased if individuals mate with relatives more often than expected by random mating.
2521: 2137: 716:=10), and remains that small for many generations. As inbreeding increases, the probability of being homozygous for one (or more) of these lethal alleles also increases, causing fitness to decline. However, as those lethals begin to occur in homozygosis, natural selection begins purging them. The figure to the right gives the expected decline of fitness against the number of generations, taking into account just the increase in inbreeding 73:
probability of being homozygous, it increases the fraction of the potential deleterious effect that is expressed and, therefore, exposed to selection. This causes some increase in the selective pressure against (partially) recessive deleterious alleles, which is known as purging. Of course, it also causes some reduction in fitness, which is known as
785:
In addition, part of the inbreeding depression could be not due to deleterious alleles, but to an intrinsic advantage of being heterozygous compared to being homozygous for any available allele, which is known as overdominance. Inbreeding depression caused by overdominance cannot be purged, but seems
286:
and, therefore, the final reduction in fitness. This implies that, if inbreeding progresses slowly enough, no relevant inbreeding depression is expected in the long term. implies, for example, that the average fitness of a population that has been moderately small for a long time, can be very similar
241:
can also be computed, to a good approximation, using simple expressions in terms of the population size or of the genealogy of individuals (see BOX 1). However this requires some information on the magnitude of the deleterious effects that are hidden in the heterozygous condition but become expressed
711:
As an example of genetic purging, consider a large population where there are recessive lethal alleles segregating at very low frequency in many loci, so that each gamete carries on the average one of these alleles. Although about 63% of the gametes carry at least one of these lethal alleles, almost
273:
for the extreme case of inbreeding depression caused by recessive lethals, which are alleles that cause death before reproduction but only when they occur in homozygosis. Purging is less effective against mildly deleterious alleles than against lethal ones but, in general, the slower is the increase
80:
Purging can reduce the average frequency of deleterious alleles across the genome below the value expected in a non-inbred population during long periods. which reduces the negative impact of inbreeding on fitness. If inbreeding is due just to random mating in a finite population, due to purging the
799:
Understanding genetic purging and predicting its consequences is of great importance in evolutionary and conservation genetics. Endangered populations use to undergo inbreeding due to their reduced numbers, and purging can play a relevant role in determining their extinction risk and the success of
72:
by more than twice than when they occur in heterozygosis (single copy). In other words, part of their potential deleterious effect is hidden in heterozygosis but expressed in homozygosis, so that selection is more efficient against them when they occur in homozygosis. Since inbreeding increases the
33:
Purging occurs because deleterious alleles tend to be recessive, which means that they only express all their harmful effects when they are present in the two copies of the individual (i.e., in homozygosis). During inbreeding, as related individuals mate, they produce offspring that are more likely
777:
Nevertheless, in practical situations, the genetic change in fitness also depends on many other factors, besides inbreeding and purging. For example, adaptation to changing environmental conditions often causes relevant genetic changes during inbreeding. Furthermore, if inbreeding is due to a
773:
When a previously stable population undergoes inbreeding, if nothing else changes, natural selection should consist mainly of purging. The joint consequences of inbreeding and purging on fitness vary depending on many factors: the previous history of the population, the rate of increase of
159:
is the standard measure of inbreeding, and gives the probability that, at any given neutral locus, an individual has inherited two copies of a same gene of a common ancestor (i.e. the probability of being homozygous "by descent"). In simple conditions,
872:
Kleinman-Ruiz, D., Lucena-Perez, M., Villanueva, B., Fernández, J., Saveljev, A. P., Ratkiewicz, M., ... & Godoy, J. A. (2022). Purging of deleterious burden in the endangered Iberian lynx. Proceedings of the National Academy of Sciences, 119(11),
728:). This example shows that purging can be very efficient in preventing inbreeding depression. However, for non-lethal deleterious alleles, the efficiency of purging would be smaller, and it can require larger populations to overcome genetic drift. 1013:
Mortimer, Robert K.; Romano, Patrizia; Suzzi, Giovanna; Polsinelli, Mario (December 1994). "Genome renewal: A new phenomenon revealed from a genetic study of 43 strains ofSaccharomyces cerevisiae derived from natural fermentation of grape musts".
712:
no individual carry two copies of the same lethal. Therefore, since lethals are considered completely recessive (i.e., they are harmless in heterozygosis), they cause almost no deaths. Now assume that population size reduces to a small value (say
736:
Inbreeding depression and purging play a major role in the evolution of reproductive systems. As an example, they determine when selfing becomes at an advantage compared to outcrossing. Another example is the genomic renewal in yeasts.
119:
Purging reduces inbreeding depression in two ways: first, it slows its progress; second, it reduces the overall inbreeding depression expected in the long term. The slower the progress of inbreeding, the more efficient is purging.
214:) that gives the probability of being homozygous by descent for (partially) recessive deleterious alleles, taking into account how their frequency is reduced by purging. Due to purging, fitness declines at the same rate 34:
to be homozygous so that deleterious alleles express all their harmful effects more often, making individuals less fit. Those less fit individuals pass fewer copies of their genes to future generations. In other terms,
789:
Therefore, predicting the actual evolution of fitness during inbreeding is highly elusive. However, the component of fitness decline expected from inbreeding and purging on deleterious alleles could be predicted using
97:, because inbreeding depression may be a relevant factor determining the extinction risk of endangered populations, and because conservation programs can allow some breeding handling in order to control inbreeding. 268:
can approach a much smaller final value. Hence, it is not just that purging slows the fitness decline, but also that it reduces the overall fitness loss produced by inbreeding in the long term. This is illustrated
287:
to that of a large population with more genetic diversity. In conservation genetics, it would be very useful to ascertain the maximum rate of increase of inbreeding that allows for such efficient purging.
320:, due to (partially) recessive deleterious alleles that were present at low frequencies at different loci. This means that, in the absence of selection, the expected value for mean fitness after 89:
Accounting for purging when predicting inbreeding depression is important in evolutionary genetics, because the fitness decline caused by inbreeding can be determinant in the evolution of
128:
In the absence of natural selection, mean fitness would be expected to decline exponentially as inbreeding increases, where inbreeding is measured using Wright's inbreeding coefficient
481: 383: 935:
Porcher, E., & Lande, R. (2013). Evaluating a simple approximation to modeling the joint evolution of self-fertilization and inbreeding depression. Evolution, 67(12), 3628-3635.
672: 191:
for neutral loci does not apply to deleterious alleles, unless inbreeding increases so fast that the change in gene frequency is governed just by random sampling (i.e., by
1284:
Hedrick, P. W., & Garcia-Dorado, A. (2016). Understanding inbreeding depression, purging, and genetic rescue. Trends in ecology & evolution, 31(12), 940-952.
511: 413: 1452: 765:. Recessive deleterious mutations accumulate during the diploid expansion phase, and are purged during selfing: this purging has been termed "genome renewal". 181:
However, the above prediction for the fitness decline rarely applies, since it was derived assuming no selection, and fitness is precisely the target trait of
2359: 199: 1240:
GarcĂ­a-Dorado, A. (2015). On the consequences of ignoring purging on genetic recommendations for minimum viable population rules. Heredity, 115(3), 185.
701:) of maintenance with population size N=10 when, in the original population, each gamete carried on the average one rare recessive lethal. Evolution of 944:
GarcĂ­a-Dorado, Aurora. An explicit model for the inbreeding load in the evolutionary analysis of selfing. Evolution, 2017, vol. 71, no 5, p. 1381-1389.
1312: 68:
organisms have a remarkable trend to be, at least, partially recessive. This means that, when they occur in homozygosis (double copies), they reduce
1560: 1555: 1957: 1789: 2384: 2007: 100:
In brief: due to purging, inbreeding depression does not depend on the standard measure of inbreeding (Wright's inbreeding coefficient
2125: 424:
However, since selection operates upon fitness, mean fitness should be predicted taking into account both inbreeding and purging, as
2059: 45:
Purging reduces both the overall number of recessive deleterious alleles and the decline of mean fitness caused by inbreeding (the
2506: 1987: 52:
The term "purge" is sometimes used for selection against deleterious alleles in a general way. It would avoid ambiguity to use "
290: 826:"Understanding and predicting the fitness decline of shrunk populations: inbreeding, purging, mutation and standard selection" 1305: 140:
instead of linear is just that fitness is usually considered a multiplicative trait). The rate at which fitness declines as
2364: 2208: 2379: 2173: 2042: 1779: 2054: 1432: 93:, sexual reproduction and other main biological features. It is also important in animal breeding and, of course, in 2575: 2022: 1548: 1298: 786:
to be a minor cause of overall inbreeding depression, although its actual importance is still a matter of debate.
2097: 1889: 1828: 1382: 150:) depends on the frequencies and deleterious effects of the alleles present in the population before inbreeding. 1806: 1488: 1372: 1332: 1062:"The consequences of rare sexual reproduction by means of selfing in an otherwise clonally reproducing species" 430: 332: 2565: 2545: 2140: 1879: 1714: 1538: 1518: 685: 291:
Predictive model for the joint effects of inbreeding and purging caused by a reduction in population numbers
2550: 2465: 2102: 1845: 1640: 1635: 1513: 2120: 2027: 2012: 1811: 1696: 1625: 1528: 1422: 722:(red line), or both inbreeding and purging (blue line, computed using the purged inbreeding coefficient 525:, which represents the deleterious effects that are hidden in heterozygosis but exposed in homozygosis. 2570: 2213: 1962: 1570: 1362: 534: 2555: 2369: 2354: 2002: 1982: 1967: 1937: 1833: 308: 2374: 2193: 2130: 2047: 2017: 1997: 1605: 1523: 1508: 1498: 1473: 1468: 782:
can become less efficient, and this can induce additional fitness decline in the medium-long term.
739: 1972: 1874: 1821: 1580: 1503: 745: 202:, the decline of fitness can be predicted using, instead of the standard inbreeding coefficient 2166: 2037: 2032: 1952: 1947: 1942: 1932: 1914: 1899: 1753: 1412: 528:
The average "purged inbreeding coefficient" can be approximated using the recurrent expression
56:" in that general context, and to reserve "purging" to its more strict meaning defined above. 2501: 2335: 2300: 1992: 1977: 1798: 1719: 1691: 1686: 1645: 1615: 1610: 1575: 1493: 1437: 1377: 1367: 94: 74: 46: 2400: 2218: 2087: 2077: 1884: 1681: 1630: 1620: 1585: 1483: 1478: 1442: 1407: 1402: 1397: 1342: 1321: 1263: 1197: 1073: 967: 956:"Population genomics of the wild yeast Saccharomyces paradoxus: Quantifying the life cycle" 892: 750: 489: 391: 1186:"Role of inbreeding depression and purging in captive breeding and restoration programmes" 8: 2480: 2470: 2430: 2330: 2310: 2203: 2198: 1894: 1869: 1862: 1784: 1706: 1427: 1417: 1387: 53: 1352: 1201: 1077: 971: 896: 2440: 2325: 2320: 2295: 1850: 1724: 1655: 1447: 1223: 1166: 1153: 1136: 1094: 1061: 1039: 990: 955: 850: 825: 2560: 2524: 2455: 2445: 2435: 2269: 2159: 2107: 1816: 1774: 1660: 1543: 1267: 1215: 1210: 1185: 1158: 1099: 1031: 995: 855: 182: 107: 69: 35: 1227: 1170: 1043: 707:
expected only from inbreeding (red line) or from inbreeding and purging (blue line).
110:
alleles. Instead, fitness decline it depends on the "purged inbreeding coefficient"
2485: 2460: 1838: 1533: 1357: 1259: 1205: 1148: 1089: 1081: 1023: 985: 975: 900: 845: 837: 166:
can be easily computed in terms of population size or of genealogical information.
270: 2345: 1565: 904: 841: 680: 2475: 2415: 2315: 1595: 1117: 1085: 677:
There are also predictive equations to be used with genealogical information.
2539: 2092: 2082: 1855: 1746: 1734: 1729: 192: 980: 2425: 2305: 1769: 1271: 1219: 1162: 1103: 1057: 999: 859: 280:, the smaller becomes the final value of the purged inbreeding coefficient 1290: 1035: 1027: 2405: 762: 84: 2410: 2279: 2259: 2234: 311:
should be used here), leading to a progressive increase of inbreeding.
242:
in homozygosis. The larger this magnitude, denoted purging coefficient
39: 27: 954:
Tsai, I. J.; Bensasson, D.; Burt, A.; Koufopanou, V. (14 March 2008).
1909: 1741: 1250:
Crow, JF (2008). "Mid-century controversies in population genetics".
731: 519:
generations of inbreeding. It depends upon the "purging coefficient"
249:
An interesting property of purging is that, during inbreeding, while
116:, which takes into account how deleterious alleles are being purged. 2450: 2420: 2264: 2254: 2182: 1665: 1392: 1122:
The effects of cross and selffertilisation in the vegetable kingdom
779: 90: 22:
is the increased pressure of natural selection against deleterious
301:. Then, the size of the population reduces to a new smaller value 1137:"Purging the genetic load: a review of the experimental evidence" 758: 754: 415:
is the population mean for Wright's inbreeding coefficient after
65: 23: 778:
reduction in population size, selection against new deleterious
16:
Reduction in frequency of deleterious alleles through inbreeding
2274: 2249: 1650: 178:), but should not be confused with the coancestry coefficient. 1012: 681:
The example of inbreeding depression due to recessive lethals
2151: 953: 749:
have a life cycle that alternates between long periods of
2244: 2239: 295:
Consider a large non-inbred population with mean fitness
220:
than in the absence of selection, but as a function of
537: 513:
is the average "purged inbreeding coefficient" after
492: 433: 394: 335: 85:
The joint effect of inbreeding and purging on fitness
732:Relevance to the evolution of reproductive systems 666: 505: 475: 407: 377: 64:Deleterious alleles segregating in populations of 2537: 1561:Other effective area-based conservation measures 1556:Integrated Conservation and Development Project 1134: 960:Proceedings of the National Academy of Sciences 883:Frankham, R (2005). "Genetics and extinction". 123: 2167: 1306: 923:An Introduction to Population Genetics Theory 823: 1183: 314:Then inbreeding depression occurs at a rate 1320: 1056: 2174: 2160: 1313: 1299: 920: 146:increases (the inbreeding depression rate 134:(the reason why decline is exponential on 1209: 1152: 1093: 989: 979: 849: 1135:Crnokrak, P.; Barrett, S. C. H. (2002). 882: 819: 817: 815: 813: 768: 684: 476:{\displaystyle W_{t}=We^{-\delta g_{t}}} 378:{\displaystyle W_{t}=We^{-\delta F_{t}}} 185:. Thus, Wright's inbreeding coefficient 38:purges recessive deleterious alleles in 2507:List of genetics research organizations 2538: 1264:10.1146/annurev.genet.42.110807.091612 1116: 106:), since this measure only applies to 2155: 1294: 1184:Leberg, P. L.; Firmin, B. D. (2008). 810: 757:that is usually immediately followed 326:generations of inbreeding, would be: 208:, a "purged inbreeding coefficient" ( 1249: 1060:; Lyttle, David N. (December 2011). 916: 914: 255:increases approaching a final value 235:This purged inbreeding coefficient 13: 1154:10.1111/j.0014-3820.2002.tb00160.x 172:is often denoted using lowercase ( 14: 2587: 1433:Conservation biology of parasites 911: 695:) against number of generations ( 246:, the more efficient is purging. 2520: 2519: 2136: 2135: 1549:Tropical rainforest conservation 1453:Vulnerability and susceptibility 1211:10.1111/j.1365-294x.2007.03433.x 667:{\displaystyle g_{t}=\left\left} 59: 2098:NatureServe conservation status 1383:Conservation-induced extinction 1278: 1243: 1234: 1177: 1128: 1110: 921:Crow, J.F.; Kimura, M. (1970). 1489:Conservation management system 1373:Conservation-dependent species 1333:Index of conservation articles 1066:Theoretical Population Biology 1050: 1006: 947: 938: 929: 876: 866: 1: 1715:Assisted natural regeneration 1519:Ecoregion conservation status 803: 2466:Missing heritability problem 2181: 2103:Special Area of Conservation 1641:Landscape-scale conservation 1636:High conservation value area 1514:Community-based conservation 905:10.1016/j.biocon.2005.05.002 689:Average population fitness ( 198:Therefore, according to the 7: 2121:List of conservation issues 1529:Evidence-based conservation 1423:Mutualisms and conservation 842:10.1534/genetics.111.135541 800:conservation strategies. 421:generations of inbreeding. 124:A more detailed explanation 10: 2592: 1571:Roadless area conservation 1363:Compassionate conservation 2515: 2494: 2393: 2344: 2288: 2227: 2189: 2116: 2070: 1925: 1762: 1705: 1674: 1594: 1461: 1341: 1328: 1252:Annual Review of Genetics 1086:10.1016/j.tpb.2011.08.004 824:GarcĂ­a-Dorado, A (2012). 309:effective population size 1958:Central African Republic 1606:Conservation designation 1524:Environmental protection 1509:Conspicuous conservation 1499:Conservation photography 1474:Conservation development 1469:Conservation agriculture 753:as a diploid, ending in 740:Saccharomyces cerevisiae 2576:Rare breed conservation 1697:Human–wildlife conflict 1581:Site-based conservation 1504:Conservation psychology 1322:Conservation of species 981:10.1073/pnas.0707314105 925:. NY: Harper & Row. 885:Biological Conservation 746:Saccharomyces paradoxus 486:In the above equation, 1754:Species reintroduction 1413:Latent extinction risk 1124:. London: John Murray. 708: 668: 507: 477: 409: 379: 153:The above coefficient 2502:List of genetic codes 2126:List of organisations 1780:Hawaiian honeycreeper 1720:Ecosystem restoration 1692:Habitat fragmentation 1687:Fortress conservation 1646:Marine protected area 1616:Conservation easement 1611:Conservation district 1576:Roadside conservation 1494:Conservation movement 1438:Species translocation 1378:Conservation genetics 1368:Conservation behavior 1028:10.1002/yea.320101203 769:Evidence and problems 688: 669: 508: 506:{\displaystyle g_{t}} 478: 410: 408:{\displaystyle F_{t}} 380: 95:conservation genetics 75:inbreeding depression 47:inbreeding depression 2566:Conservation biology 2546:Evolutionary biology 2401:Behavioural genetics 2088:Planetary boundaries 2078:Conservation officer 1682:Conservation refugee 1631:Habitat conservation 1621:Conservation reserve 1586:Wetland conservation 1484:Conservation grazing 1479:Conservation finance 1443:Conservation welfare 1408:In-situ conservation 1403:Extinction threshold 1398:Ex-situ conservation 751:asexual reproduction 535: 490: 431: 392: 333: 2551:Population genetics 2481:Population genomics 2471:Molecular evolution 2431:Genetic engineering 1428:Nature conservation 1418:Marine conservation 1388:Conservation status 1202:2008MolEc..17..334L 1078:2011TPBio..80..317M 972:2008PNAS..105.4957T 897:2005BCons.126..131F 54:purifying selection 2441:Genetic monitoring 1725:Island restoration 1656:Open space reserve 1448:Threatened species 709: 664: 503: 473: 405: 375: 2571:Genetics concepts 2533: 2532: 2456:He Jiankui affair 2446:Genetic genealogy 2436:Genetic diversity 2365:the British Isles 2270:Genetic variation 2149: 2148: 2108:Soil conservation 1661:Wildlife corridor 1544:Forest protection 1539:Forest management 1190:Molecular Ecology 1147:(12): 2347–2358. 1022:(12): 1543–1552. 966:(12): 4957–4962. 761:, with only rare 619: 580: 183:natural selection 36:natural selection 2583: 2556:Applied genetics 2523: 2522: 2486:Reverse genetics 2461:Medical genetics 2176: 2169: 2162: 2153: 2152: 2139: 2138: 2023:Papua New Guinea 1915:Cryopreservation 1880:Gray nurse shark 1534:Flagship species 1358:Captive breeding 1315: 1308: 1301: 1292: 1291: 1285: 1282: 1276: 1275: 1247: 1241: 1238: 1232: 1231: 1213: 1181: 1175: 1174: 1156: 1132: 1126: 1125: 1114: 1108: 1107: 1097: 1054: 1048: 1047: 1010: 1004: 1003: 993: 983: 951: 945: 942: 936: 933: 927: 926: 918: 909: 908: 880: 874: 870: 864: 863: 853: 836:(4): 1461–1476. 821: 795: 727: 721: 706: 700: 694: 673: 671: 670: 665: 663: 659: 658: 657: 625: 621: 620: 618: 607: 602: 601: 586: 582: 581: 579: 568: 547: 546: 524: 518: 512: 510: 509: 504: 502: 501: 482: 480: 479: 474: 472: 471: 470: 469: 443: 442: 420: 414: 412: 411: 406: 404: 403: 384: 382: 381: 376: 374: 373: 372: 371: 345: 344: 325: 319: 306: 300: 285: 279: 267: 261: 254: 240: 231: 225: 219: 213: 207: 190: 177: 171: 165: 158: 145: 139: 133: 115: 105: 2591: 2590: 2586: 2585: 2584: 2582: 2581: 2580: 2536: 2535: 2534: 2529: 2511: 2490: 2389: 2380:the Middle East 2346:Archaeogenetics 2340: 2284: 2223: 2185: 2180: 2150: 2145: 2112: 2066: 1921: 1839:Indian elephant 1758: 1701: 1670: 1666:30 by 30 target 1597: 1590: 1566:Riparian buffer 1457: 1344: 1337: 1324: 1319: 1289: 1288: 1283: 1279: 1248: 1244: 1239: 1235: 1182: 1178: 1133: 1129: 1115: 1111: 1055: 1051: 1011: 1007: 952: 948: 943: 939: 934: 930: 919: 912: 881: 877: 871: 867: 822: 811: 806: 794: 791: 771: 734: 726: 723: 720: 717: 705: 702: 699: 696: 693: 690: 683: 647: 643: 630: 626: 611: 606: 591: 587: 572: 567: 560: 556: 555: 551: 542: 538: 536: 533: 532: 523: 520: 517: 514: 497: 493: 491: 488: 487: 465: 461: 454: 450: 438: 434: 432: 429: 428: 419: 416: 399: 395: 393: 390: 389: 367: 363: 356: 352: 340: 336: 334: 331: 330: 324: 321: 318: 315: 305: 302: 299: 296: 293: 284: 281: 278: 275: 266: 263: 259: 256: 253: 250: 239: 236: 230: 227: 224: 221: 218: 215: 212: 209: 206: 203: 189: 186: 176: 173: 170: 167: 164: 161: 157: 154: 144: 141: 138: 135: 132: 129: 126: 114: 111: 104: 101: 87: 62: 20:Genetic purging 17: 12: 11: 5: 2589: 2579: 2578: 2573: 2568: 2563: 2558: 2553: 2548: 2531: 2530: 2528: 2527: 2516: 2513: 2512: 2510: 2509: 2504: 2498: 2496: 2492: 2491: 2489: 2488: 2483: 2478: 2476:Plant genetics 2473: 2468: 2463: 2458: 2453: 2448: 2443: 2438: 2433: 2428: 2423: 2418: 2416:Genome editing 2413: 2408: 2403: 2397: 2395: 2394:Related topics 2391: 2390: 2388: 2387: 2382: 2377: 2372: 2367: 2362: 2357: 2351: 2349: 2342: 2341: 2339: 2338: 2333: 2328: 2323: 2318: 2316:Immunogenetics 2313: 2308: 2303: 2298: 2292: 2290: 2286: 2285: 2283: 2282: 2277: 2272: 2267: 2262: 2257: 2252: 2247: 2242: 2237: 2231: 2229: 2228:Key components 2225: 2224: 2222: 2221: 2216: 2211: 2206: 2201: 2196: 2190: 2187: 2186: 2179: 2178: 2171: 2164: 2156: 2147: 2146: 2144: 2143: 2133: 2131:List of people 2128: 2123: 2117: 2114: 2113: 2111: 2110: 2105: 2100: 2095: 2090: 2085: 2080: 2074: 2072: 2068: 2067: 2065: 2064: 2063: 2062: 2052: 2051: 2050: 2043:United Kingdom 2040: 2035: 2030: 2025: 2020: 2015: 2010: 2005: 2000: 1995: 1990: 1985: 1980: 1975: 1970: 1965: 1960: 1955: 1950: 1945: 1940: 1935: 1929: 1927: 1923: 1922: 1920: 1919: 1918: 1917: 1912: 1904: 1903: 1902: 1897: 1892: 1890:Painted turtle 1887: 1882: 1877: 1867: 1866: 1865: 1860: 1859: 1858: 1848: 1843: 1842: 1841: 1831: 1826: 1825: 1824: 1814: 1809: 1807:American bison 1801: 1796: 1795: 1794: 1793: 1792: 1782: 1772: 1766: 1764: 1760: 1759: 1757: 1756: 1751: 1750: 1749: 1739: 1738: 1737: 1727: 1722: 1717: 1711: 1709: 1703: 1702: 1700: 1699: 1694: 1689: 1684: 1678: 1676: 1672: 1671: 1669: 1668: 1663: 1658: 1653: 1648: 1643: 1638: 1633: 1628: 1623: 1618: 1613: 1608: 1602: 1600: 1592: 1591: 1589: 1588: 1583: 1578: 1573: 1568: 1563: 1558: 1553: 1552: 1551: 1546: 1536: 1531: 1526: 1521: 1516: 1511: 1506: 1501: 1496: 1491: 1486: 1481: 1476: 1471: 1465: 1463: 1459: 1458: 1456: 1455: 1450: 1445: 1440: 1435: 1430: 1425: 1420: 1415: 1410: 1405: 1400: 1395: 1390: 1385: 1380: 1375: 1370: 1365: 1360: 1355: 1349: 1347: 1339: 1338: 1336: 1335: 1329: 1326: 1325: 1318: 1317: 1310: 1303: 1295: 1287: 1286: 1277: 1242: 1233: 1196:(1): 334–343. 1176: 1127: 1109: 1072:(4): 317–322. 1049: 1005: 946: 937: 928: 910: 891:(2): 131–140. 875: 865: 808: 807: 805: 802: 792: 770: 767: 733: 730: 724: 718: 703: 697: 691: 682: 679: 675: 674: 662: 656: 653: 650: 646: 642: 639: 636: 633: 629: 624: 617: 614: 610: 605: 600: 597: 594: 590: 585: 578: 575: 571: 566: 563: 559: 554: 550: 545: 541: 521: 515: 500: 496: 484: 483: 468: 464: 460: 457: 453: 449: 446: 441: 437: 417: 402: 398: 386: 385: 370: 366: 362: 359: 355: 351: 348: 343: 339: 322: 316: 307:(in fact, the 303: 297: 292: 289: 282: 276: 274:of inbreeding 264: 257: 251: 237: 228: 222: 216: 210: 204: 187: 174: 168: 162: 155: 142: 136: 130: 125: 122: 112: 102: 86: 83: 61: 58: 49:for fitness). 42:individuals. 15: 9: 6: 4: 3: 2: 2588: 2577: 2574: 2572: 2569: 2567: 2564: 2562: 2559: 2557: 2554: 2552: 2549: 2547: 2544: 2543: 2541: 2526: 2518: 2517: 2514: 2508: 2505: 2503: 2500: 2499: 2497: 2493: 2487: 2484: 2482: 2479: 2477: 2474: 2472: 2469: 2467: 2464: 2462: 2459: 2457: 2454: 2452: 2449: 2447: 2444: 2442: 2439: 2437: 2434: 2432: 2429: 2427: 2424: 2422: 2419: 2417: 2414: 2412: 2409: 2407: 2404: 2402: 2399: 2398: 2396: 2392: 2386: 2383: 2381: 2378: 2376: 2373: 2371: 2368: 2366: 2363: 2361: 2358: 2356: 2353: 2352: 2350: 2347: 2343: 2337: 2334: 2332: 2329: 2327: 2324: 2322: 2319: 2317: 2314: 2312: 2309: 2307: 2304: 2302: 2299: 2297: 2294: 2293: 2291: 2287: 2281: 2278: 2276: 2273: 2271: 2268: 2266: 2263: 2261: 2258: 2256: 2253: 2251: 2248: 2246: 2243: 2241: 2238: 2236: 2233: 2232: 2230: 2226: 2220: 2217: 2215: 2212: 2210: 2207: 2205: 2202: 2200: 2197: 2195: 2192: 2191: 2188: 2184: 2177: 2172: 2170: 2165: 2163: 2158: 2157: 2154: 2142: 2134: 2132: 2129: 2127: 2124: 2122: 2119: 2118: 2115: 2109: 2106: 2104: 2101: 2099: 2096: 2094: 2093:IUCN Red List 2091: 2089: 2086: 2084: 2083:De-extinction 2081: 2079: 2076: 2075: 2073: 2069: 2061: 2058: 2057: 2056: 2055:United States 2053: 2049: 2046: 2045: 2044: 2041: 2039: 2036: 2034: 2031: 2029: 2026: 2024: 2021: 2019: 2016: 2014: 2011: 2009: 2006: 2004: 2001: 1999: 1996: 1994: 1991: 1989: 1986: 1984: 1981: 1979: 1976: 1974: 1971: 1969: 1966: 1964: 1961: 1959: 1956: 1954: 1951: 1949: 1946: 1944: 1941: 1939: 1936: 1934: 1931: 1930: 1928: 1924: 1916: 1913: 1911: 1908: 1907: 1905: 1901: 1898: 1896: 1893: 1891: 1888: 1886: 1883: 1881: 1878: 1876: 1873: 1872: 1871: 1868: 1864: 1861: 1857: 1854: 1853: 1852: 1849: 1847: 1844: 1840: 1837: 1836: 1835: 1832: 1830: 1827: 1823: 1820: 1819: 1818: 1815: 1813: 1810: 1808: 1805: 1804: 1802: 1800: 1797: 1791: 1788: 1787: 1786: 1783: 1781: 1778: 1777: 1776: 1773: 1771: 1768: 1767: 1765: 1761: 1755: 1752: 1748: 1745: 1744: 1743: 1740: 1736: 1735:afforestation 1733: 1732: 1731: 1730:Reforestation 1728: 1726: 1723: 1721: 1718: 1716: 1713: 1712: 1710: 1708: 1704: 1698: 1695: 1693: 1690: 1688: 1685: 1683: 1680: 1679: 1677: 1673: 1667: 1664: 1662: 1659: 1657: 1654: 1652: 1649: 1647: 1644: 1642: 1639: 1637: 1634: 1632: 1629: 1627: 1624: 1622: 1619: 1617: 1614: 1612: 1609: 1607: 1604: 1603: 1601: 1599: 1593: 1587: 1584: 1582: 1579: 1577: 1574: 1572: 1569: 1567: 1564: 1562: 1559: 1557: 1554: 1550: 1547: 1545: 1542: 1541: 1540: 1537: 1535: 1532: 1530: 1527: 1525: 1522: 1520: 1517: 1515: 1512: 1510: 1507: 1505: 1502: 1500: 1497: 1495: 1492: 1490: 1487: 1485: 1482: 1480: 1477: 1475: 1472: 1470: 1467: 1466: 1464: 1460: 1454: 1451: 1449: 1446: 1444: 1441: 1439: 1436: 1434: 1431: 1429: 1426: 1424: 1421: 1419: 1416: 1414: 1411: 1409: 1406: 1404: 1401: 1399: 1396: 1394: 1391: 1389: 1386: 1384: 1381: 1379: 1376: 1374: 1371: 1369: 1366: 1364: 1361: 1359: 1356: 1354: 1351: 1350: 1348: 1346: 1340: 1334: 1331: 1330: 1327: 1323: 1316: 1311: 1309: 1304: 1302: 1297: 1296: 1293: 1281: 1273: 1269: 1265: 1261: 1257: 1253: 1246: 1237: 1229: 1225: 1221: 1217: 1212: 1207: 1203: 1199: 1195: 1191: 1187: 1180: 1172: 1168: 1164: 1160: 1155: 1150: 1146: 1142: 1138: 1131: 1123: 1119: 1118:Darwin, C. R. 1113: 1105: 1101: 1096: 1091: 1087: 1083: 1079: 1075: 1071: 1067: 1063: 1059: 1058:Masel, Joanna 1053: 1045: 1041: 1037: 1033: 1029: 1025: 1021: 1017: 1009: 1001: 997: 992: 987: 982: 977: 973: 969: 965: 961: 957: 950: 941: 932: 924: 917: 915: 906: 902: 898: 894: 890: 886: 879: 869: 861: 857: 852: 847: 843: 839: 835: 831: 827: 820: 818: 816: 814: 809: 801: 797: 787: 783: 781: 775: 766: 764: 760: 756: 752: 748: 747: 742: 741: 729: 715: 687: 678: 660: 654: 651: 648: 644: 640: 637: 634: 631: 627: 622: 615: 612: 608: 603: 598: 595: 592: 588: 583: 576: 573: 569: 564: 561: 557: 552: 548: 543: 539: 531: 530: 529: 526: 498: 494: 466: 462: 458: 455: 451: 447: 444: 439: 435: 427: 426: 425: 422: 400: 396: 368: 364: 360: 357: 353: 349: 346: 341: 337: 329: 328: 327: 312: 310: 288: 272: 247: 245: 233: 201: 196: 194: 193:genetic drift 184: 179: 151: 149: 121: 117: 109: 98: 96: 92: 82: 78: 76: 71: 67: 60:The mechanism 57: 55: 50: 48: 43: 41: 37: 31: 29: 25: 21: 2426:Genetic code 2360:the Americas 2336:Quantitative 2306:Cytogenetics 2301:Conservation 2194:Introduction 1856:Bengal Tiger 1812:Arabian oryx 1803:Land mammal 1790:Golden eagle 1626:Gap analysis 1353:Biodiversity 1343:Conservation 1280: 1255: 1251: 1245: 1236: 1193: 1189: 1179: 1144: 1140: 1130: 1121: 1112: 1069: 1065: 1052: 1019: 1015: 1008: 963: 959: 949: 940: 931: 922: 888: 884: 878: 873:e2110614119. 868: 833: 829: 798: 788: 784: 776: 772: 744: 738: 735: 713: 710: 676: 527: 485: 423: 387: 313: 294: 248: 243: 234: 197: 180: 152: 147: 127: 118: 99: 88: 79: 63: 51: 44: 32: 26:prompted by 19: 18: 2406:Epigenetics 2028:South Sudan 2013:New Zealand 1707:Restoration 763:outcrossing 226:instead of 2540:Categories 2411:Geneticist 2385:South Asia 2331:Population 2311:Ecological 2280:Amino acid 2260:Nucleotide 2235:Chromosome 1963:Costa Rica 1926:By country 1846:Slow loris 1822:Polar bear 1675:Key issues 1462:Approaches 804:References 28:inbreeding 2326:Molecular 2321:Microbial 2296:Classical 2003:Mauritius 1983:Indonesia 1968:Hong Kong 1938:Australia 1910:Seed bank 1900:Sea otter 1770:Arthropod 1742:Rewilding 1596:Protected 1141:Evolution 780:mutations 652:− 635:− 596:− 565:− 459:δ 456:− 361:δ 358:− 2561:Breeding 2525:Category 2451:Heredity 2421:Genomics 2265:Mutation 2255:Heredity 2219:Glossary 2209:Timeline 2183:Genetics 2141:Category 2048:Scotland 2018:Pakistan 1998:Malaysia 1834:Elephant 1763:By taxon 1393:Endemism 1272:18652542 1258:: 1–16. 1228:28421723 1220:18173505 1171:20689054 1163:12583575 1120:(1876). 1104:21888925 1044:11989104 1000:18344325 860:22298709 830:Genetics 91:diploidy 2204:History 2199:Outline 2071:Related 2060:forests 2008:Namibia 1988:Ireland 1973:Iceland 1885:Manatee 1875:Dolphin 1829:Cheetah 1345:biology 1198:Bibcode 1095:3218209 1074:Bibcode 1036:7725789 991:2290798 968:Bibcode 893:Bibcode 851:3316656 759:selfing 755:meiosis 108:neutral 70:fitness 66:diploid 24:alleles 2370:Europe 2355:Africa 2289:Fields 2275:Allele 2250:Genome 2038:Uganda 2033:Sweden 1953:Canada 1948:Brazil 1943:Belize 1933:Angola 1906:Plant 1895:Salmon 1870:Marine 1785:Raptor 1747:marine 1651:Marxan 1270:  1226:  1218:  1169:  1161:  1102:  1092:  1042:  1034:  998:  988:  858:  848:  388:where 317:δ 217:δ 40:inbred 2495:Lists 2375:Italy 2214:Index 1993:Italy 1978:India 1851:Tiger 1799:Fungi 1598:areas 1224:S2CID 1167:S2CID 1040:S2CID 1016:Yeast 271:below 200:model 1863:Wolf 1817:Bear 1775:Bird 1268:PMID 1216:PMID 1159:PMID 1100:PMID 1032:PMID 996:PMID 856:PMID 743:and 2245:RNA 2240:DNA 1260:doi 1206:doi 1149:doi 1090:PMC 1082:doi 1024:doi 986:PMC 976:doi 964:105 901:doi 889:126 846:PMC 838:doi 834:190 260:= 1 195:). 2542:: 2348:of 1266:. 1256:42 1254:. 1222:. 1214:. 1204:. 1194:17 1192:. 1188:. 1165:. 1157:. 1145:56 1143:. 1139:. 1098:. 1088:. 1080:. 1070:80 1068:. 1064:. 1038:. 1030:. 1020:10 1018:. 994:. 984:. 974:. 962:. 958:. 913:^ 899:. 887:. 854:. 844:. 832:. 828:. 812:^ 796:. 262:, 232:. 77:. 30:. 2175:e 2168:t 2161:v 1314:e 1307:t 1300:v 1274:. 1262:: 1230:. 1208:: 1200:: 1173:. 1151:: 1106:. 1084:: 1076:: 1046:. 1026:: 1002:. 978:: 970:: 907:. 903:: 895:: 862:. 840:: 793:g 725:g 719:F 714:N 704:W 698:t 692:W 661:] 655:1 649:t 645:F 641:d 638:2 632:1 628:[ 623:] 616:N 613:2 609:1 604:+ 599:1 593:t 589:g 584:) 577:N 574:2 570:1 562:1 558:( 553:[ 549:= 544:t 540:g 522:d 516:t 499:t 495:g 467:t 463:g 452:e 448:W 445:= 440:t 436:W 418:t 401:t 397:F 369:t 365:F 354:e 350:W 347:= 342:t 338:W 323:t 304:N 298:W 283:g 277:F 265:g 258:F 252:F 244:d 238:g 229:F 223:g 211:g 205:F 188:F 175:f 169:F 163:F 156:F 148:δ 143:F 137:F 131:F 113:g 103:F

Index

alleles
inbreeding
natural selection
inbred
inbreeding depression
purifying selection
diploid
fitness
inbreeding depression
diploidy
conservation genetics
neutral
natural selection
genetic drift
model
below
effective population size

Saccharomyces cerevisiae
Saccharomyces paradoxus
asexual reproduction
meiosis
selfing
outcrossing
mutations




"Understanding and predicting the fitness decline of shrunk populations: inbreeding, purging, mutation and standard selection"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑